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Abstract. Taking the `1-completion and the topological dual of the singular chain
complex gives rise to `1-homology and bounded cohomology respectively. In con-
trast to `1-homology, major structural properties of bounded cohomology are well
understood by the work of Gromov and Ivanov.

Based on an observation by Matsumoto and Morita, we derive a mechanism
linking isomorphisms on the level of homology of Banach chain complexes to iso-
morphisms on the level of cohomology of the dual Banach cochain complexes and
vice versa. Therefore, certain results on bounded cohomology can be transferred
to `1-homology. For example, we obtain a new proof of the fact that `1-homology
depends only on the fundamental group and that `1-homology with twisted coef-
ficients admits a description in terms of projective resolutions. The latter one in
particular fills a gap in Park’s approach.

In the second part, we demonstrate how `1-homology can be used to get a better
understanding of simplicial volume of non-compact manifolds.

1. Introduction

Semi-norms on singular homology contain valuable geometric information – the funda-
mental example of a topological invariant created this way is the simplicial volume of
oriented, closed, connected manifolds, which is the `1-semi-norm of the R-fundamental
class. However, singular homology itself is not an adequate algebraic tool for the study
of the `1-semi-norm. Only by passing to related theories such as bounded cohomology
or `1-homology the bigger picture becomes visible.

In contrast to `1-homology, major structural properties of bounded cohomology are
well understood by the work of Gromov [7] and Ivanov [9]. For example, bounded
cohomology depends only on the fundamental group of the space in question [7, 9;
p. 40, Theorem 4.3], bounded cohomology cannot see amenable normal subgroups of
the fundamental group [7, 9; p. 40, Theorem 4.3], and bounded cohomology of spaces
admits a description in terms of a certain flavour of homological algebra [9].

Matsumoto and Morita observed that `1-homology of a space is trivial if and only
if its bounded cohomology is trivial [16; Corollary 2.4]. Subsequently, they raised the
natural question whether also `1-homology depends only on the fundamental group.
More generally one can ask how bounded cohomology and `1-homology are related and
whether there is some kind of duality. In the present article, we investigate to what
extent such a duality holds.
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A convenient framework for this problem is the language of normed and Banach chain
complexes, i.e., chain complexes of (complete) normed vector spaces whose boundary
operators are bounded operators. Unlike taking algebraic duals of R-chain complexes,
taking topological duals of Banach chain complexes fails to commute with homology
(Section 4.1). However, by exploiting the power of mapping cones, we prove in Sec-
tion 4.2 the following replacement for the universal coefficient theorem:

Theorem (1.1) (Translation principle). Let f : C −→ D be a morphism of Banach
chain complexes and let f ′ : D′ −→ C ′ be its dual.

(1) Then the induced homomorphism H∗(f) : H∗(C) −→ H∗(D) is an isomorphism
of vector spaces if and only if H∗(f ′) : H∗(D′) −→ H∗(C ′) is an isomorphism
of vector spaces.

(2) Furthermore, if H∗(f ′) : H∗(D′) −→ H∗(C ′) is an isometric isomorphism, then
also H∗(f) : H∗(C) −→ H∗(D) is an isometric isomorphism.

In this article, the main examples for Banach (co)chain complexes are the `1-chain
complexes and bounded cochain complexes of spaces and of discrete groups respectively:
The `1-chain complex C`1

∗ (X) of a topological space X is the `1-completion of the
singular chain complex of X with R-coefficients and `1-homology of X is defined to be
the homology of this chain complex; dually, the bounded cochain complex C∗b(X) of X
is the topological dual of C`1

∗ (X) and bounded cohomology of X is defined to be the
cohomology of C∗b(X). Similarly, the `1-chain complex C`1

∗ (G) of a discrete group G is
obtained by taking the `1-completion of the bar resolution, and the bounded cochain
complex of G is the topological dual of C`1

∗ (G).
Applying the translation principle to suitable chain maps in the realm of `1-homology

enables us to transfer many results concerning bounded cohomology to `1-homology.
In particular, this strategy provides a uniform, lightweight approach to the following
results:

Corollary (1.2) (Isomorphisms in `1-homology).

(1) Like bounded cohomology, `1-homology of countable, connected CW-complexes
depends only on the fundamental group and amenable normal subgroups of the
fundamental group are a blind spot of `1-homology (Corollary (5.2)).

(2) There is a characterisation of amenability of discrete groups through `1-homol-
ogy (Corollary (5.5)).

(3) There is a description of `1-homology of spaces in terms of homological alge-
bra; namely, `1-homology of connected, countable CW-complexes coincides with
`1-homology of the fundamental group, and hence `1-homology of such spaces
can be computed via certain strong relatively projective resolutions (Corol-
lary (5.8)).

Bouarich gave the first proof that `1-homology depends only on the fundamental
group [2; Corollaire 6]. His proof is based on the observation by Matsumoto and Morita,
the fact that bounded cohomology of simply connected spaces vanishes, and an `1-ver-
sion of Brown’s theorem. Moreover, Park [20; Corollary 4.2] already claimed that
Corollary (5.2) holds. However, due to a gap in her argument, her proof is not complete.



ISOMORPHISMS IN `1-HOMOLOGY 3

This issue is addressed in Caveats (5.7) and (5.9), which also show that it is not possible
to imitate Ivanov’s arguments in bounded cohomology in the setting of `1-homology.

The results listed above might give the impression that `1-homology is merely a
shadow of bounded cohomology. However, there are also genuine applications of `1-ho-
mology: For example, the simplicial volume of non-compact manifolds is not finite in
general – it can even then be infinite if the manifold in question is the interior of a
compact manifold with boundary. In this case, `1-homology gives rise to a necessary
and sufficient finiteness condition (Theorem (6.4)), which cannot be phrased in terms
of bounded cohomology.

Organisation of this article. In Section 2, we introduce normed and Banach chain
complexes. In Section 3, we review the basic definitions of `1-homology and bounded
cohomology of topological spaces as well as of discrete groups. Duality in the category
of normed chain complexes and the proof of the translation principle are the topic of
Section 4. In Section 5, we apply the translation principle to `1-homology and we
derive the consequences listed above. Finally, in Section 6, we demonstrate how to
utilise `1-homology to study the simplicial volume of non-compact manifolds.

Acknowledgements. I am grateful to Theo Bühler for various helpful suggestions.

2. Homology of normed chain complexes

In this section, we introduce the basic objects of study – normed chain complexes and
their homology. The main examples of these concepts are `1-homology and bounded
cohomology, which are reviewed in Section 3.

2.1. Normed and Banach chain complexes. Normed chain complexes are nothing
but chain complexes in the category of normed vector spaces (and bounded operators):

Definition (2.1) (Normed chain complexes).
– A normed (co)chain complex is a (co)chain complex (indexed over N) consisting

of normed real vector spaces, where all (co)boundary morphisms are bounded
linear operators.

– A Banach (co)chain complex is a normed (co)chain complex consisting of Ba-
nach spaces.

– A morphism of normed (co)chain complexes is a (co)chain map between normed
(co)chain complexes consisting of bounded linear operators. �

Fundamental examples of normed chain complexes are the singular chain complex
with real coefficients and the bar resolution of a discrete group with real coefficients
(Section 3).

Definition (2.2) (Normed chain complexes – basic constructions). Let (C, ∂) be a
normed chain complex.

– Because the boundary operator ∂ is bounded in each degree, it can be uniquely
extended to a bounded boundary operator on the completion C of C. The
resulting Banach chain complex, denoted by (C, ∂), is the completion of C.
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– The dual of C is the Banach cochain complex (C ′, ∂′) defined by

(C ′)n := (Cn)′,

where · ′ stands for the topological dual vector space, together with the norm
given by ‖f‖∞ := sup{|f(c)| | c ∈ Cn, ‖c‖ = 1} for all f ∈ (C ′)n and the
coboundary operators

(∂′)n := (∂n+1)′ : (C ′)n −→ (C ′)n+1

f 7−→
(
c 7→ f(∂n+1(c))

)
. �

Clearly, if C is a normed chain complex, then C ′ = (C)′.

2.2. The induced semi-norm on homology. The presence of chain complexes calls
for the investigation of the corresponding homology. In the case of normed chain com-
plexes, the homology groups carry additional information – the induced semi-norm; for
example, the simplicial volume is a topological invariant defined in terms of such a
semi-norm (Section 3.1.3).

Definition (2.3) (Semi-norm on homology). Let (C, ∂) be a normed chain complex,
and let n ∈ N. The norm ‖ · ‖ on Cn induces a semi-norm on the n-th homology
group Hn(C) := ker ∂n/ im ∂n+1 as follows: If α ∈ Hn(C), then

‖α‖ := inf
{
‖c‖

∣∣ c ∈ Cn, ∂n(c) = 0, [c] = α
}
. �

In this paper, “im ∂n+1” denotes the set-theoretic image of ∂n+1. Of course, an
analogous definition applies also to normed cochain complexes.

Because the images of the boundary operators of a normed chain complex are not
necessarily closed, the induced semi-norm on homology in general is not a norm; this
can even happen if the underlying normed (co)chain complex is the bounded cochain
complex of a topological space [24, 25].

Despite of the fact that the homology of a normed chain complex and the homology
of the corresponding completion in general are quite different, the semi-norms are re-
lated. In fact, in order to understand the semi-norms on the homology of normed chain
complexes, it suffices to consider the case of Banach chain complexes, which is shown
by approximating boundaries [23, 13; Lemma 2.9, Proposition 1.7]:

Proposition (2.4). LetD be a normed chain complex and let C be a dense subcomplex.
Then the map H∗(C) −→ H∗(D) induced by the inclusion is isometric.

Moreover, one can also compute the induced semi-norm on H∗(C) via the semi-norm
on H∗(C ′) (Theorem (4.4)).

3. `1-Homology and bounded cohomology

Taking the completion and the topological dual of the singular chain complex with re-
spect to the `1-norm gives rise to `1-homology and bounded cohomology respectively
(Section 3.1). Also the bar resolution of a discrete group admits an `1-norm – leading to
`1-homology and bounded cohomology of discrete groups (Section 3.2). Both construc-
tions can be decorated with equivariant Banach modules, which yields the corresponding
theories with (twisted) coefficients (Sections 3.2 and 3.3).
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3.1. `1-Homology and bounded cohomology of spaces. We start with the key
example of a normed chain complex:

Definition (3.1) (`1-Norm on the singular chain complex). Let (X,A) be a pair of
topological spaces.

– The `1-norm on the singular chain complex C∗ (X) with real coefficients is
defined as follows: For a chain c =

∑k
j=0 aj · σj ∈ Cn (X) in reduced form we

set

‖c‖1 :=
k∑

j=0

|aj |.

– The induced semi-norm on the quotient C∗ (X,A) = C∗ (X)/C∗ (A) is a norm
because the subcomplex C∗ (A) is `1-closed in C∗ (X); this norm on C∗ (X,A)
is also denoted by ‖ · ‖1. �

The boundary operator ∂n : Cn (X,A) −→ Cn−1 (X,A) is a bounded operator with
respect to the `1-norm of operator norm at most (n+ 1). Hence, C∗ (X,A) is a normed
chain complex. Clearly, C∗ (X) and C∗ (X,A) are in general not complete and thus
these complexes are no Banach chain complexes.

On the other hand, for p ∈ (1,∞], the singular chain complex equipped with the
`p-norm is in general not a normed chain complex in the sense of Definition (2.1) [13;
Proposition 2.11].

Definition (3.2) (`1-Homology and bounded cohomology of spaces). Let (X,A) be a
pair of topological spaces.

– The `1-chain complex of (X,A) is the completion C`1

∗ (X,A) of the normed chain
complex C∗ (X,A) with respect to ‖ · ‖1. We abbreviate C`1

∗ (X, ∅) by C`1

∗ (X).
– Then `1-homology of (X,A) is defined as

H`1

∗ (X,A) := H∗
(
C`1

∗ (X,A)
)
.

– Dually, the bounded cochain complex of (X,A) is the dual C∗b(X,A) of the
normed chain complex C∗ (X,A).

– Bounded cohomology of (X,A) is given by

H∗
b(X,A) := H∗(C∗b(X,A)

)
.

– The semi-norms on `1-homology and bounded cohomology induced by ‖ · ‖1

and ‖ · ‖∞ respectively are also denoted by ‖ · ‖1 and ‖ · ‖∞. �

The inclusion C∗ (X,A) ↪→ C`1

∗ (X,A) of chain complexes induces a comparison
map H∗ (X,A) −→ H`1

∗ (X,A), which is isometric by Proposition (2.4); in general,
this homomorphism is neither injective nor surjective. Similarly, there is a comparison
map H∗

b(X,A) −→ H∗ (X,A).

3.1.1. Functoriality. If f : (X,A) −→ (Y,B) is a continuous map of pairs of topological
spaces, then the induced map C∗ (f) : C∗ (X,A) −→ C∗ (Y,B) is a morphism of normed
chain complexes. Consequently, we obtain induced morphisms C`1

∗ (f) and C∗b(f), as
well as maps H`1

∗ (f) : H`1

∗ (X,A) −→ H`1

∗ (Y,B) and H∗
b(f) : H∗

b(X,A) −→ H∗
b(Y,B);

clearly, both H`1

∗ ( · ) and H∗
b( · ) are functorial with respect to composition.
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3.1.2. Basic properties. Standard arguments show that `1-homology and bounded coho-
mology are homotopy invariant and admit a long exact sequence for pairs of topological
spaces [13; Proposition 2.7]. Using self-maps of the circle of non-trivial degree one
finds that H`1

1 (X) = 0 and H1
b(X) = 0 holds for all spaces X [16, 13; Corollary 2.7,

Proposition 2.7]. However, both `1-homology and bounded cohomology do not satisfy
excision [3, 17] (infinite chains need not contain only small simplices after a finite num-
ber of barycentric subdivisions). This failure of excision is both a curse and a blessing.
On the one hand, the lack of excision makes concrete computations via the usual divide
and conquer approach significantly harder; on the other hand, it turns out that bounded
cohomology and `1-homology depend only on the fundamental group and hence can be
computed in terms of certain nice resolutions (Corollary (5.2) and Corollary (5.8)).

3.1.3. Simplicial volume. An example of valuable geometric information encoded in
a semi-norm on homology is the simplicial volume introduced by Gromov [7]. The
simplicial volume is a homotopy invariant linked to Riemannian geometry in various
ways and can be viewed as a topological approximation of the Riemannian volume [7].

Definition (3.3). Let M be an oriented, closed, connected n-manifold with R-funda-
mental class [M ] ∈ Hn (M). Then the simplicial volume of M is defined as

‖M‖ :=
∥∥[M ]

∥∥
1

= inf
{
‖c‖1

∣∣ c ∈ Cn (M) is an R-fundamental cycle of M
}
. �

Using self-maps of non-trivial degree one sees that the simplicial volume of spheres
and tori is zero. On the other hand, straightening simplices to geodesic simplices shows
that the simplicial volume of closed hyperbolic manifolds is non-zero [27, 8].

However, it is in general very difficult to compute the simplicial volume by geometric
means. In view of Proposition (2.4) and Theorem (4.4) below and the comparison maps,
it is possible to use `1-homology and bounded cohomology to compute the simplicial
volume. For example, this approach shows that the simplicial volume of all manifolds
with amenable fundamental group is zero. Conversely, we can deduce that `1-homology
and bounded cohomology of closed hyperbolic manifolds are non-trivial.

3.2. `1-Homology and bounded cohomology of discrete groups. For a discrete
group G, we write C∗(G) for the corresponding bar resolution with real coefficients;
more explicitly, Cn(G) is the free RG-module with basis ([g1| . . . |gn])g∈Gn , and the
boundary operator Cn(G) −→ Cn−1(G) is the G-linear map determined uniquely by

Cn(G) −→ Cn−1(G)

[g1| . . . |gn] 7−→ g1 · [g2| . . . |gn]

+
n−1∑
j=1

(−1)j · [g1| . . . |gj−1|gj · gj+1|gj+2| . . . |gn]

+ (−1)n · [g1| . . . |gn−1].

Definition (3.4) (`1-Norm on the bar resolution of discrete groups). LetG be a discrete
group, and let n ∈ N. For c =

∑
g∈Gn+1 ag · g0 · [g1| . . . |gn] ∈ Cn(G) we define

‖c‖1 :=
∑

g∈Gn+1

|ag|. �
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The group G acts isometrically on C∗(G) and C∗(G) is a normed chain complex with
respect to the `1-norm; in particular, we obtain the corresponding completions and
topological duals:

Definition (3.5) (`1-chains and bounded cochains of discrete groups). Let G be a
discrete group.

– The `1-chain complex of G is the completion C`1

∗ (G) of the normed chain com-
plex C∗(G) with respect to ‖ · ‖1.

– The bounded cochain complex of G is the dual C∗b(G) of the normed chain
complex C∗(G). �

In order to define `1-homology and bounded cohomology of discrete groups (with
coefficients), we need some terminology from the category of Banach G-modules: A
Banach G-module is a Banach space equipped with an isometric (left) G-action. If U
and V are two Banach G-modules, then the projective tensor product U ⊗ V and the
space B(U, V ) of bounded linear functions from U to V are Banach G-modules with
respect to the following, diagonal, G-actions: For all g ∈ G one sets

∀u∈U ∀v∈V g · (u⊗ v) := (g · u)⊗ (g · v), and

∀f∈B(U,V ) g · f :=
(
u 7→ g · f(g−1 · u)

)
.

For a Banach G-module V the set of invariants of V is defined by

V G := {v ∈ V | ∀g∈G g · v = v};

the set of coinvariants of V is the quotient VG := V/W, where W ⊂ V is the subspace
generated by the set {g · v − v | v ∈ V, g ∈ G}. It is not difficult to see that there is an
isometric isomorphism (VG)′ ∼= (V ′)G.

A Banach G-(co)chain complex is a normed (co)chain complex consisting of Banach
G-modules whose (co)boundary operators are G-equivariant. For example, C`1

∗ (G) is
a Banach G-chain complex. A morphism of Banach G-(co)chain complexes is just a
morphism of normed (co)chain complexes that is G-equivariant. Notions such as the
invariants etc. have obvious analogues on the level of Banach G-(co)chain complexes.

Now the definition of `1-homology and bounded cohomology of discrete groups is a
straightforward adaption of the definition of group (co)homology in terms of the bar
resolution:

Definition (3.6) (`1-Homology and bounded cohomology of discrete groups). Let G
be a discrete group, and let V be a Banach G-module.

– We write

C`1

∗ (G;V ) := C`1

∗ (G)⊗ V and C∗b(G;V ) := B
(
C`1

∗ (G), V
)
.

– The `1-homology of G with coefficients in V , denoted by H`1

∗ (G;V ), is the
homology of the Banach chain complex C`1

∗ (G;V )G.
– Bounded cohomology of G with coefficients in V , denoted by H∗

b(G;V ), is the
cohomology of the Banach cochain complex C∗b(G;V )G. �
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Notice that C∗b(G;V ′) is isometrically G-isomorphic to (C`1

∗ (G;V ))′; in particular,
we have C∗b(G;R) = C∗b(G), where R is equipped with the trivial G-action. For brevity,
we write H`1

∗ (G) := H`1

∗ (G;R) and H∗
b(G) := H∗

b(G;R).
Moreover, the `1-norm on C`1

∗ (G) and the norm on V induce norms on C`1

∗ (G;V )
and C∗b(G;V ), and hence they induce semi-norms on H`1

∗ (G;V ) and H∗
b(G;V ). These

semi-norms are also denoted by ‖ · ‖1 and ‖ · ‖∞ respectively.

3.2.1. `1-Homology and bounded cohomology in degree 0. Almost the same calculations
as in ordinary group (co)homology show that H0

b(G;V ) ∼= V G and H`1

0 (G;V ) ∼= V/U
for all discrete groups G and all Banach G-modules V ; here,

U =
{∑

j∈N

aj · (vj − gj · vj)
∣∣∣∣ (aj)j ⊂ R, (gj)j ⊂ G, (vj)j ⊂ V and

∑
j∈N

|aj | · ‖vj‖ <∞
}
.

We have V/U = VG, but in general U is not closed in V and so V/U need not be equal
to VG. If V is a reflexive Banach space, then indeed H`1

0 (G;V ) ∼= VG: If V is reflexive,
then 0 = H1

b(G;V ′) ∼= H1(C`1

∗ (G;V )′) [18; Propositon 6.2.1]. Therefore, H`1

0 (G;V ) is
Banach [16; Theorem 2.3] and hence H`1

0 (G;V ) ∼= V/U = VG.

3.2.2. Functoriality. Let ϕ : G −→ H be a homomorphism of discrete groups, let V be
a Banach G-module and let W be a Banach H-module. Then

C`1

n (ϕ) : C`1

n (G) −→ ϕ∗
(
C`1

n (H)
)

g0 · [g1| . . . |gn] 7−→ ϕ(g0) ·
[
ϕ(g1)| . . . |ϕ(gn)

]
defines a morphism C`1

∗ (ϕ) : C`1

∗ (G) −→ ϕ∗C`1

∗ (H) of Banach G-chain complexes of
norm 1; here, ϕ∗( · ) stands for the Banach G-module structure on the Banach H-mod-
ule in question that is induced by ϕ. In particular, for any morphism f : V −→ ϕ∗W of
Banach G-modules, the map

C`1

∗ (ϕ; f) := C`1

∗ (ϕ)⊗ f : C`1

∗ (G;V ) −→ ϕ∗
(
C`1

∗ (H;W )
)

is a morphism of Banach G-chain complexes (of norm at most ‖f‖). Analogously, for
any morphism f : ϕ∗W −→ V of Banach G-modules,

C∗b(ϕ; f) := B
(
C`1

∗ (ϕ), f
)
: ϕ∗

(
C∗b(H;W )

)
−→ C∗b(G;V )

is a morphism of Banach G-cochain complexes (of norm at most ‖f‖).
Let p : (ϕ∗C`1

∗ (H;W ))G −→ C`1

∗ (H;W )H and i : C∗b(H;W )H −→ (ϕ∗C∗b(H;W ))G

denote the canonical projection and the inclusion respectively. Then we write

H`1

∗ (ϕ; f) := H∗
(
p ◦ C`1

∗ (ϕ; f)G

)
: H`1

∗ (G;V ) −→ H`1

∗ (H;W ),

H∗
b(ϕ; f) := H∗(C∗b(ϕ; f)G ◦ i

)
: H∗

b(H;W ) −→ H∗
b(G;V ).

3.2.3. Strong relatively injective/relatively projective resolutions. Both `1-homology and
bounded cohomology of discrete groups enjoy the same flexibility as ordinary group
(co)homology: namely, both theories can be computed by means of relative homological
algebra as studied by Brooks, Ivanov, Monod, and Park [3, 9, 18, 20].



ISOMORPHISMS IN `1-HOMOLOGY 9

As in the classical case, there is a distinguished class of resolutions – so-called strong
relatively projective resolutions and strong relatively injective resolutions – and a corre-
sponding fundamental lemma of homological algebra granting existence and uniqueness
of certain morphisms of Banach G-chain complexes [13; Appendix A]; for example,
the Banach (co)chain complexes C`1

∗ (G;V ) and C∗b(G;V ) together with the obvious
augmentation maps are strong relatively projective/injective G-resolutions of V [13;
Proposition 2.19]. Therefore, we obtain [13; Theorem 2.18]:

Theorem (3.7). Let G be a discrete group and let V be a Banach G-module.

(1) For any strong relatively projective G-resolution (C, η : C0 → V ) of V there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H`1

∗ (G;V ) ∼= H∗(CG).

(2) For any strong relatively injective G-resolution (C, η : V → C0) of V there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H∗
b(G;V ) ∼= H∗(CG).

(3) If (C, η : C0 → R) is a strong relatively projective G-resolution of the trivial
Banach G-module R, then there are canonical isomorphisms (degreewise iso-
morphisms of semi-normed vector spaces)

H`1

∗ (G;V ) ∼= H∗
(
(C ⊗ V )G

)
,

H∗
b(G;V ) ∼= H∗(B(C, V )G

)
.

The semi-norms on H`1

∗ ( · ; · ) and H∗
b( · ; · ) induced by the bar resolutions C`1

∗ ( · ; · )
and C∗b( · ; · ) coincide with the canonical semi-norms in the sense of Ivanov [9, 20, 18;
Corollary 3.6.1, Corollary 2.3, Corollary 7.4.7]. On the other hand, rescaling augmenta-
tion maps shows that not every strong relatively projective/injective resolution induces
the same semi-norm in (co)homology.

Bühler developed a description of `1-homology and bounded cohomology as derived
functors via exact categories [5], thereby providing an even more conceptual approach.

3.3. `1-Homology and bounded cohomology of spaces with twisted coeffi-
cients. Similarly to singular homology and singular cohomology there are also versions
of `1-homology and bounded cohomology of spaces with twisted coefficients:

Definition (3.8) (`1-Homology and bounded cohomology with twisted coefficients).
Let X be a connected topological space with fundamental group G that admits a uni-
versal covering space X̃, and let V be a Banach G-module.

– The `1-chain complex of X with twisted coefficients in V is defined as the Banach
chain complex of coinvariants

C`1

∗ (X;V ) :=
(
C`1

∗ (X̃)⊗ V
)
G
.

Here, C`1

∗ (X̃) inherits the G-action from the action of the fundamental group
on the universal covering X̃.

– The `1-homology of X with twisted coefficients in V , denoted by H`1

∗ (X;V ), is
the homology of the Banach chain complex C`1

∗ (X;V ).
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– The bounded cochain complex of X with twisted coefficients in V is defined as
the Banach cochain complex of invariants

C∗b(X;V ) := B
(
C`1

∗ (X̃), V
)G
.

– Bounded cohomology of X with twisted coefficients in V is the cohomology of
the Banach cochain complex C∗b(X;V ) and is denoted by H∗

b(X;V ). �

The `1-chain complex and the bounded cochain complex of X as defined in Defini-
tion (3.2) can be recovered from this definition by taking R with the trivial G-action as
coefficients [13; Proposition 2.23].

4. Duality

In this section, we investigate the relation induced by the evaluation map between
homology of a normed chain complex and cohomology of its dual cochain complex.
Unlike taking algebraic duals of R-chain complexes, taking topological duals of normed
chain complexes fails to commute with homology (Section 4.1). Section 4.2 is devoted to
the proof of the translation principle (Theorem (1.1)), showing that it is still possible to
transfer certain information from homology of a Banach chain complex to cohomology
of the dual complex and vice versa.

4.1. Linking homology and cohomology. Evaluation links homology of a normed
chain complex to cohomology of its dual cochain complex: If C is a normed chain
complex and n ∈ N, then the evaluation map C ′n ⊗ Cn −→ R induces a linear map

〈 · , · 〉 : Hn(C ′)⊗Hn(C) −→ R,

the so-called Kronecker product. Similarly, we obtain a map Hn(C ′) −→ (Hn(C))′,
where H denotes reduced (co)homology, i.e., the kernel modulo the closure of the image
of the (co)boundary operator.

Taking the algebraic dual is compatible with taking homology: For all R-chain com-
plexes C the map H∗(homR(C,R)

)
−→ homR

(
H∗(C),R

)
induced by evaluation is an

isomorphism by the universal coefficient theorem. However, taking topological duals,
even of complete normed chain complexes, fails to commute with taking homology:

Remark (4.1). There is no obvious duality isomorphism between homology and coho-
mology of Banach chain complexes:

Let C be a Banach chain complex. Then we have the following commutative diagram

H∗(C ′) //

�� ''PPPPPPPPPP
homR(H∗(C),R)

H
∗
(C ′) //

(
H∗(C)

)′
,

OO

where the horizontal arrows are the homomorphisms induced by the Kronecker prod-
ucts (i.e., they are induced by evaluation of elements in C ′ on elements in C), the left
vertical arrow is the canonical projection and the right vertical arrow is the composi-
tion (H∗(C))′ ↪→ homR(H∗(C),R) ↪→ homR(H∗(C),R) of inclusions.
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The lower horizontal morphism, and hence also the diagonal morphism, is surjective
by the Hahn-Banach theorem. Moreover, Matsumoto and Morita showed that the
diagonal morphism is injective if and only if H∗(C ′) = H

∗
(C ′) holds [16; Theorem 2.3].

Obviously, this is not the case in general. It is even wrong if C = C`1

∗ (X) for certain
topological spaces X [24, 25]. Hence, there is no obvious duality between `1-homology
and bounded cohomology.

In addition, the lower horizontal arrow is in general not injective: The kernel of the
evaluation map

ker ∂′n+1 −→
(
ker ∂n/im ∂n+1

)′ = (
Hn(C)

)′
equals (⊥ im(∂′n))⊥, which is the weak*-closure of im ∂′n [22; Theorem 4.7]. Further-
more, the norm-closure im ∂′n and the weak*-closure (⊥ im(∂′n))⊥ coincide if and only if
im ∂n+1 is closed [22; Theorem 4.14]. Thus there is also no obvious duality isomorphism
between reduced `1-homology and reduced bounded cohomology. �

Nevertheless, the Kronecker product is strong enough to give sufficient conditions for
(co)homology classes to be non-trivial. For example, if α ∈ H∗(C) and ϕ ∈ H∗(C ′)
with 〈ϕ, α〉 = 1, then neither α, nor ϕ can be zero. This effect can be used to show that
`1-homology and bounded cohomology of certain surface groups are non-trivial [17].

4.2. Transferring isomorphisms – proof of Theorem (1.1).

4.2.1. Method of proof. The proof of the translation principle (Theorem (1.1)) relies on
the following three tools:

(1) Duality principle. There is the following relation between homology of Banach
chain complexes and cohomology of their duals, which has been discovered by
Johnson as well as by Matsumoto and Morita [10, 16, 13; Proposition 1.2,
Corollary 2.4, Theorem 3.5].

Theorem (4.2) (Duality principle). Let C be a Banach chain complex. Then
H∗(C) vanishes if and only if H∗(C ′) vanishes.

Here, the “∗” carries the meaning “All of the Hn(C) are zero if and only if all
of the Hn(C ′) are zero.” The key to lifting this duality principle to morphisms
of Banach chain complexes is to apply the duality principle to the mapping cone
of the morphism in question.

(2) Mapping cones. Mapping cones of chain maps are a device translating questions
about isomorphisms on homology into questions about the vanishing of certain
homology groups; the exact definition of mapping cones in the context of Banach
chain complexes is given in Section 4.2.2 below.

Proposition (4.3). Let f : C −→ D be a morphism of normed chain com-
plexes.
(a) The induced map H∗(f) : H∗(C) −→ H∗(D) is an isomorphism of vector

spaces if and only if H∗(Cone(f)) = 0. Of course, the analogous statement
for morphisms of normed cochain complexes also holds.

(b) There is a natural isomorphism Cone(f)′ ∼= ΣCone(−f ′) of normed cochain
complexes, relating the mapping cones of f and −f ′.
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The suspension Σ just shifts the (co)chain complex in question by +1 and
changes the sign of the boundary operator.

The first part of Proposition (4.3) is a classic fact from homological alge-
bra (long exact homology sequence associated with the mapping cone [28; Sec-
tion 1.5]); a straightforward calculation proves the second part.

(3) Duality principle for semi-norms. The third ingredient for the proof of the
translation principle is the following observation of Gromov [7, 1, 13; p. 17,
Proposition F.2.2, Theorem 3.8], relating the semi-norm on homology to the
semi-norm on cohomology of the dual.

Theorem (4.4) (Duality principle for semi-norms). Let C be a normed chain
complex and let n ∈ N. Then

‖α‖ = sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C ′) and 〈ϕ, α〉 = 1
}

holds for each α ∈ Hn(C); here, sup ∅ := 0.

However, the semi-norm on cohomology of the dual can in general not be com-
puted in terms of the semi-norm on homology, because it can happen that the
reduced homology H∗(C) is zero while H

∗
(C ′) is non-zero (cf. Remark (4.1)).

4.2.2. Mapping cones. For the sake of completeness, we recall the definition of mapping
cones of morphisms of Banach chain complexes:

Definition (4.5) (Mapping cones).
– Let f : (C, ∂C) −→ (D, ∂D) be a morphism of normed chain complexes. Then

the mapping cone of f , denoted by Cone(f), is the normed chain complex defined
by

Cone(f)n := Cn−1 ⊕Dn,

linked by the boundary operator that is given by the matrix

Cone(f)n 
−∂C 0

f ∂D

!
��

= Cn−1 ⊕

−∂C

��
f

��
::

::
::

::
: Dn

∂D

��

Cone(f)n−1 = Cn−2 ⊕ Dn−1.

– Dually, if f : (D, δD) −→ (C, δC) is a morphism of normed cochain complexes,
then the mapping cone of f , also denoted by Cone(f), is the normed cochain
complex defined by

Cone(f)n := Dn+1 ⊕ Cn

with the coboundary operator determined by the matrix

Cone(f)n

 
−δD 0

f δC

!
��

= Dn+1 ⊕

−δD

��

f

��
::

::
::

::
: Cn

δC

��

Cone(f)n+1 = Dn+2 ⊕ Cn+1.
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In the first case, we equip the mapping cone with the direct sum of the norms, in the
second case, we use the maximum norm. �

4.2.3. Proof of the translation principle. To prove the translation principle we just need
to assemble the pieces collected in the previous paragraphs in the right way:

Proof (of Theorem (1.1)). The first part follows by fusing properties of mapping cones
with the duality principle: The induced homomorphism H∗(f) is an isomorphism if
and only if H∗(Cone(f)) = 0. In view of the duality principle and the compatibility of
mapping cones with taking the topological dual, this is equivalent to

0 = H∗(Cone(f)′
) ∼= H∗(ΣCone(−f ′)

)
= H∗−1

(
Cone(−f ′)

)
;

the duality principle is applicable because the cone of a morphism of Banach chain
complexes is a Banach chain complex. On the other hand, the H∗−1(Cone(−f ′)) are
all zero if and only if H∗(−f ′) : H∗(D′) −→ H∗(C ′) is an isomorphism. Moreover,
H∗(f ′) = −H∗(−f ′), and therefore the first part is shown.

For the second part, it remains to prove that H∗(f) is isometric whenever H∗(f ′) is
an isometric isomorphism. Let n ∈ N and let α ∈ Hn(C). Using the duality principle
for semi-norms twice, we obtain∥∥Hn(f)(α)

∥∥ = sup
{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈
ψ,Hn(f)(α)

〉
= 1

}
= sup

{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈
Hn(f ′)(ψ), α

〉
= 1

}
= sup

{ 1
‖Hn(f ′)(ψ)‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈
Hn(f ′)(ψ), α

〉
= 1

}
= sup

{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C ′) and 〈ϕ, α〉 = 1
}

= ‖α‖. �

Remark (4.6). The converse of the second part of the translation principle (Theo-
rem (1.1)) does not hold in general:

Let C = D be a Banach chain complex concentrated in degrees 0 and 1 that consists
of a bounded operator ∂ : C1 −→ C0 that is not surjective but has dense image (e.g.,
the inclusion `1 ↪→ c0). In particular, the semi-norm on H∗(C) = H∗(D) is zero. The
morphism f : C −→ D given by multiplication by a constant c ∈ R \ {−1, 0, 1} induces
an isometric isomorphism H∗(f) : H∗(C) −→ H∗(D).

On the other hand, the coboundary operator ∂′ : C ′0 −→ C ′1 does not have dense
image [22; Corollary of Theorem 4.12]. Therefore, there are elements in H1(D′) of
non-zero semi-norm. So H∗(f ′), which is multiplication by c, is not isometric. �

5. Isomorphisms in `1-homology

In this section, we apply the translation mechanism established in the previous sec-
tion to `1-homology, thereby gaining a uniform, lightweight approach to proving that
`1-homology depends only on the fundamental group (Section 5.1), that `1-homology
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cannot see amenable, normal subgroups (Section 5.1 and 5.2) and that `1-homology of
spaces can be computed in terms of certain projective resolutions (Section 5.3).

5.1. Isomorphisms in `1-homology of spaces. We start with the simplest applica-
tions of this type, concerning `1-homology of spaces with R-coefficients:

Corollary (5.1). Let f : (X,A) −→ (Y,B) be a continuous map of pairs of topological
spaces.

(1) The induced homomorphism H`1

∗ (f) : H`1

∗ (X,A) −→ H`1

∗ (Y,B) is an isomor-
phism if and only if H∗

b(f) : H∗
b(Y,B) −→ H∗

b(X,A) is an isomorphism.
(2) If H∗

b(f) : H∗
b(Y,B) −→ H∗

b(X,A) is an isometric isomorphism, then H`1

∗ (f) is
also an isometric isomorphism.

(3) In particular, H`1

∗ (X,A) vanishes if and only if H∗
b(X,A) vanishes.

Proof. By definition, C∗b(X,A) = (C`1

∗ (X,A))′ and C∗b(Y,B) = (C`1

∗ (Y,B))′. The
cochain map C∗b(f) : C∗b(Y,B) −→ C∗b(X,A) coincides with (C`1

∗ (f))′. Applying the
translation principle Theorem (1.1) to C`1

∗ (f) proves the Corollary. �

A discrete group A is amenable if there is a left-invariant mean on the set B(A,R)
of bounded functions from A to R, i.e., if there is a linear map m : B(A,R) −→ R
satisfying

∀f∈B(A,R) ∀a∈A m(f) = m
(
b 7→ f(a−1 · b)

)
and

∀f∈B(A,R) inf
{
f(a)

∣∣ a ∈ A}
≤ m(f) ≤ sup

{
f(a)

∣∣ a ∈ A}
.

For instance, all finite and all Abelian groups are amenable. Moreover, the class of
amenable groups is closed under taking subgroups and quotients. An example of a non-
amenable group is the free group Z ∗ Z. A detailed discussion of amenability can be
found in Paterson’s book [21].

Corollary (5.2) (Mapping theorem for `1-homology). Let f : X −→ Y be a continuous
map between connected, countable CW-complexes such that π1(f) : π1(X) −→ π1(Y )
is surjective and has amenable kernel. Then the induced homomorphism

H`1

∗ (f) : H`1

∗ (X) −→ H`1

∗ (Y )

is an isometric isomorphism.

Proof. It is a classical result in the theory of bounded cohomology that in this situation
H∗

b(f) : H∗
b(Y ) −→ H∗

b(X) is an isometric isomorphism [7, 9; p. 40, Theorem 4.3].
Therefore, Corollary (5.1) completes the proof. �

Applying the mapping theorem to the classifying map X −→ Bπ1(X) shows in
particular that the `1-homology of a connected, countable CW-complex X depends only
on the fundamental group.
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(
C`1

∗ (H;W )H

)′
p′

��

(p◦C`1
∗ (ϕ;f)G)′

&&

(
C`1

∗ (H;W )′
)H

C∗b(H;W ′)H

i

��(
(ϕ∗C`1

∗ (H;W ))G

)′
(C`1

∗ (ϕ;f)G)′

��

(
ϕ∗C`1

∗ (H;W )′
)G (

ϕ∗C∗b(H;W ′)
)G

C∗
b(ϕ;f ′)G

��(
C`1

∗ (G;V )G

)′ (
C`1

∗ (G;V )′
)G

C∗b(G;V ′)G

Figure (5.4): Linking `1-homology and bounded cohomology of discrete groups (proof
of Corollary (5.3))

5.2. Isomorphisms in `1-homology of discrete groups. For `1-homology of dis-
crete groups the translation principle takes the following form:

Corollary (5.3). Let ϕ : G −→ H be a homomorphism of discrete groups, let V be a
Banach G-module, let W be a Banach H-module and suppose that f : V −→ ϕ∗W is a
morphism of Banach G-modules.

(1) Then the homomorphism H`1

∗ (ϕ; f) : H`1

∗ (G;V ) −→ H`1

∗ (H;W ) is an isomor-
phism if and only if H∗

b(ϕ; f ′) : H∗
b(H;W ′) −→ H∗

b(G;V ′) is an isomorphism.
(2) If H∗

b(ϕ; f ′) is an isometric isomorphism, then so is H`1

∗ (ϕ; f).
(3) In particular, H`1

∗ (G;V ) ∼= H`1

∗ (1;VG) if and only if H∗
b(G;V ′) ∼= H∗

b

(
1; (V ′)G

)
.

Proof. By definition, we have

H`1

∗ (ϕ; f) = H∗
(
p ◦ C`1

∗ (ϕ; f)G

)
,

H∗
b(ϕ; f ′) = H∗(C∗b(ϕ; f ′)G ◦ i

)
,

where p : (ϕ∗C`1

∗ (H;W ))G −→ C`1

∗ (H;W )H and i : C∗b(H;W ′)H −→ (ϕ∗C∗b(H;W ′))G

denote the canonical projection and the inclusion respectively.
A straightforward calculation shows that the diagram in Figure (5.4) is a commutative

diagram of morphisms of Banach cochain complexes, where all horizontal morphisms
are isometric isomorphisms. Thus, applying the translation principle (Theorem (1.1))
to the morphism p ◦ C`1

∗ (ϕ; f)G of Banach chain complexes proves the first two parts
of the corollary. The third part follows because (VG)′ and (V ′)G are isometrically
isomorphic. �

An interesting consequence of the third statement is that it provides a characterisa-
tion of amenable groups:

Corollary (5.5). For a discrete group G the following are equivalent:

(1) The group G is amenable.
(2) For all Banach G-modules V , the `1-homology H`1

∗ (G;V ) of G with coefficients
in V is trivial, i.e., H`1

∗ (G;V ) ∼= H`1

∗ (1;VG).
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Proof. Amenable groups can be characterised by the vanishing of bounded cohomology
with arbitrary (dual) coefficients in non-zero degree [10, 19]. Therefore, the claim follows
with help of Corollary (5.3) and Section 3.2.1. �

Like `1-homology of spaces, `1-homology of discrete groups cannot see amenable,
normal subgroups:

Corollary (5.6). Let G be a discrete group, let A ⊂ G be an amenable, normal
subgroup, and let V be a Banach G-module. Then the projection G −→ G/A induces
an isometric isomorphism

H`1

∗ (G;V ) ∼= H`1

∗ (G/A;VA).

Proof. The corresponding homomorphism

H∗
b(G � G/A;V ′A ↪→ V ′) : H∗

b(G/A;V ′A) −→ H∗
b(G;V ′)

is an isometric isomorphism [19, 18; Theorem 1, Corollary 8.5.2] (the case with R-coef-
ficients was already treated by Ivanov [9; Section 3.8]). Because the inclusion V ′A ↪→ V ′

is the dual of the projection V −→ VA, we can apply Corollary (5.3). �

Caveat (5.7). Let G be a discrete group and let A ⊂ G be an amenable, normal
subgroup. Ivanov proved that the cochain complex C∗b(G/A) is a strong relatively
injective G-resolution of the trivial G-module R [9; Theorem 3.8.4] by showing that
the G-morphisms C∗b(G/A) −→ C∗b(G) induced by the projection G −→ G/A are split
injective [9; Lemma 3.8.1 and Corollary 3.8.2].

Analogously, Park claimed that the G-morphisms C`1

n (G) −→ C`1

n (G/A) are split
surjective [20; Lemma 2.4 and Lemma 2.5] and concluded that the C`1

n (G/A) are rel-
atively projective G-modules. Unfortunately, Park’s proof [20; proof of Lemma 2.4]
contains an error: the A-invariant mean on B(A,R) provided by amenability of A in
general is not σ-additive.

In fact, C`1

n (G/A) in general is not a relatively projective G-module as the following
example shows: Let G be an infinite amenable group (e.g., G = Z) and A := G. Then
the G-action on G/A = 1 is trivial. However, since G is infinite, the G-modules C`1

n (G)
do not contain any non-zero G-invariant elements. Therefore, any G-morphism of
type C`1

n (G/A) −→ C`1

n (G) must be trivial. We now consider the mapping problem

C`1

n (G/A) = R

id

��

?
{{

C`1

n (G) π
// R // 0

with the G-morphism π given by g0 · [g1| . . . |gn] 7−→ 1, which obviously admits a (non-
equivariant) split of norm 1; i.e., the morphism π is relatively projective. The argu-
ment above shows that this mapping problem cannot have a solution, and hence that
C`1

n (G/A) cannot be a relatively projective G-module.
This problem also affects several other results of Park, e.g., her proof of the fact

that `1-homology depends only on the fundamental group [20; Theorem 4.1] and of the
equivalence theorem [20; Theorem 3.7 and 4.4]. �
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5.3. `1-Homology via projective resolutions. Ivanov proved that bounded coho-
mology of a topological space with R-coefficients can be computed in terms of strong
relatively injective resolutions [9]. The translation principle allows us to deduce that
`1-homology of spaces also admits such a description in terms of homological algebra:

Corollary (5.8). Let X be a countable, connected CW-complex with fundamental
group G and let V be a Banach G-module.

(1) There is a canonical isometric isomorphism

H`1

∗ (X;V ) ∼= H`1

∗ (G;V ).

(2) If C is a strong relatively projective resolution of V , then there is a canonical
isomorphism (degreewise isomorphism of semi-normed vector spaces)

H`1

∗ (X;V ) ∼= H∗(CG).

(3) If C is a strong relatively projective resolution of the trivial BanachG-module R,
then there is a canonical isomorphism (degreewise isomorphism of semi-normed
vector spaces)

H`1

∗ (X;V ) ∼= H∗
(
(C ⊗ V )G

)
.

Therefore, the results of Section 5.2 are also valid for `1-homology with twisted
coefficients and hence provide generalisations of the results presented in Section 5.1.

Caveat (5.9). Ivanov proved the corresponding theorem for bounded cohomology with
R-coefficients by verifying that C∗b(X̃) is a strong relatively injective resolution of the
trivial Banach G-module R [9; Theorem 2.4].

The proof that the resolution C∗b(X̃) is strong relies heavily on the fact that cer-
tain chain maps are split injective. However, for the same reasons as explained in
Caveat (5.7), it is not possible to translate these arguments into the language of `1-chain
complexes. Hence, it seems impossible to prove that the chain complex C`1

∗ (X̃) is
a strong resolution. In particular, Park’s proof [20; proof of Theorem 4.1] of Corol-
lary (5.8) (with R-coefficients) is not complete. �

Proof (of Corollary (5.8). Ad 1. In order to prove the first part of Corollary (5.8), we
proceed as follows:

(1) We establish a connection between C`1

∗ (X̃;V ) and the strong relatively projec-
tive resolution C`1

∗ (G;V ).
(2) The dual of this morphism, when restricted to the invariants, induces an isomet-

ric isomorphism on the level of cohomology of the invariants [13; Appendix B];
this is a straightforward generalisation of Ivanov’s result that bounded cohomol-
ogy with R-coefficients can be computed in terms of strong relatively injective
resolutions.

(3) Finally, we apply the translation principle (Theorem (1.1)) to transfer this iso-
metric isomorphism back to `1-homology.

First step. Park [20; proof of Theorem 4.1] constructed the following map (“pre-
dually” to Ivanov’s construction [9; proof of Theorem 4.1]):
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Let F ⊂ X̃ be a (set-theoretic) fundamental domain of the G-action on X̃. In the
following, the vertices of the standard n-simplex ∆n are denoted by v0, . . . , vn. For
a singular simplex σ ∈ map(∆n, X̃) let g0(σ), . . . , gn(σ) ∈ G be the group elements
defined inductively by the requirement that

gj(σ)−1 · · · · · g1(σ)−1 · g0(σ)−1 · σ(vj) ∈ F

for all j ∈ {0, . . . , n}. Then the map η : C`1

∗ (X̃) −→ C`1

∗ (G) given by

C`1

n (X̃) −→ C`1

n (G)

σ 7−→ g0(σ) ·
[
g1(σ)

∣∣ . . . ∣∣ gn(σ)
]
,

and hence also ηV := η ⊗ idV : C`1

∗ (X̃;V ) −→ C`1

∗ (G;V ), is a morphism of Banach
G-chain complexes. Let (ηV )G : C`1

∗ (X̃;V )G −→ C`1

∗ (G;V )G denote the morphism of
Banach chain complexes induced by ηV .

We verify now that a different choice of fundamental domain F ∗ ⊂ X̃ leads to a
map chain homotopic to (ηV )G: By the fundamental lemma of homological algebra
in the context of Banach G-modules [13; Proposition A.7], there is up to G-homotopy
only one G-morphism C`1

∗ (X̃) −→ C`1

∗ (G); in fact, C`1

∗ (X̃) is a Banach G-chain complex
consisting of relatively projectiveG-modules [20; p. 611] and C`1

∗ (G) is a strong relatively
projective resolution of R [13; Proposition 2.19]. But η and η∗, the map obtained via F ∗,
are such G-morphisms and hence are G-homotopic. Therefore, also η ⊗ idV and η∗V :=
η∗ ⊗ idV must be G-homotopic, which implies that the induced maps (ηV )G and (η∗V )G

are homotopic. In particular, H∗
(
(ηV )G

)
: H∗

(
C`1

∗ (X̃;V )G

)
−→ H∗

(
C`1

∗ (G;V )G

)
does

not depend on the choice of fundamental domain.
Second step. The dual of the G-morphism ηV coincides under the natural isomet-

ric isomorphisms (C`1

∗ (X̃;V ))′ ∼= C∗b(X̃;V ′) and (C`1

∗ (G;V ))′ ∼= C∗b(G;V ′) of Banach
G-cochain complexes with ϑV ′ : C∗b(G;V ′) −→ C∗b(X̃;V ′), the morphism of Banach
G-cochain complexes given by

Cn
b (G;V ′) −→ Cn

b (X̃;V ′)

f 7−→
(
σ 7→ f(g0(σ), . . . , gn(σ))

)
.

(5.10)

In other words, the diagram in Figure (5.11)(a) is commutative. Taking G-invariants
of this diagram yields the commutative diagram of morphisms of Banach cochain com-
plexes depicted in Figure (5.11)(b).

The restriction (ϑV ′)G to the subcomplexes of G-invariants induces an isometric
isomorphism on the level of cohomology [13; Appendix B]. Hence, also the top row of the
diagram (i.e, (ηV )G

′) must induce an isometric isomorphism on the level of cohomology.
Third step. Therefore, we can derive from the translation principle (Theorem (1.1))

that (ηV )G : C`1

∗ (X;V ) = C`1

∗ (X̃;V )G −→ C`1

∗ (G;V )G induces a (canonical) isometric
isomorphism on the level of homology. This finishes the proof of the first part.

Ad 2. and 3. These statements follow from the first part combined with the corre-
sponding results on `1-homology of discrete groups (Theorem (3.7)). �
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(
C`1

∗ (G;V )
)′ (ηV )′

//
(
C`1

∗ (X̃;V )
)′

C∗b(G;V ′)
ϑV ′

// C∗b(X̃;V ′)

(
C`1

∗ (G;V )G

)′ (ηV )G
′
//
(
C`1

∗ (X̃;V )G

)′
(
C`1

∗ (G;V )′
)G (ηV )′G

//
(
C`1

∗ (X̃;V )′
)G

C∗b(G;V ′)G

(ϑV ′ )G

// C∗b(X̃;V ′)G

(a) (b)

Figure (5.11): Relating the morphisms ηV and ϑV ′

For example, using this description of `1-homology via projective resolutions, one can
construct a “straightening” on the `1-chain complex of countable, connected CW-com-
plexes [13; Section 4.4], generalising the classical straightening of Thurston [27; p. 6.3]
in the presence of non-positive curvature. An important aspect of this generalised
straightening is that it allows to get control of the semi-norm in measure homology [13;
Appendix D], thereby obtaining homological (and hence a bit more transparent) versions
of the original proofs [26, 12; Section 4.3, Theorem 1.1 and 1.2] that measure homology
and singular homology are isometrically isomorphic.

6. Simplicial volume of non-compact manifolds

The definition of simplicial volume can be adapted to cover also non-compact manifolds.
In this section, we demonstrate how to utilise `1-homology and the results established
in Section 5 to study the simplicial volume of non-compact manifolds: We first express
the simplicial volume of non-compact manifolds in terms of `1-homology (Section 6.1).
In Section 6.2, we present a finiteness criterion for the simplicial volume of non-compact
manifolds. Applications of this finiteness criterion are discussed in Section 6.3.

6.1. Simplicial volume – the non-compact case. The `1-norm on the singular chain
complex admits an obvious extension to the chain complex of locally finite chains (notice
however, that there are locally finite chains with infinite `1-norm). In particular, there
is also a notion of simplicial volume for non-compact manifolds:

Definition (6.1) (Simplicial volume of non-compact manifolds). Let M be an oriented,
connected (possibly non-compact) n-manifold without boundary. Then the simplicial
volume of M is defined by

‖M‖ := inf
{
‖c‖1

∣∣ c ∈ C lf
n (M) locally finite R-fundamental cycle of M

}
∈ [0,∞]. �

By definition, the simplicial volume of non-compact manifolds is invariant under
proper homotopy equivalences. We now provide a description of the simplicial volume
for not necessarily compact manifolds in terms of `1-homology:
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Definition (6.2). If M is an oriented, connected n-manifold without boundary, we
write [M ]`

1 ⊂ H`1

n (M) for the set of all homology classes inH`1

n (M) that are represented
by at least one locally finite fundamental cycle (with finite `1-norm). �

If M is compact, then the set [M ]`
1

contains exactly one element, namely the
class Hn(Cn (M) ↪→ C`1

n (M))([M ]). However, if M is non-compact, the set [M ]`
1

may
be empty (this happens if and only if ‖M‖ = ∞) or consist of more than one element.

Proposition (6.3). Let M be an oriented, connected n-manifold without boundary.

(1) Then ‖M‖ = inf
{
‖α‖1

∣∣ α ∈ [M ]`
1 ⊂ H`1

n (M)
}
.

(2) If H`1

n (M) = 0, then ‖M‖ ∈ {0,∞}.

Proof. The second part is an immediate corollary of the first one. We now prove the
first part: Let j : C lf

∗ (M) ∩ C`1

∗ (M) ↪→ C`1

∗ (M) denote the inclusion. By definition,

‖M‖ = inf
{
‖α‖1

∣∣ α ∈ H∗(j)−1([M ]`
1
)
}
.

The sequence C∗ (M) ↪→ C lf
∗ (M) ∩ C`1

∗ (M) ↪→ C`1

∗ (M) of inclusions of normed chain
complexes shows that the middle complex is a dense subcomplex of the `1-chain com-
plex C`1

∗ (M). Thus, the induced mapH∗(j) : H∗
(
C lf
∗ (M)∩C`1

∗ (M)
)
−→ H`1

∗ (M) on ho-
mology is isometric (Proposition (2.4)). This yields the desired description of ‖M‖. �

For example, ifM is an oriented, connected manifold (of non-zero dimension) without
boundary and amenable fundamental group, then ‖M‖ ∈ {0,∞}.

Using the duality principle for semi-norms one also obtains a corresponding result
expressing the simplicial volume of non-compact manifolds via bounded cohomology;
however, this description is not as convenient as the one in terms of `1-homology.

6.2. A finiteness criterion. In general, the simplicial volume of non-compact mani-
folds is not finite – it can even then be infinite if the manifold in question is the interior
of a compact manifold with boundary. In this case, `1-homology gives a necessary and
sufficient finiteness condition:

Theorem (6.4) (Finiteness criterion). Let (W,∂W ) be an oriented, compact n-mani-
fold with boundary ∂W . Then the following are equivalent:

(1) The simplicial volume of the interior W ◦ is finite.
(2) The manifold ∂W is `1-invisible, i.e.,

Hn−1

(
C∗ (∂W ) ↪→ C`1

∗ (∂W )
)
([∂W ]) = 0 ∈ H`1

n−1(∂W ).

In particular, by combining this finiteness criterion with Proposition (2.4), we obtain
Gromov’s necessary condition [7; p. 17]: If ‖W ◦‖ <∞, then ‖∂W‖ = 0. Notice that in
contrast to Gromov’s estimate of the simplicial volume by the minimal volume [7; p. 12,
p. 73], the finiteness criterion is purely topological and can be proved by elementary
means.

While it is clear that every `1-invisible manifold has vanishing simplicial volume
by Proposition (2.4), it is an open problem whether every oriented, closed, connected
manifold with vanishing simplicial volume is already `1-invisible.

Because the evaluation map linking bounded cohomology and `1-homology is contin-
uous, bounded cohomology can detect only whether the semi-norm of a given class in
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W

∂W

∂W × [0, ∞)

c|Zt

0

pt qt

Zt

t ∞

Figure (6.5): The proof of “1 ⇒ 2” of the finiteness criterion

`1-homology is zero, but not if the class itself is zero. Therefore, the finiteness criterion
as stated above cannot be phrased in terms of bounded cohomology.

Proof (of Theorem (6.4)). The theorem trivially holds if the boundary ∂W is empty;
therefore, we assume for the rest of the proof that ∂W 6= ∅. The homeomorphism [4, 6]

W ◦ ∼= W t∂W ∂W × [0,∞) =: M

shows that we can look at the notationally more convenient manifold M instead of W ◦.

1 ⇒ 2 Suppose that the simplicial volume ‖W ◦‖ = ‖M‖ is finite. In other words, there
is a locally finite fundamental cycle c =

∑
j∈N aj · σj ∈ C lf

n (M) of M with
‖c‖1 < ∞. We now restrict c to a cylinder lying in ∂W × [0,∞) ⊂ M . The
boundary of this restriction is a fundamental cycle of ∂W and the restriction
itself gives rise to the desired boundary in the `1-chain complex:

More precisely, for t ∈ (0,∞) we consider the cylinder Zt := ∂W × [t,∞) and
the projections pt : ∂W × [0,∞) −→ Zt and qt : ∂W × [0,∞) −→ ∂W × [0, t]; the
notation is illustrated in Figure (6.5).

Because c is locally finite, there exists a t ∈ (0,∞) such that the restric-
tion c|Zt ∈ C lf

n (M) of c to Zt does not meet W ; by definition, c|Zt =
∑

j∈Jt
aj ·σj ,

where Jt := {j ∈ N | imσj ∩ Zt 6= ∅}. It is not difficult to see that the
chain C lf

n (pt)(c|Zt) is a relative fundamental cycle of (Zt, ∂W × {t}) and hence
that zt := ∂(Cn (pt)(c|Zt)) is a fundamental cycle of ∂W × {t}. On the other
hand, ‖c‖1 is finite, so

bt := C`1

n (qt)(zt) ∈ C`1

n

(
∂W × {t}

)
.

By construction, ∂bt = zt, which proves that ∂W × {t} is `1-invisible. Hence,
∂W is also `1-invisible.

2 ⇒ 1 Conversely, suppose that part 2 is satisfied, i.e., that ∂W is `1-invisible. There-
fore, there is a b ∈ C`1

n (∂W ) such that z := −∂b is a fundamental cycle of ∂W .
Adding the boundaries of the partial sums (

∑k−1
j=0 bj)k∈N ⊂ C`1

n (∂W ) of b to z
yields a sequence of fundamental cycles (zk)k∈N ⊂ Cn−1 (∂W ) of ∂W and a
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W ∂W × [0, ∞)∂W

0

z0

b0

0

z1

1

z1

b(z1, 0) b1

1

. . .

k

bk

k

zk+1

k + 1

zk+1

b(zk+1, k) bk+1 . . .

∞

Figure (6.6): The proof of “2 ⇒ 1” of the finiteness criterion

sequence of chains (bk)k∈N ⊂ Cn (∂W ) satisfying

∀k∈N ∂bk = zk+1 − zk,∑
k∈N

‖bk‖1 <∞.

Moreover, limk→∞‖zk‖1 = 0. Thus, by choosing a suitable subsequence of (zk)k∈N

we can even find two such sequences such that additionally∑
k∈N

‖zk‖1 <∞

holds [13; Proposition 6.4]. Now the idea is – similarly to Gromov’s argument in
a special case [7; p. 8] – to take a relative fundamental cycle of (W,∂W ) and to
glue the (bk)k∈N to its boundary. To ensure that the resulting chain is locally
finite, we spread out the chain

∑
k∈N bk over the cylinder ∂W × [0,∞).

More precisely, let c ∈ Cn (W ) be a relative fundamental cycle of the mani-
fold (W,∂W ) with boundary. Then ∂c ∈ Cn−1 (∂W ) is a fundamental cycle of
the oriented, compact manifold ∂W . Of course, we may assume that ∂c = z0.

The spreading out of (bk)k∈N is achieved by using the following chains: For any
cycle z ∈ Cn−1 (∂W ) and k ∈ N we can find a chain b(z, k) ∈ Cn (∂W × [0,∞))
such that

∂
(
b(z, k)

)
= Cn−1 (jk+1)(z)− Cn−1 (jk)(z),

∥∥b(z, k)∥∥
1
≤ n · ‖z‖1 ;

here, jk : ∂W ↪→ ∂W × {k} ↪→ ∂W × [0,∞) denotes the inclusion. For example,
such a chain b(z, k) can be constructed by looking at the canonical triangulation
of ∆n−1 × [0, 1] into n-simplices. We set (see also Figure (6.6))

b :=
∑
k∈N

(
Cn (jk)(bk) + b(zk+1, k)

)
and c := c+ b. Because all bk and all b(zk+1, k) are finite, the stretched chain b
is a well-defined locally finite n-chain of M . Therefore, also c ∈ C lf

n (M). By
construction, c is a cycle and c|W◦ = c|W◦ ; hence, c is a locally finite fundamental
cycle of M . Furthermore, ‖c‖1 ≤ ‖c‖1 + ‖b‖1, which shows that ‖M‖ <∞. �
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6.3. Applications. Before discussing applications of the finiteness criterion (Theo-
rem (6.4)), we first have a tour through the zoo of `1-invisible manifolds:

Example (6.7) (`1-Invisibility).
– Vanishing `1-homology. By definition, any oriented, closed n-manifold M satis-

fying 0 = H`1

n (M) = H`1

n (π1(M)) is `1-invisible. In particular, manifolds with
amenable fundamental group are `1-invisible.

– Vanishing bounded cohomology. Moreover, any oriented, closed n-manifold with
0 = Hn+1

b (M) = Hn+1
b (π1(M)) is `1-invisible; this follows from the fact that

such manifolds satisfy the so-called uniform boundary condition in degree n [16,
13; Theorem 2.8, Proposition 6.8]. However, not all `1-invisible n-manifolds
satisfy the uniform boundary condition in degree n [13; Example 6.9].

– Functoriality. Clearly, if M −→ N is a continuous map of non-zero degree be-
tween oriented, closed manifolds of the same dimension and if M is `1-invisible,
then so is N .

Similarly, if the oriented, closed, connected n-manifoldM admits a self-map f
with |deg(f)| ≥ 2, then M is `1-invisible: Let z ∈ Cn (M) be a fundamental
cycle of M and let b ∈ Cn+1 (M) with ∂b = z − 1/deg f · Cn (f)(z). Then

b :=
∑
k∈N

1
(deg f)k

· Cn+1 (f)k(b)

lies in C`1

n+1(M) and z = ∂b, i.e., M is `1-invisible.
– Products. If M and N are oriented, closed, connected manifolds, and if M

is `1-invisible, then using the `1-version of the homological cross product on
singular chains shows that also the product M ×N is `1-invisible.

– Gluings. Let M and N be oriented, closed, connected, `1-invisible manifolds
of the same dimension at least 3. Then the connected sum M # N is also
`1-invisible:

Let jM : M −→M ∨N and jN : N −→M ∨N be the inclusions. The Mayer-
Vietoris sequence for M ∨N shows that in non-zero degree H∗ (jM )⊕H∗ (jN )
is an isomorphism mapping ([M ], [N ]) to [M # N ]. Because M and N are
`1-invisible, the lowest horizontal map in Figure (6.8)(a) maps ([M ], [N ]) to 0.

On the other hand, the pinching map f : M #N −→M ∨N induces an iso-
morphism on the level of fundamental groups and hence induces an isomorphism
in `1-homology (Corollary (5.2)). Therefore, we can read off the commutative
diagram in Figure (6.8)(a) that M #N is `1-invisible.

More generally, the class of `1-invisible manifolds of dimension at least 3 is
also closed under amenable gluings [13; Proposition 6.10].

– Fibrations. If p : M −→ B is a fibration of oriented, closed, connected mani-
folds whose fibre F is also an oriented, closed, connected manifold of non-zero
dimension and if π1(F ) is amenable, then M is `1-invisible:

A spectral sequence argument yields dimB ≤ dimM − 1. In particular,
H∗ (p)([M ]) = 0 ∈ H∗ (B). The long exact sequence of homotopy groups as-
sociated with the fibration p shows that π1(p) is surjective and that the kernel
of π1(p) is a homomorphic image of the amenable group π1(F ); thus, kerπ1(p)
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H∗ (M #N) //

Hm(f)

��

H`1

∗ (M #N)

H`1
m (f)∼=

��

H∗ (M ∨N) // H`1

∗ (M ∨N)

H∗ (M)⊕Hm (N) //

H∗(jM )⊕H∗(jN )

OO

H`1

∗ (M)⊕H`1

∗ (N)

H`1
∗ (jM)⊕H`1

∗ (jN)
OO

H∗ (M) //

H∗(p)

��

H`1

∗ (M)

H`1
∗ (p)∼=

��

H∗ (B) // H`1

∗ (B)

(a) (b)

Figure (6.8): Proof of Example (6.7)

is amenable [21; Proposition 1.12 and 1.13]. Therefore, H`1

∗ (p) is an isometric
isomorphism (Corollary (5.2)), and we deduce from Figure (6.8)(b) that M is
`1-invisible.

– Circle actions. If M is a smooth, oriented, closed manifold admitting a smooth
S1-action that is either free or has at least one fixed point, thenM is `1-invisible:

In the first case, we can apply the same argument as for fibrations with
amenable fibres because π1(S1) ∼= Z is amenable.

In the second case, it is known that the map on singular homology induced by
the classifying map M −→ Bπ1(M) maps [M ] to 0 [7, 15; p. 95, Lemma 1.42],
and by Corollary (5.2), the classifying map induces an isometric isomorphism
on `1-homology.

– Proportionality. If M and N are smooth, oriented, closed, connected manifolds
equipped Riemannian metrics such that the Riemannian universal coverings
of M and N are isometric, then M is `1-invisible if and only if N is `1-in-
visible [13; Proposition 6.10]; the proof of this fact is based on an `1-version of
measure homology.

– Relation with curvature. Let M be an oriented, closed, connected Riemannian
manifold.

– If M has positive sectional curvature, then π1(M) is finite [11; Theo-
rem 11.8], hence amenable. In particular, M is `1-invisible.

– If M is flat, then M is `1-invisible by proportionality, because any oriented,
closed, connected flat manifold has the same Riemannian universal covering
as the torus of the same dimension.

– If M has negative sectional curvature, then ‖M‖ 6= 0 [8] and so M is not
`1-invisible. �

Equipped with this list of examples of `1-invisible manifolds, we apply the finiteness
criterion and the description of the simplicial volume of non-compact manifolds in terms
of `1-homology (Proposition (6.3)) to exhibit a number of simple examples illustrating
the simplicial volume of non-compact manifolds:
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6.3.1. Vanishing results. If (W,∂W ) is an oriented, compact connected n-manifold with
`1-invisible boundary and H`1

n (W ) = 0, then ‖W ◦‖ = 0; this follows from the finiteness
criterion (Theorem (6.4)) and Proposition (6.3).

For instance, it follows that ‖Rn‖ = 0 for all n ∈ N>1 because the sphere Sn−1

is `1-invisible. On the other hand, the finiteness criterion and ‖S0‖ = 2 imply that
‖R‖ = ∞. In particular, the simplicial volume of non-compact manifolds is in general
not invariant under homotopy equivalences that are not proper.

Notice that ‖Hn‖ = ‖Rn‖ = 0 for n ∈ N>1 despite of Hn being hyperbolic. On
the other hand, for certain classes of non-compact, negatively curved manifolds of finite
volume non-vanishing results can be proved by more advanced means [14].

6.3.2. Non-compact manifolds with finite, non-zero simplicial volume. If M is an ori-
ented, closed, connected manifold with ‖M‖ 6= 0 of dimension n ≥ 2 (for example, a
closed hyperbolic n-manifold), and if N is a non-compact manifold obtained from M
by removing a finite number of points, then 0 < ‖N‖ <∞.

This can be seen as follows: By construction, N is the interior of a compact mani-
fold (N ′, ∂N ′) whose boundary is a disjoint union of (n − 1)-spheres. Because Sn−1 is
`1-invisible, the finiteness criterion (Theorem (6.4)) yields ‖N‖ <∞.

Why is ‖N‖ non-zero? A straightforward computation shows that ‖N‖ ≥ ‖N ′, ∂N ′‖
holds [13; Proposition 5.12], where ‖N ′, ∂N ′‖ is the infimum of the `1-norms of all
relative fundamental cycles of (N ′, ∂N ′). Using the fact that Dn satisfies the uniform
boundary condition in degree n− 1 [16; Theorem 2.8] and that Hn−1(Dn) = 0, we find
a K ∈ R>0 with the following property: Every relative fundamental cycle z′ ∈ Cn (N ′)
of (N ′, ∂N ′) can be extended to a fundamental cycle z ∈ Cn (M) of M with

‖z‖1 ≤ ‖z′‖1 +K · ‖∂z′‖1 ≤
(
1 +K · (n+ 1)

)
· ‖z′‖1 .

Therefore, ‖N‖ ≥ ‖N ′, ∂N ′‖ ≥ 1/(1 +K · (n+ 1)) · ‖M‖ > 0, as claimed.

6.3.3. Products. The simplicial volume of products of two manifolds can be estimated
from below by the product of the simplicial volume of the factors if one of the factors
is compact [7, 13; p. 17f, Theorem C.7]; however, in the case that the compact factor
has vanishing simplicial volume and the other factor has infinite simplicial volume this
estimate is inconclusive. In a special case, `1-invisibility determines the outcome for
such products:

Proposition (6.9). Let M be an oriented, closed, connected n-manifold. Then

‖M ×R‖ =

{
0 if M is `1-invisible,

∞ otherwise.

Proof. BecauseM×R is homeomorphic to the interior of the compact manifoldM×[0, 1]
with boundary M tM , the finiteness criterion (Theorem (6.4)) shows that ‖M ×R‖ is
finite if and only if M is `1-invisible.

In the case that M is `1-invisible, the proof of the finiteness criterion provides us
with a locally finite chain c ∈ C lf

n+1 (M × [0,∞)) such that the sequence (ck)k∈N defined
by ck := c|M×[k,∞) ∈ C lf

n+1 (M × [k,∞)) has the following properties:
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– For all k ∈ N we have ∂ck ∈ Cn (M × {k}) and ck is a relative locally finite
fundamental cycle of the half-open cylinder (M × [k,∞),M × {k}).

– Furthermore, limk→∞ ‖ck‖1 = 0.

For k ∈ N we consider the mirror chain ck := C lf
n+1 (idM ×rk)(ck) where rk : R −→ R

denotes reflection at k. Then ck − ck ∈ C lf
n+1 (M ×R) is a locally finite fundamental

cycle of M ×R and ‖M ×R‖ ≤ infk∈N ‖ck − ck‖1 ≤ 2 · infk∈N ‖ck‖1 = 0. �

Hence, any oriented, closed, connected manifold with vanishing simplicial volume
that is not `1-invisible would produce the first example of two manifolds M and N
satisfying ‖M‖ = 0, ‖N‖ = ∞ and ‖M ×N‖ 6= 0.

A related problem is to find an example of two non-compact manifolds whose product
has non-zero simplicial volume. Using the finiteness criterion we obtain:

Example (6.10). Let (M,∂M) be an oriented, compact, connected surface of genus
at least 1 with non-empty boundary. Then ‖M◦ ×R‖ = ∞:

By construction, M◦ ×R is the interior of the compact manifold M × [0, 1] whose
boundary is homeomorphic toM#M and hence is an oriented, closed, connected surface
of genus at least 2. Because hyperbolic manifolds are not `1-invisible, the finiteness
criterion shows that ‖M◦ ×R‖ = ∞. �
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