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About this book

This book is an introduction into geometric group theory. It is certainly not
an encyclopedic treatment of geometric group theory, but hopefully it will
prepare and encourage the reader to take the next step and learn more ad-
vanced aspects of geometric group theory.

The core material of the book should be accessible to third year students,
requiring only a basic acquaintance with group theory, metric spaces, and
point-set topology. I tried to keep the level of the exposition as elementary
as possible, preferring elementary proofs over arguments that require more
machinery in topology or geometry. I refrained from adding complete proofs
for some of the deeper theorems and instead included sketch proofs, high-
lighting the key ideas and the view towards applications. However, many of
the applications will need a more extensive background in algebraic topology,
Riemannian geometry, and algebra.

The exercises are rated in difficulty, from easy* over medium** to hard***.
And very hard∞* (usually, open problems of some sort). The core exercises
should be accessible to third year students, but some of the exercises aim at
applications in other fields and hence require a background in these fields.
Moreover, there are exercise sections that develop additional theory in a series
of exercises; these exercise sections are marked with +.

This book covers slightly more than a one-semester course. Most of the
material originates from various courses and seminars I taught at the Uni-
versität Regensburg: the geometric group theory courses (2010 and 2014),
the seminar on amenable groups (2011), the course on linear groups and
heights (2015, together with Walter Gubler), and an elementary course on
geometry (2016). Most of the students had a background in real and complex
analysis, in linear algebra, algebra, and some basic geometry of manifolds;
some of the students also had experience in algebraic topology and Rieman-
nian geometry. I would like to thank the participants of these courses and
seminars for their interest in the subject and their patience.

I am particularly grateful to Toni Annala, Matthias Blank, Luigi Ca-
puti, Francesca Diana, Alexander Engel, Daniel Fauser, Stefan Friedl, Wal-
ter Gubler, Micha l Marcinkowski, Andreas Thom, Johannes Witzig, and the
anonymous referees for many valuable suggestions and corrections. This work
was supported by the GRK 1692 Curvature, Cycles, and Cohomology (Uni-
versität Regensburg, funded by the DFG).

Regensburg, September 2017 Clara Löh
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5.4 The Švarc-Milnor lemma 132
5.4.1 Application: (Weak) commensurability 137

5.4.2 Application: Geometric structures on manifolds 139

5.5 The dynamic criterion for quasi-isometry 141
5.5.1 Application: Comparing uniform lattices 146

5.6 Quasi-isometry invariants 148
5.6.1 Quasi-isometry invariants 148

5.6.2 Geometric properties of groups and rigidity 150

5.6.3 Functorial quasi-isometry invariants 151

5.E Exercises 156



th
is

is
a

dra
ft

ve
rsi

on
!

Contents ix

Part III Geometry of groups 165

6 Growth types of groups 167

6.1 Growth functions of finitely generated groups 168

6.2 Growth types of groups 170

6.2.1 Growth types 171

6.2.2 Growth types and quasi-isometry 172

6.2.3 Application: Volume growth of manifolds 176

6.3 Groups of polynomial growth 179

6.3.1 Nilpotent groups 180

6.3.2 Growth of nilpotent groups 181

6.3.3 Polynomial growth implies virtual nilpotence 182

6.3.4 Application: Virtual nilpotence is geometric 184

6.3.5 More on polynomial growth 185

6.3.6 Quasi-isometry rigidity of free Abelian groups 186

6.3.7 Application: Expanding maps of manifolds 187

6.4 Groups of uniform exponential growth 188

6.4.1 Uniform exponential growth 188

6.4.2 Uniform uniform exponential growth 190

6.4.3 The uniform Tits alternative 190

6.4.4 Application: The Lehmer conjecture 192

6.E Exercises 194

7 Hyperbolic groups 203

7.1 Classical curvature, intuitively 204

7.1.1 Curvature of plane curves 204

7.1.2 Curvature of surfaces in R3 205

7.2 (Quasi-)Hyperbolic spaces 208

7.2.1 Hyperbolic spaces 208

7.2.2 Quasi-hyperbolic spaces 210

7.2.3 Quasi-geodesics in hyperbolic spaces 213

7.2.4 Hyperbolic graphs 219

7.3 Hyperbolic groups 220

7.4 The word problem in hyperbolic groups 224

7.4.1 Application: “Solving” the word problem 225

7.5 Elements of infinite order in hyperbolic groups 229

7.5.1 Existence 229

7.5.2 Centralisers 235

7.5.3 Quasi-convexity 241

7.5.4 Application: Products and negative curvature 245

7.6 Non-positively curved groups 246

7.E Exercises 250



th
is

is
a

dra
ft

ve
rsi

on
!

x Contents

8 Ends and boundaries 257

8.1 Geometry at infinity 258

8.2 Ends 259
8.2.1 Ends of geodesic spaces 259

8.2.2 Ends of quasi-geodesic spaces 262

8.2.3 Ends of groups 264

8.3 Gromov boundary 267
8.3.1 Gromov boundary of quasi-geodesic spaces 267

8.3.2 Gromov boundary of hyperbolic spaces 269

8.3.3 Gromov boundary of groups 270

8.3.4 Application: Free subgroups of hyperbolic groups 271

8.4 Application: Mostow rigidity 277

8.E Exercises 280

9 Amenable groups 289

9.1 Amenability via means 290
9.1.1 First examples of amenable groups 290

9.1.2 Inheritance properties 292

9.2 Further characterisations of amenability 295
9.2.1 Følner sequences 295

9.2.2 Paradoxical decompositions 298

9.2.3 Application: The Banach-Tarski paradox 300

9.2.4 (Co)Homological characterisations of amenability 302

9.3 Quasi-isometry invariance of amenability 304

9.4 Quasi-isometry vs. bilipschitz equivalence 305

9.E Exercises 309

Part IV Reference material 317

A Appendix 319

A.1 The fundamental group 320
A.1.1 Construction and examples 320

A.1.2 Covering theory 322

A.2 Group (co)homology 325
A.2.1 Construction 325

A.2.2 Applications 327

A.3 The hyperbolic plane 329
A.3.1 Construction of the hyperbolic plane 329

A.3.2 Length of curves 330

A.3.3 Symmetry and geodesics 332

A.3.4 Hyperbolic triangles 341

A.3.5 Curvature 346

A.3.6 Other models 347

A.4 An invitation to programming 349



th
is

is
a

dra
ft

ve
rsi

on
!

Contents xi

Bibliography 353

Index of notation 367

Index 373



th
is

is
a

dra
ft

ve
rsi

on
!



th
is

is
a

dra
ft

ve
rsi

on
!

1

Introduction

Groups are an abstract concept from algebra, formalising the study of sym-
metries of various mathematical objects.

What is geometric group theory? Geometric group theory investigates the
interaction between algebraic and geometric properties of groups:
• Can groups be viewed as geometric objects and how are geometric and

algebraic properties of groups related?
• More generally: On which geometric objects can a given group act in

a reasonable way, and how are geometric properties of these geometric
objects/actions related to algebraic properties of the group?

How does geometric group theory work? Classically, group-valued invari-
ants are associated with geometric objects, such as, e.g., the isometry group
or the fundamental group. It is one of the central insights leading to geometric
group theory that this process can be reversed to a certain extent:

1. We associate a geometric object with the group in question; this can
be an “artificial” abstract construction or a very concrete model space
(such as the Euclidean plane or the hyperbolic plane) or action from
classical geometric theories.

2. We take geometric invariants and apply these to the geometric objects
obtained by the first step. This allows to translate geometric terms such
as geodesics, curvature, volumes, etc. into group theory.
Usually, in this step, in order to obtain good invariants, one restricts
attention to finitely generated groups and takes geometric invariants
from large scale geometry (as they blur the difference between different
finite generating sets of a given group).

3. We compare the behaviour of such geometric invariants of groups with
the algebraic behaviour, and we study what can be gained by this sym-
biosis of geometry and algebra.
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2 Introduction

Z× Z Z Z ∗ Z

Figure 1.1.: Basic examples of Cayley graphs

A key example of geometric objects associated with a group are Cayley
graphs (with respect to a chosen generating set) together with the corre-
sponding word metrics. For instance, from the point of view of large scale
geometry, Cayley graphs of Z resemble the geometry of the real line, Cayley
graphs of Z× Z resemble the geometry of the Euclidean plane, while Cayley
graphs of the free group Z ∗ Z on two generators have essential features of
the geometry of the hyperbolic plane (Figure 1.1; exact definitions of these
concepts are introduced in later chapters).

More generally, in (large scale) geometric group theoretic terms, the uni-
verse of (finitely generated) groups roughly unfolds as depicted in Figure 1.2.
The boundaries are inhabited by amenable groups and non-positively curved
groups respectively – classes of groups that are (at least partially) accessi-
ble. However, studying these boundary classes is only the very beginning of
understanding the universe of groups; in general, knowledge about these two
classes of groups is far from enough to draw conclusions about groups at the
inner regions of the universe:

“Hic abundant leones.” [29]
“A statement that holds for all finitely generated groups

has to be either trivial or wrong.” [attributed to M. Gromov]

Why study geometric group theory? On the one hand, geometric group
theory is an interesting theory combining aspects of different fields of math-
ematics in a cunning way. On the other hand, geometric group theory has
numerous applications to problems in classical fields such as group theory,
Riemannian geometry, topology, and number theory.

For example, free groups (an a priori purely algebraic notion) can be char-
acterised geometrically via actions on trees; this leads to an elegant proof of
the (purely algebraic!) fact that subgroups of free groups are free.

Further applications of geometric group theory to algebra and Riemannian
geometry include the following:
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Figure 1.2.: The universe of groups (simplified version of Bridson’s universe
of groups [29])

• Recognising that certain matrix groups are free groups; there is a geo-
metric criterion, the ping-pong lemma, that allows to deduce freeness
of a group by looking at a suitable action (not necessarily on a tree).
• Recognising that certain groups are finitely generated; this can be done

geometrically by exhibiting a good action on a suitable space.
• Establishing decidability of the word problem for large classes of groups;

for example, Dehn used geometric ideas in his algorithm solving the
word problem in certain geometric classes of groups.
• Recognising that certain groups are virtually nilpotent; Gromov found a

characterisation of finitely generated virtually nilpotent groups in terms
of geometric data, more precisely, in terms of the growth type.
• Proving non-existence of Riemannian metrics satisfying certain cur-

vature conditions on certain smooth manifolds; this is achieved by
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4 Introduction

translating these curvature conditions into group theory and looking
at groups associated with the given smooth manifold (e.g., the funda-
mental group). Moreover, a similar technique also yields (non-)splitting
results for certain non-positively curved spaces.
• Rigidity results for certain classes of matrix groups and Riemannian

manifolds; here, the key is the study of an appropriate geometry at
infinity of groups.
• Group-theoretic reformulation of the Lehmer conjecture; by the work of

Breuillard et al., the Lehmer conjecture in algebraic number theory is
equivalent to a problem about growth of certain matrix groups.
• Geometric group theory provides a layer of abstraction that helps to

understand and generalise classical geometry – in particular, in the case
of negative or non-positive curvature and the corresponding geometry
at infinity.
• The Banach-Tarski paradox (a sphere can be divided into finitely many

pieces that in turn can be puzzled together into two spheres congruent to
the given one [this relies on the axiom of choice]); the Banach-Tarski
paradox corresponds to certain matrix groups not being “amenable”,
a notion related to both measure theoretic and geometric properties of
groups.
• A better understanding of many classical groups; this includes, for in-

stance, mapping class groups of surfaces and outer automorphisms of
free groups (and their behaviour similar to certain matrix groups).

Overview of the book. The goal of this book is to explain the basic termi-
nology of geometric group theory, the standard proof techniques, and how
these concepts can be applied to obtain the results listed above.

As the main characters in geometric group theory are groups, we will start
by reviewing concepts and examples from group theory and by introducing
constructions that allow to generate interesting groups (Chapter 2). Readers
familiar with group theory and the standard examples of groups can happily
skip this chapter.

Then we will introduce one of the main combinatorial objects in geometric
group theory, Cayley graphs, and review basic notions concerning actions of
groups (Chapter 3–4). A first taste of the power of geometric group theory
is the geometric characterisation of free groups via actions on trees.

As next step, we will introduce a metric structure on groups via word
metrics on Cayley graphs, and we will study the large scale geometry of
groups with respect to this metric structure, in particular, the concept of
quasi-isometry (Chapter 5).

After these preparations, we will enjoy the quasi-geometry of groups, in-
cluding
• growth types (Chapter 6),
• hyperbolicity (Chapter 7),
• geometry at infinity (Chapter 8),
• amenability (Chapter 9).
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Basics on fundamental groups, group (co)homology, and elementary prop-
erties of the hyperbolic plane, are collected in the appendices (Appendix A).
As the proof of the pudding is in the eating, Appendix A.4 contains a list of
programming tasks related to geometric group theory.

Literature. Geometric group theory is a vast, rapidly growing area of mathe-
matics; therefore, not all aspects can be covered in this book. The selection of
topics is biased by my own preferences, but I hope that this book will prepare
and encourage the reader to discover more of geometric group theory. The
standard resources for geometric group theory are:

• Topics in Geometric group theory by de la Harpe [77] (one of the first
collections of results and examples in geometric group theory),
• Geometric Group Theory by Druţu and M. Kapovich, with an appendix

by Nica [53] (the latest compendium on geometric group theory for
advanced students and researchers),
• Office Hours with a Geometric Group Theorist edited by Clay and Mar-

galit [41] (a recent collection of topics and examples with a focus on
intuition),
• Metric spaces of non-positive curvature by Bridson and Haefliger [31] (a

compendium on non-positive curvature and its relations with geometric
group theory; parts of Chapter 7 and Chapter 8 follow this source),
• Trees by Serre [159] (the standard source for Bass-Serre theory).

A short and comprehensible introduction into curvature in classical Rie-
mannian geometry is given in the book Riemannian manifolds. An introduc-
tion to curvature by Lee [96]. Background material on fundamental groups
and covering theory can be found in the book Algebraic Topology: An Intro-
duction by Massey [115].

Furthermore, I recommend to look at the overview articles by Bridson
on geometric and combinatorial group theory [29, 30]. The original reference
for modern large scale geometry of groups is the landmark paper Hyperbolic
groups [74] by Gromov.

One sentence on notation. The natural numbers N contain 0.
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Groups
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2

Generating groups

As the main characters in geometric group theory are groups, we start by
reviewing concepts and examples from group theory. In particular, we will
present basic construction principles that allow to generate interesting exam-
ples of groups. This includes the description of groups in terms of generators
and relations and the iterative construction of groups via semi-direct prod-
ucts, amalgamated free products, and HNN-extensions.

Readers familiar with (infinite) group theory and standard examples of
groups can happily skip this chapter.

Overview of this chapter

2.1 Review of the category of groups 10

2.2 Groups via generators and relations 19

2.3 New groups out of old 31

2.E Exercises 39



th
is

is
a

dra
ft

ve
rsi

on
!

10 2. Generating groups

2.1 Review of the category of groups

2.1.1 Abstract groups: axioms

For the sake of completeness, we briefly recall the definition of a group; more
information on basic properties of groups can be found in any textbook on
algebra [94, 150]. The category of groups has groups as objects and group
homomorphisms as morphisms.

Definition 2.1.1 (Group). A group is a set G together with a binary opera-
tion · : G×G −→ G satisfying the following axioms:
• Associativity. For all g1, g2, g3 ∈ G we have

g1 · (g2 · g3) = (g1 · g2) · g3.

• Existence of a neutral element. There exists a neutral element e ∈ G
for “·”, i.e.,

∀g∈G e · g = g = g · e.

(This property uniquely determines the neutral element.)
• Existence of inverses. For every g ∈ G there exists an inverse ele-

ment g−1 ∈ G with respect to “·”, i.e.,

g · g−1 = e = g−1 · g.

(This property uniquely determines the inverse element of g.)
A group G is Abelian if composition is commutative, i.e., if g1 · g2 = g2 · g1

holds for all g1, g2 ∈ G.

Definition 2.1.2 (Subgroup). Let G be a group with respect to “·”. A sub-
set H ⊂ G is a subgroup if H is a group with respect to the restriction of “·”
toH×H ⊂ G×G. The index [G : H] of a subgroupH ⊂ G is the cardinality of
the set {g ·H | g ∈ G}; here, we use the coset notation g ·H := {g ·h | h ∈ H}.

Example 2.1.3 (Some (sub)groups).
• Trivial group(s) are groups consisting only of a single element e and the

composition (e, e) 7−→ e. Clearly, every group contains a trivial group
given by the neutral element as subgroup.
• The sets Z, Q, and R are groups with respect to addition; moreover, Z

is a subgroup of Q, and Q is a subgroup of R.
• The natural numbers N = {0, 1, . . . } do not form a group with respect

to addition (e.g., 1 does not have an additive inverse in N); the rational
numbers Q do not form a group with respect to multiplication (0 does
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2.1. Review of the category of groups 11

not have a multiplicative inverse), but Q \ {0} is a group with respect
to multiplication.

Now that we have introduced the main objects, we need morphisms to
relate different objects to each other. As in other mathematical theories,
morphisms should be structure preserving, and we consider two objects to be
the same if they have the same structure:

Definition 2.1.4 (Group homomorphism/isomorphism). Let G, H be groups.
• A map ϕ : G −→ H is a group homomorphism if ϕ is compatible with

the composition in G and H respectively, i.e., if

ϕ(g1 · g2) = ϕ(g1) · ϕ(g2)

holds for all g1, g2 ∈ G. (Every group homomorphism maps the neutral
element to the neutral element and inverses to inverses).
• A group homomorphism ϕ : G −→ H is a group isomorphism if there

exists a group homomorphism ψ : H −→ G such that ϕ ◦ ψ = idH and
ψ ◦ ϕ = idG. If there exists a group isomorphism between G and H,
then G and H are isomorphic, and we write G ∼= H.

Example 2.1.5 (Some group homomorphisms).
• Clearly, all trivial groups are (canonically) isomorphic. Hence, we usu-

ally speak of “the” trivial group.
• If H is a subgroup of a group G, then the inclusion H ↪→ G is a group

homomorphism.
• Let n ∈ Z. Then

Z −→ Z
x 7−→ n · x

is a group homomorphism; however, addition of n 6= 0 is not a group
homomorphism (e.g., the neutral element is not mapped to the neutral
element).
• The exponential map exp: R −→ R>0 is a group homomorphism be-

tween the additive group R and the multiplicative group R>0; the ex-
ponential map is even an isomorphism (the inverse homomorphism is
given by the logarithm).

Definition 2.1.6 (Kernel/image of homomorphisms). Let ϕ : G −→ H be a
group homomorphism. Then the subgroup

kerϕ := {g ∈ G | ϕ(g) = e}

of G is the kernel of ϕ, and the subgroup

imϕ := {ϕ(g) | g ∈ G}

of H is the image of ϕ.
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12 2. Generating groups

Remark 2.1.7 (Isomorphisms via kernel/image). It is a simple exercise in al-
gebra to verify the following:

1. A group homomorphism is injective if and only if its kernel is the trivial
subgroup (Exercise 2.E.3).

2. A group homomorphism is an isomorphism if and only if it is bijective.
3. In particular: A group homomorphism ϕ : G −→ H is an isomorphism

if and only if kerϕ is the trivial subgroup and imϕ = H.

2.1.2 Concrete groups: automorphism groups

The concept, and hence the axiomatisation, of groups developed originally out
of the observation that certain collections of “invertible” structure preserving
transformations of geometric or algebraic objects fit into the same abstract
framework; moreover, it turned out that many interesting properties of the
underlying objects are encoded in the group structure of the corresponding
automorphism group.

Example 2.1.8 (Symmetric groups). Let X be a set. Then the set SX of all
bijections of type X −→ X is a group with respect to composition of maps,
the symmetric group over X. If n ∈ N, then we abbreviate Sn := S{1,...,n}. If
|X| ≥ 3, the group SX is not Abelian.

This example is generic in the following sense:

Proposition 2.1.9 (Cayley’s theorem). Every group is isomorphic to a sub-
group of some symmetric group.

Proof. LetG be a group. ThenG is isomorphic to a subgroup of SG: For g ∈ G
we define the map

fg : G −→ G

x 7−→ g · x.

For all g, h ∈ G we have fg ◦ fh = fg·h. Therefore, looking at fg−1 shows that
fg : G −→ G is a bijection for all g ∈ G. Moreover, it follows that

f : G −→ SG

g 7−→ fg

is a group homomorphism, which is easily shown to be injective. So, f induces
an isomorphism G ∼= im f ⊂ SG, as desired.

Example 2.1.10 (Automorphism group of a group). Let G be a group. Then the
set Aut(G) of group isomorphisms of type G −→ G is a group with respect
to composition of maps, the automorphism group of G. Clearly, Aut(G) is a
subgroup of SG.
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2.1. Review of the category of groups 13

Example 2.1.11 (Isometry groups/Symmetry groups). Let X be a metric space
(basic notions for metric spaces are recalled in Chapter 5.1). The set Isom(X)
of all isometries of type X −→ X forms a group with respect to composi-
tion (a subgroup of the symmetric group SX). For example, in this way the
dihedral groups naturally occur as symmetry groups of regular polygons (Ex-
ample 2.2.20, Exercise 2.E.8).

Example 2.1.12 (Matrix groups). Let k be a commutative ring with unit,
and let V be a k-module. Then the set Aut(V ) of all k-linear isomor-
phisms V −→ V forms a group with respect to composition. In particular,
the set GL(n, k) of invertible n×n-matrices over k is a group (with respect to
matrix multiplication) for every n ∈ N. Similarly, also SL(n, k), the subgroup
of invertible matrices of determinant 1, is a group.

Example 2.1.13 (Galois groups). Let K ⊂ L be a Galois extension of fields.
Then the set

Gal(L/K) :=
{
σ ∈ Aut(L)

∣∣ σ|K = idK
}

of field automorphisms of L fixing K is a group with respect to composition,
the Galois group of the extension L/K.

Example 2.1.14 (Deck transformation groups). Let π : X −→ Y be a covering
map of topological spaces. Then the set{

f ∈ map(X,X)
∣∣ f is a homeomorphism with π ◦ f = π

}
of deck transformations forms a group with respect to composition.

In more conceptual language, these examples are all instances of the follow-
ing general principle: If X is an object in a category C, then the set AutC(X)
of C-isomorphisms of type X −→ X is a group with respect to composition
in C. We will now explain this in more detail:

Definition 2.1.15 (Category). A category C consists of the following compo-
nents:
• A class Ob(C); the elements of Ob(C) are objects of C. (Classes are a

generalisation of sets, allowing, e.g., for the definition of the class of all
sets [164]).

• A set MorC(X,Y ) for each choice of objects X,Y ∈ Ob(C); elements
of MorC(X,Y ) are called morphisms from X to Y . (We implicitly as-
sume that morphism sets between different pairs of objects are disjoint.)

• For all objects X,Y, Z ∈ Ob(C) a composition

◦ : MorC(Y,Z)×MorC(X,Y ) −→ MorC(X,Z)

(g, f) 7−→ g ◦ f

of morphisms.
These data have to satisfy the following conditions:
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14 2. Generating groups

• For each object X in C there is a morphism idX ∈ MorC(X,X) with
the following property: For all Y ∈ Ob(C) and all f ∈ MorC(X,Y ) and
g ∈ MorC(Y,X) we have

f ◦ idX = f and idX ◦g = g.

(The morphism idX is uniquely determined by this property; it is the
identity morphism of X in C).
• Morphism composition is associative, i.e., for all W,X, Y, Z ∈ Ob(C)

and all f ∈ MorC(W,X), g ∈ MorC(X,Y ) and h ∈ MorC(Y,Z) we
have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Caveat 2.1.16. The concept of morphisms and compositions is modelled on
the example of maps between sets and ordinary composition of maps. How-
ever, in general, morphisms in categories need not be given as maps between
sets and composition need not be composition of maps!

The notion of categories contains all the ingredients necessary to talk about
isomorphisms and automorphisms:

Definition 2.1.17 (Isomorphism). Let C be a category. Objects X,Y ∈ Ob(C)
are isomorphic in C if there exist f ∈ MorC(X,Y ) and g ∈ MorC(Y,X) with

g ◦ f = idX and f ◦ g = idY .

In this case, f and g are isomorphisms in C and we write X ∼=C Y (or X ∼= Y
if the category is clear from the context).

Definition 2.1.18 (Automorphism group). Let C be a category and let X
be an object of C. Then the set AutC(X) of all isomorphisms X −→ X
in C is a group with respect to composition in C (Proposition 2.1.19), the
automorphism group of X in C.

Proposition 2.1.19 (Automorphism groups in categories).
1. Let C be a category and let X ∈ Ob(C). Then AutC(X) is a group.
2. Let G be a group. Then there exists a category C and an object X in C

such that G ∼= AutC(X).

Proof. Ad 1. Because the composition of morphisms in C is associative, com-
position in AutC(X) is associative. The identity morphism idX is an isomor-
phism X −→ X (being its own inverse) and, by definition, idX is the neutral
element with respect to composition. Moreover, the existence of inverses is
guaranteed by the definition of isomorphisms in categories.

Ad 2. We consider the category C that contains only a single object X. We
set MorC(X,X) := G and we define the composition in C via the composition
in G by
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2.1. Review of the category of groups 15

◦ : MorC(X,X)×MorC(X,X) −→ MorC(X,X)

(g, h) 7−→ g · h.

A straightforward computation shows that C indeed is a category and that
AutC(X) is G.

We will now illustrate these terms in more concrete examples:

Example 2.1.20 (Set theory). The category Set of sets consists of:
• Objects: Let Ob(Set) be the class(!) of all sets.
• Morphisms: For sets X and Y , we let MorSet(X,Y ) be the set of all

set-theoretic maps X −→ Y .
• Compositions are ordinary compositions of maps: For sets X,Y, Z we

define the composition MorSet(Y,Z) ×MorSet(X,Y ) −→ MorSet(X,Z)
to be ordinary composition of maps.

It is clear that this composition is associative. If X is a set, then the ordinary
identity map

X −→ X

x 7−→ x

is the identity morphism of X in Set. Objects in Set are isomorphic if and only
if they have the same cardinality and for all sets X the symmetric group SX
coincides with AutSet(X).

Example 2.1.21 (Algebra). The category Group of groups consists of:
• Objects: Let Ob(Group) be the class of all groups.
• Morphisms: For groups G and H we let MorGroup(G,H) be the set of

all group homomorphisms.
• Compositions: As compositions we choose ordinary composition of

maps.
Analogously, one also obtains the category Ab of Abelian groups, the cate-
gory VectR of R-vector spaces, the category RMod of left R-modules over a
ring R, . . . Objects in Group, Ab, VectR, RMod, . . . are isomorphic in the
sense of category theory if and only if they are isomorphic in the algebraic
sense. Moreover, both the category theoretic and the algebraic point of view
result in the same automorphism groups.

Example 2.1.22 (Geometry of isometric embeddings). The category Metisom of
metric spaces and isometric embeddings consists of:
• Objects: Let Ob(Metisom) be the class of all metric spaces.
• Morphisms in Metisom are isometric embeddings (i.e., distance preserv-

ing maps) of metric spaces.
• The compositions are given by ordinary composition of maps.

Then objects in Metisom are isomorphic if and only if they are isometric and
automorphism groups in Metisom are nothing but isometry groups of metric
spaces.
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16 2. Generating groups

Example 2.1.23 (Topology). The category Top of topological spaces consists
of:
• Objects: Let Ob(Top) be the class of all topological spaces.
• Morphisms in Top are continuous maps.
• The compositions are given by ordinary composition of maps.

Isomorphisms in Top are precisely the homeomorphisms; automorphism
groups in Top are the groups of self-homeomorphisms of topological spaces.

Taking automorphism groups of geometric/algebraic objects is only one
way to associate meaningful groups to interesting objects. Over time, many
group-valued invariants have been developed in all fields of mathematics. For
example:
• fundamental groups (in topology, algebraic geometry, operator algebra

theory, . . . )
• homology groups (in topology, algebra, algebraic geometry, operator

algebra theory, . . . )
• . . .

2.1.3 Normal subgroups and quotients

Sometimes it is convenient to ignore a certain subobject of a given object
and to focus on the remaining properties. Formally, this is done by taking
quotients. In contrast to the theory of vector spaces, where the quotient of any
vector space by any subspace again naturally forms a vector space, we have
to be a little bit more careful in the world of groups. Only special subgroups
lead to quotient groups:

Definition 2.1.24 (Normal subgroup). Let G be a group. A subgroup N of G
is normal if it is conjugation invariant, i.e., if

g · n · g−1 ∈ N

holds for all n ∈ N and all g ∈ G. If N is a normal subgroup of G, then we
write N C G.

Example 2.1.25 (Some (non-)normal subgroups).
• All subgroups of Abelian groups are normal.
• Let τ ∈ S3 be the bijection given by swapping 1 and 2 (i.e., τ = (1 2)).

Then {id, τ} is a subgroup of S3, but it is not a normal subgroup.
On the other hand, the subgroup {id, σ, σ2} ⊂ S3 generated by the
cycle σ := (1 7→ 2, 2 7→ 3, 3 7→ 1) is a normal subgroup of S3.
• Kernels of group homomorphisms are normal in the domain group;

conversely, every normal subgroup also is the kernel of a certain group
homomorphism (namely of the canonical projection to the quotient
(Proposition 2.1.26)).
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Proposition 2.1.26 (Quotient group). Let G be a group, and let N be a sub-
group.

1. Let G/N := {g ·N | g ∈ G}. Then the map

G/N ×G/N −→ G/N

(g1 ·N, g2 ·N) 7−→ (g1 · g2) ·N

is well-defined if and only if N is normal in G. If N is normal in G,
then G/N is a group with respect to this composition map, the quotient
group of G by N .

2. Let N be normal in G. Then the canonical projection

π : G −→ G/N

g 7−→ g ·N

is a group homomorphism, and the quotient group G/N together with π
has the following universal property: For every group H and every group
homomorphism ϕ : G −→ H with N ⊂ kerϕ there is exactly one group
homomorphism ϕ : G/N −→ H satisfying ϕ ◦ π = ϕ:

G
ϕ
//

π

��

H

G/N

ϕ

==

Proof. Ad 1. Suppose that N is normal in G. In this case, the composition
map is well-defined (in the sense that the definition does not depend on the
choice of the representatives of cosets): Let g1, g2, g1, g2 ∈ G with

g1 ·N = g1 ·N, and g2 ·N = g2 ·N.

In particular, there are n1, n2 ∈ N with g1 = g1 · n1 and g2 = g2 · n2. Thus
we obtain

(g1 · g2) ·N = (g1 · n1 · g2 · n2) ·N
= (g1 · g2 · (g−1

2 · n1 · g2) · n2) ·N
= (g1 · g2) ·N ;

in the last step we used that N is normal, which implies that g−1
2 ·n1 ·g2 ∈ N

and hence g−1
2 · n1 · g2 · n2 ∈ N . Therefore, the composition on G/N is well-

defined.

That G/N indeed is a group with respect to this composition follows easily
from the fact that the group axioms are satisfied in G.

Conversely, suppose that the composition onG/N is well-defined. Then the
subgroup N is normal in G: Let n ∈ N and let g ∈ G. Then g ·N = (g ·n) ·N ,
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and so (by well-definedness)

N = (g · g−1) ·N
= (g ·N) · (g−1 ·N)

= ((g · n) ·N) · (g−1 ·N)

= (g · n · g−1) ·N ;

in particular, g · n · g−1 ∈ N . Therefore, N is normal in G.

Ad 2. Let H be a group and let ϕ : G −→ H be a group homomorphism
with N ⊂ kerϕ. It is easy to see that

ϕ : G/N −→ H

g ·N 7−→ ϕ(g)

is a well-defined group homomorphism, that it satisfies ϕ ◦ π = ϕ, and that
ϕ is the only group homomorphism with this property.

Example 2.1.27 (Quotient groups).

• Let n ∈ Z. Then composition in the quotient group Z/nZ is nothing but
addition modulo n. If n 6= 0, then Z/nZ is a cyclic group of order n;
if n = 0, then Z/nZ ∼= Z is an infinite cyclic group. We will also
abbreviate Z/n := Z/nZ.
• The quotient group R/Z is isomorphic to the (multiplicative) circle

group {z | z ∈ C, |z| = 1} ⊂ C \ {0}.
• The quotient of S3 by the subgroup {id, σ, σ2} generated by the cy-

cle σ := (1 7→ 2, 2 7→ 3, 3 7→ 1) is isomorphic to Z/2.

Example 2.1.28 (Outer automorphism groups). Let G be a group. An auto-
morphism ϕ : G −→ G is an inner automorphism of G if ϕ is given by
conjugation by an element of G, i.e., if there is an element g ∈ G such that

∀h∈G ϕ(h) = g · h · g−1.

The subset of Aut(G) of all inner automorphisms of G is denoted by Inn(G).
Then Inn(G) is a normal subgroup of Aut(G) (Exercise 2.E.6), and the quo-
tient

Out(G) := Aut(G)/ Inn(G)

is the outer automorphism group of G. For example, the outer automorphism
groups of finitely generated free groups form an interesting class of groups
that has various connections to lattices in Lie groups and mapping class
groups [173]. Curiously, one has for all n ∈ N that [119]

Out(Sn) ∼=

{
{e} if n 6= 6

Z/2 if n = 6.
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2.2 Groups via generators and relations

How can we specify a group? One way is to construct a group as the automor-
phism group of some object or as a subgroup or quotient thereof. However,
when interested in finding groups with certain algebraic features, it might
sometimes be difficult to find a corresponding geometric object.

In this section, we will see that there is another – abstract – way to con-
struct groups, namely by generators and relations: We will prove that for
every list of elements (“generators”) and group theoretic equations (“rela-
tions”) linking these elements there always exists a group in which these
relations hold as non-trivially as possible. (However, in general, it is not pos-
sible to decide whether the given wish-list of generators and relations can
be realised by a non-trivial group.) Technically, generators and relations are
formalised by the use of free groups and suitable quotient groups.

2.2.1 Generating sets of groups

We start by reviewing the concept of a generating set of a group; in geometric
group theory, one usually is only interested in finitely generated groups (for
reasons that will become clear in Chapter 5).

Definition 2.2.1 (Generating set).
• Let G be a group and let S ⊂ G be a subset. The subgroup generated

by S in G is the smallest subgroup (with respect to inclusion) of G that
contains S; the subgroup generated by S in G is denoted by 〈S〉G.
The set S generates G if 〈S〉G = G.
• A group is finitely generated if it contains a finite subset that generates

the group in question.

Remark 2.2.2 (Explicit description of generated subgroups). Let G be a group
and let S ⊂ G. Then the subgroup generated by S in G always exists and
can be described as follows:

〈S〉G =
⋂
{H | H ⊂ G is a subgroup with S ⊂ H}

=
{
sε11 · · · · · sεnn

∣∣ n ∈ N, s1, . . . , sn ∈ S, ε1, . . . , εn ∈ {−1,+1}
}
.

Example 2.2.3 (Generating sets).
• If G is a group, then G is a generating set of G.
• The trivial group is generated by the empty set.
• The set {1} generates the additive group Z; moreover, also, e.g., {2, 3}

is a generating set for Z. But {2} and {3} are no generating sets of Z.



th
is

is
a

dra
ft

ve
rsi

on
!

20 2. Generating groups

• Let X be a set. Then the symmetric group SX is finitely generated if
and only if X is finite (Exercise 2.E.4).

2.2.2 Free groups

Every vector space admits special generating sets: namely those generating
sets that are as free as possible (meaning having as few linear algebraic rela-
tions between them as possible), i.e., the linearly independent ones. Also, in
the setting of group theory, we can formulate what it means to be a free gener-
ating set – however, as we will see, most groups do not admit free generating
sets. This is one of the reasons why group theory is much more complicated
than linear algebra.

Definition 2.2.4 (Free groups, universal property). Let S be a set. A group F
containing S is freely generated by S if F has the following universal property:
For every group G and every map ϕ : S −→ G there is a unique group
homomorphism ϕ : F −→ G extending ϕ:

S� _

��

ϕ
// G

F

ϕ

??

A group is free if it contains a free generating set.

Example 2.2.5 (Free groups).
• The additive group Z is freely generated by {1}. The additive group Z

is not freely generated by {2, 3} or {2} or {3}; in particular, not every
generating set of a group contains a free generating set.
• The trivial group is freely generated by the empty set.
• Not every group is free; for example, the additive groups Z/2 and Z2

are not free (Exercise 2.E.11).

The term “universal property” obliges us to prove that objects having this
universal property are unique in an appropriate sense; moreover, we will see
below (Theorem 2.2.7) that for every set there indeed exists a group freely
generated by the given set.

Proposition 2.2.6 (Free groups, uniqueness). Let S be a set. Then, up to
canonical isomorphism, there is at most one group freely generated by S.

The proof consists of the standard universal-property-yoga (Figure 2.1):
Namely, we consider two objects that have the universal property in question.
We then proceed as follows:

1. We use the existence part of the universal property to obtain interesting
morphisms in both directions.
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G
ein- mal hin ein- mal her

G
rund-he- rum, das ist nicht schwer

Figure 2.1.: Uniqueness of universal objects; Brüderchen, komm tanz mit mir
(German folk song: Little brother dance with me). Literal trans-
lation of the song text displayed above: once to, once from, all
around, that is not hard.

2. We use the uniqueness part of the universal property to conclude that
both compositions of these morphisms have to be the identity (and
hence that both morphisms are isomorphisms).

Proof. Let F and F ′ be two groups freely generated by S. We denote the
inclusion of S into F and F ′ by ϕ and ϕ′ respectively.

1. Einmal hin: Because F is freely generated by S, the existence part of
the universal property of free generation guarantees the existence of a
group homomorphism ϕ′ : F −→ F ′ such that ϕ′ ◦ ϕ = ϕ′.
Einmal her: Analogously, there is a group homomorphism ϕ : F ′ −→ F
satisfying ϕ ◦ ϕ′ = ϕ:

S� _

ϕ

��

ϕ′
// F ′

F
ϕ′

>> S� _

ϕ′

��

ϕ
// F

F ′
ϕ

>>

2. Rundherum, das ist nicht schwer: We now show that ϕ ◦ ϕ′ = idF
and ϕ′ ◦ ϕ = idF ′ and hence that ϕ and ϕ′ are isomorphisms: The
composition ϕ ◦ ϕ′ : F −→ F is a group homomorphism making the
diagram

S� _

ϕ

��

ϕ
// F

F
ϕ◦ϕ′

??
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commutative. Moreover, also idF is a group homomorphism fitting into
this diagram. Because F is freely generated by S, the uniqueness part
of the universal property thus tells us that these two homomorphisms
have to coincide, i.e., that ϕ ◦ ϕ′ = idF . Analogously, one shows that
ϕ′ ◦ ϕ = idF ′ .

These isomorphisms are canonical in the following sense: They induce the
identity map on S, and they are (by the uniqueness part of the universal
property) the only isomorphisms between F and F ′ extending the identity
on S.

Theorem 2.2.7 (Free groups, existence). Let S be a set. Then there exists a
group freely generated by S. (By the previous proposition, this group is unique
up to isomorphism.)

Proof. The idea is to construct a group consisting of “words” made up of
elements of S and their “inverses” using only the obvious cancellation rules for
elements of S and their “inverses.” More precisely, we consider the alphabet

A := S ∪ Ŝ,

where Ŝ := {ŝ | s ∈ S} is a disjoint copy of S; i.e., ·̂ : S −→ Ŝ is a bijection

and S ∩ Ŝ = ∅. For every element s in S the element ŝ will play the role of
the inverse of s in the group that we are about to construct.
• As first step, we define A∗ to be the set of all (finite) sequences

(“words”) over the alphabet A; this includes in particular the empty
word ε. On A∗ we define a composition A∗ × A∗ −→ A∗ by concate-
nation of words. This composition is associative and ε is the neutral
element.
• As second step we define

F (S) := A∗/ ∼,

where ∼ is the equivalence relation generated by

∀x,y∈A∗ ∀s∈S xsŝy ∼ xy,
∀x,y∈A∗ ∀s∈S xŝsy ∼ xy;

i.e., ∼ is the smallest equivalence relation in A∗ × A∗ (with respect to
inclusion) satisfying the above conditions. We denote the equivalence
classes with respect to the equivalence relation ∼ by [ · ].
It is not difficult to check that concatenation induces a well-defined
composition · : F (S)× F (S) −→ F (S) via

[x] · [y] = [xy]

for all x, y ∈ A∗ (because the generating cancellations in each of the
factors map to generating cancellations of the concatenation).
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The set F (S) together with the composition “ · ” given by concatenation is a
group: Clearly, [ε] is a neutral element for this composition, and associativity
of the composition is inherited from the associativity of the composition inA∗.
For the existence of inverses we proceed as follows: Inductively (over the
length of sequences), we define a map I : A∗ −→ A∗ by I(ε) := ε and

I(sx) := I(x)ŝ,

I(ŝx) := I(x)s

for all x ∈ A∗ and all s ∈ S. An induction shows that I(I(x)) = x and

[I(x)] · [x] = [I(x)x] = [ε]

for all x ∈ A∗ (in the last step we use the definition of ∼). Therefore, also

[x] · [I(x)] = [I(I(x))] · [I(x)] = [ε].

This shows that inverses exist in F (S).

The group F (S) is freely generated by S: Let i : S −→ F (S) be the map
given by sending a letter in S ⊂ A∗ to its equivalence class in F (S); by
construction, F (S) is generated by the subset i(S) ⊂ F (S). As we do not
know yet that i is injective, we take a little detour and first show that F (S)
has the following property, similar to the universal property of groups freely
generated by S: For every group G and every map ϕ : S −→ G there is a
unique group homomorphism ϕ : F (S) −→ G such that ϕ ◦ i = ϕ. Given ϕ,
we construct a map

ϕ∗ : A∗ −→ G

inductively by

ε 7−→ e,

sx 7−→ ϕ(s) · ϕ∗(x),

ŝx 7−→
(
ϕ(s)

)−1 · ϕ∗(x)

for all s ∈ S and all x ∈ A∗. It is easy to see that this definition of ϕ∗ is
compatible with the equivalence relation ∼ on A∗ (because it is compatible
with the given generating set of ∼) and that ϕ∗(xy) = ϕ∗(x) · ϕ∗(y) for
all x, y ∈ A∗; thus, ϕ∗ induces a well-defined map

ϕ : F (S) −→ G

[x] 7−→ [ϕ∗(x)],

which is a group homomorphism. By construction ϕ ◦ i = ϕ. Because i(S)
generates F (S), there is no other such group homomorphism.

In order to show that F (S) is freely generated by S, it remains to prove
that i is injective (and then we identify S with its image under i in F (S)):
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Let s1, s2 ∈ S. We consider the map ϕ : S −→ Z given by ϕ(s1) := 1 and
ϕ(s2) := −1. Then the corresponding homomorphism ϕ : F (S) −→ G satisfies

ϕ
(
i(s1)

)
= ϕ(s1) = 1 6= −1 = ϕ(s2) = ϕ

(
i(s2)

)
;

in particular, i(s1) 6= i(s2). Hence, i is injective.

Depending on the problem at hand, the declarative description of free
groups via the universal property or a constructive description as in the pre-
vious proof might be more appropriate than the other. A refined constructive
description of free groups in terms of reduced words will be given in the con-
text of Cayley graphs (Chapter 3.3.1).

We conclude by collecting some properties of free generating sets in free
groups: First of all, free groups indeed are generated (in the sense of Def-
inition 2.2.1) by every free generating set (Corollary 2.2.8); secondly, free
generating sets are generating sets of minimal size (Proposition 2.2.9); more-
over, finitely generated groups can be characterised as the quotients of finitely
generated free groups (Corollary 2.2.12).

Corollary 2.2.8. Let F be a free group, and let S be a free generating set of F .
Then S generates F .

Proof. By construction, the statement holds for the free group F (S) gener-
ated by S constructed in the proof of Theorem 2.2.7. In view of the uniqueness
result Proposition 2.2.6, we find an isomorphism F (S) ∼= F that is the iden-
tity on S. Hence, it follows that also the given free group F is generated
by S.

Proposition 2.2.9 (Rank of free groups). Let F be a free group.
1. Let S ⊂ F be a free generating set of F and let S′ be a generating set

of F . Then |S′| ≥ |S|.
2. In particular: All free generating sets of F have the same cardinality,

called the rank of F .

Proof. The first part can be derived from the universal property of free groups
(mapping to Z/2) together with a counting argument (Exercise 2.E.12). The
second part is a consequence of the first part.

Definition 2.2.10 (Free group Fn). Let n ∈ N and let S = {x1, . . . , xn}, where
x1, . . . , xn are n distinct elements. Then we write Fn for “the” group freely
generated by S, and call Fn the free group of rank n.

Caveat 2.2.11. While subspaces of vector spaces cannot have bigger dimen-
sion than the ambient space, free groups of rank 2 contain subgroups that are
isomorphic to free groups of higher rank, even free subgroups of (countably)
infinite rank. Subgroups of this type can easily be constructed via covering
theory [115, Chapter VI.8] or via actions on trees (Chapter 4.2.3).
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Corollary 2.2.12. A group is finitely generated if and only if it is the quotient
of a finitely generated free group, i.e., a group G is finitely generated if and
only if there exists a finitely generated free group F and a surjective group
homomorphism F −→ G.

Proof. Quotients of finitely generated groups are finitely generated (e.g., the
image of a finite generating set is a finite generating set of the quotient).

Conversely, let G be a finitely generated group, say generated by the finite
set S ⊂ G. Furthermore, let F be the free group generated by S; by Corol-
lary 2.2.8, the group F is finitely generated. Using the universal property
of F , we find a group homomorphism π : F −→ G that is the identity on S.
Because S generates G and because S lies in the image of π, it follows that
imπ = G.

2.2.3 Generators and relations

Free groups enable us to generate generic groups over a given set; in order to
force generators to satisfy a given list of group theoretic equations, we divide
out a suitable normal subgroup.

Definition 2.2.13 (Normal generation). Let G be a group and let S ⊂ G be a
subset. The normal subgroup of G generated by S is the smallest (with respect
to inclusion) normal subgroup of G containing S; it is denoted by 〈S〉/G.

Remark 2.2.14 (Explicit description of generated normal subgroups). Let G be
a group and let S ⊂ G. Then the normal subgroup generated by S in G
always exists and can be described as follows:

〈S〉/G =
⋂
{H | H ⊂ G is a normal subgroup with S ⊂ H}

=
{
g1 · sε11 · g

−1
1 · · · · · gn · sεnn · g−1

n∣∣ n ∈ N, s1, . . . , sn ∈ S, ε1, . . . , εn ∈ {−1,+1}, g1, . . . , gn ∈ G
}
.

Example 2.2.15 (Normal generation).
• As all subgroups of Abelian groups are normal, we have 〈S〉/G = 〈S〉G

for all Abelian groups G and all subsets S ⊂ G.
• We consider the symmetric group S3 and the permutation τ ∈ S3 given

by swapping 1 and 2; then 〈τ〉S3
= {id{1,2,3}, τ} and 〈τ〉/S3

= S3.

Caveat 2.2.16. If G is a group, and N C G, then, in general, it is rather
difficult to determine what the minimal number of elements of a subset S ⊂ G
is that satisfies 〈S〉/G = N .

In the following, we use the notation A∗ for the set of (possibly empty)
words in a set A; moreover, we abuse notation and denote elements of the
free group F (S) over a set S by words in (S ∪ S−1)∗ (even though, strictly



th
is

is
a

dra
ft

ve
rsi

on
!

26 2. Generating groups

speaking, elements of F (S) are equivalence classes of words in (S ∪ S−1)∗).
If we want to emphasise the formality of inverses, we will also sometimes use
words in (S ∪ Ŝ)∗ instead of (S ∪ S−1)∗.

Definition 2.2.17 (Generators and relations). Let S be a set, let R ⊂ (S∪S−1)∗

be a subset; let F (S) be the free group generated by S. Then the group

〈S |R〉 := F (S)/〈R〉/F (S)

is said to be generated by S with the relations R.
If G is a group with G ∼= 〈S |R〉, then the pair (S,R) is a presentation

of G; by abuse of notation we also use the symbol 〈S |R〉 to denote this
presentation.

Relations of the form “w ·w′−1” are also sometimes denoted as “w = w′”,
because in the generated group, the words w and w′ represent the same group
element.

The following proposition is a formal way of saying that 〈S |R〉 is a group
in which the relations R hold as non-trivially as possible:

Proposition 2.2.18 (Universal property of generators and relations). Let S be a
set and let R ⊂ (S∪S−1)∗. The group 〈S |R〉 generated by S with relations R
together with the canonical map π : S −→ F (S)/〈R〉/F (S) = 〈S |R〉 has the
following universal property: For every group G and every map ϕ : S −→ G
with the property that

ϕ∗(r) = e in G

holds for all words r ∈ R, there exists precisely one group homomorphism
ϕ : 〈S |R〉 −→ G such that ϕ ◦ π = ϕ; here, ϕ∗ : (S ∪ S−1)∗ −→ G is the
canonical extension of ϕ to words over S ∪ S−1 (as described in the proof of
Theorem 2.2.7). Moreover, 〈S |R〉 (together with π) is determined uniquely
(up to canonical isomorphism) by this universal property.

Proof. This is a combination of the universal property of free groups (Def-
inition 2.2.4) and of the universal property of quotient groups (Proposi-
tion 2.1.26) (Exercise 2.E.15).

Example 2.2.19 (Presentations of groups).
• For all n ∈ N, we have 〈x |xn〉 ∼= Z/n. This can be seen via the universal

property or via the explicit construction of 〈x |xn〉.
• We have 〈x, y |xyx−1y−1〉 ∼= Z2, as can be derived from the universal

property (Exercise 2.E.14).

Example 2.2.20 (Dihedral groups). Let n ∈ N≥3 and let Xn ⊂ R2 be a regular
n-gon (with the metric induced from the Euclidean metric on R2). Then the
isometry group of Xn is a dihedral group:

Isom(Xn) ∼= 〈s, t | sn, t2, tst−1 = s−1〉 =: Dn.
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σ=̂s

τ=̂t

σ=̂s

τ=̂t

Figure 2.2.: Generators of the dihedral groups D6 and D5

This can be seen as follows: Let σ ∈ Isom(Xn) be rotation about 2π/n
around the centre of the regular n-gon Xn and let τ be reflection along one
of the diameters passing through one of the vertices (Figure 2.2). Then a
straightforward calculation shows that

σn = idXn , τ2 = idXn , τ ◦ σ ◦ τ−1 = σ−1.

Thus, the universal property of generators and relations (Proposition 2.2.18)
provides us with a well-defined group homomorphism

ϕ : Dn −→ Isom(Xn)

with ϕ(s) = σ and ϕ(t) = τ , where s, t ∈ Dn denote the elements of Dn

represented by s and t, respectively.
In order to see that ϕ is an isomorphism, we construct the inverse homo-

morphism; however, for this direction, the universal property of generators
and relations is not applicable – therefore, we have to construct the inverse
by other means: Using the fact that isometries of Xn map (neighbouring) ver-
tices to (neighbouring) vertices, we deduce that Isom(Xn) contains exactly
2 · n elements, namely,

idXn , σ, . . . , σ
n−1, τ, τ ◦ σ, . . . , τ ◦ σn−1.

An elementary calculation then shows that

ψ : Isom(Xn) −→ Dn

σk 7−→ sk

τ ◦ σk 7−→ t · sk

is a well-defined group homomorphism that is the inverse of ϕ.
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Example 2.2.21 (Thompson’s group F ). Thompson’s group F is defined as

F :=
〈
x0, x1, . . .

∣∣ {x−1
k xnxk = xn+1 | k, n ∈ N, k < n}

〉
.

Actually, F admits a presentation by finitely many generators and relations,
namely

F ∼=
〈
a, b

∣∣ [ab−1, a−1ba], [ab−1, a−2ba2]
〉

(Exercise 2.E.20). Here, we use the commutator notation “[x, y] := xyx−1y−1”
both for group elements and for words. Geometrically, the group F can be
interpreted in terms of certain PL-homeomorphisms of [0, 1] and in terms of
actions on certain binary rooted trees [38].

Thompson’s group F has many peculiar properties. For example, the com-
mutator subgroup [F, F ], i.e., the subgroup of F that is generated by the
set {[g, h] | g, h ∈ F} is an example of an infinite simple group [38]. Moreover,
it can be shown that F does not contain subgroups isomorphic to F2 [38].
However, the question whether F belongs to the class of so-called amenable
groups (Chapter 9) is a long-standing open problem in geometric group the-
ory with an interesting history [155]: “False proof of amenability and non-
amenability of the R. Thompson group appear about once a year. The in-
teresting thing is that about half of the wrong papers claim amenability and
about half claim non-amenability.”

Example 2.2.22 (Baumslag-Solitar groups). For m,n ∈ N>0 the Baumslag-
Solitar group BS(m,n) is defined via the presentation

BS(m,n) := 〈a, b | bamb−1 = an〉.

For example, BS(1, 1) ∼= Z2 (Exercise 2.E.21). The family of Baumslag-
Solitar groups contains many intriguing examples of groups. For instance,
the group BS(2, 3) is a group given by only two generators and a single
relation that is non-Hopfian, i.e., there exists a surjective group homomor-
phism BS(2, 3) −→ BS(2, 3) that is not an isomorphism [16], namely the
homomorphism given by

BS(2, 3) 7−→ BS(2, 3)

a 7−→ a2

b 7−→ b.

However, proving that this homomorphism is not injective requires more
advanced techniques.

Further examples of prominent classes of group presentations are discussed
in the exercises (Exercise 2.E.19ff).

Example 2.2.23 (Complicated trivial group). The group

G := 〈x, y |xyx−1 = y2, yxy−1 = x2〉
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is trivial: Let x ∈ G and y ∈ G denote the images of x and y respectively
under the canonical projection

F ({x, y}) −→ F ({x, y})/〈{xyx−1y−2, yxy−1x−2}〉/F (S) = G.

By definition, in G we obtain

x = x · y · x−1 · x · y−1 = y2 · x · y−1 = y · y · x · y−1 = y · x2,

and hence x = y−1. Therefore,

y−2 = x2 = y · x · y−1 = y · y−1 · y−1 = y−1,

and so x = y−1 = e. Because x and y generate G, we conclude that G is
trivial.

Caveat 2.2.24 (Word problem). The problem to determine whether a group
given by (finitely many) generators and (finitely many) relations is the trivial
group or not is undecidable (in the sense of computability theory); i.e., there
is no algorithmic procedure that, given generators and relations, can decide
whether the corresponding group is trivial or not [150, Chapter 12].

More generally, the word problem, i.e., the problem of deciding for given
generators and relations whether a given word in these generators represents
the trivial element in the corresponding group or not, is undecidable. In
contrast, we will see in Chapter 7.4 that for certain geometric classes of
groups the word problem is solvable.

The undecidability of the triviality problem and the word problem implies
the undecidability of many other problems in pure mathematics. For example,
the homeomorphism problem for closed manifolds in dimension at least 4
is undecidable [114], and there are far-reaching consequences for the global
shape of moduli spaces [174].

2.2.4 Finitely presented groups

Particularly nice presentations of groups consist of a finite generating set and
a finite set of relations:

Definition 2.2.25 (Finitely presented group). A groupG is finitely presented1 if
there exists a finite set S and a finite set R ⊂ (S∪S−1)∗ such thatG ∼= 〈S |R〉.

However, the examples given above already show that also finitely pre-
sented groups can be rather complicated.

1Sometimes the term finitely presented is reserved for groups together with a choice of
a finite presentation. If only existence of a finite presentation is assumed, then this is

sometimes called finitely presentable. This is in analogy with the terms oriented vs.

orientable for manifolds.
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Example 2.2.26 (Geometric finite presentation). If X is a path-connected CW-
complex with finite 2-skeleton, then the fundamental group π1(X) of X is
finitely presented (Exercise 2.E.25). For example, this implies that compact
connected manifolds have finitely presented fundamental group. Conversely,
every finitely presented group is the fundamental group of a finite CW-
complex (Outlook 3.2.5) and of a closed manifold of dimension at least 4.

Clearly, every finitely presented group is finitely generated. The converse
is not true in general:

Example 2.2.27 (A finitely generated group that is not finitely presented). The
group 〈

s, t
∣∣ {[tnst−n, tmst−m] | n,m ∈ Z}

〉
is finitely generated, but not finitely presented [15] (Exercise 2.E.27). This
group is an example of a lamplighter group (see also Example 2.3.5).

While it might be difficult to prove that a specific group is not finitely
presented (and such proofs often require some input from algebraic topology),
there is a non-constructive argument showing that there are finitely generated
groups that are not finitely presented (Corollary 2.2.29):

Theorem 2.2.28 (Uncountably many finitely generated groups). There exist
uncountably many isomorphism classes of groups generated by two elements.

Before sketching Hall’s proof [76, Theorem 7][77, Chapter III.C] of this
theorem, we discuss an important consequence:

Corollary 2.2.29. There are uncountably many isomorphism classes of finitely
generated groups that are not finitely presented.

Proof. Notice that (up to renaming) there are only countably many finite
presentations of groups, and hence that there are only countably many iso-
morphism types of finitely presented groups. However, there are uncountably
many finitely generated groups by Theorem 2.2.28.

The proof of Theorem 2.2.28 consists of two steps:
1. We first show that there exists a group G generated by two elements

that contains uncountably many different normal subgroups (Proposi-
tion 2.2.30).

2. We then show that G even has uncountably many quotient groups that
are pairwise non-isomorphic (Proposition 2.2.31).

Proposition 2.2.30 (Uncountably many normal subgroups). There exists a
group generated by two elements with uncountably many normal subgroups.

Proof. The basic idea is as follows: We construct a group G generated by
two elements that contains a central subgroup C (i.e., each element of this
subgroup is fixed under conjugation by all other group elements) isomorphic
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to the big additive group
⊕

N Z. The group C contains uncountably many
subgroups (e.g., given by taking subgroups generated by the subsystem of the
unit vectors corresponding to different subsets of N), and all these subgroups
of C are normal in G because C is central in G.

An example of such a group is G := 〈s, t |R〉, where

R :=
{[

[s, tnst−n], s
] ∣∣ n ∈ Z

}
∪
{[

[s, tnst−n], t
] ∣∣ n ∈ Z

}
.

Let C be the subgroup of G generated by the set {[s, tnst−n] | n ∈ Z}. All
elements of C are invariant under conjugation with s by the first part of the
relations, and they are invariant under conjugation with t by the second part
of the relations; thus, C is central in G. Moreover, using the so-called calculus
of commutators, it can be shown that C contains the additive group

⊕
N Z [76,

p. 434f][110, Corollary 5.12]. Alternatively, one can give an explicit construc-
tion of such a group (Exercise 2.E.35).

Proposition 2.2.31 (Uncountably many quotients). For a finitely generated
group G the following are equivalent:

1. The group G contains uncountably many normal subgroups.
2. The group G has uncountably many pairwise non-isomorphic quotients.

Proof. Clearly, the second statement implies the first one. Conversely, sup-
pose that G has only countably many pairwise non-isomorphic quotients.

If Q is a quotient group of G, then Q is countable (as G is finitely gen-
erated). Hence, there are only countably many group homomorphisms of
type G −→ Q (because every such homomorphism is uniquely determined
by its values on a finite generating set of G); in particular, there can be only
countably many normal subgroups N of G with G/N ∼= Q. Thus, in total, G
can have only countably many different normal subgroups.

Outlook 2.2.32 (Non-constructive existence proofs). The fact that there exist
uncountably many finitely generated groups can be used for non-constructive
existence proofs of groups with certain features; a recent example of this type
of argument is Austin’s proof of the existence of finitely generated groups and
Hilbert modules over these groups with irrational von Neumann dimension
(thereby answering a question of Atiyah in the negative) [8].

2.3 New groups out of old

In many categories, there are ways to construct objects out of given compo-
nents; examples of such constructions are products and sums/pushouts (or,
more generally, limits and colimits). In the world of groups, these correspond
to direct products and (amalgamated) free products. There are two views
on such constructions: through universal properties and through concrete
construction recipes.



th
is

is
a

dra
ft

ve
rsi

on
!

32 2. Generating groups

In the first section, we study products and product-like constructions such
as semi-direct products; in the second section, we discuss how groups can be
glued together, i.e., (amalgamated) free products and HNN-extensions.

2.3.1 Products and extensions

The simplest type of group constructions are direct products and their twisted
variants, semi-direct products.

Definition 2.3.1 (Direct product). Let I be a set, and let (Gi)i∈I be a family
of groups. The (direct) product group

∏
i∈I Gi of (Gi)i∈I is the group whose

underlying set is the cartesian product
∏
i∈I Gi and whose composition is

given by pointwise composition:∏
i∈I

Gi ×
∏
i∈I

Gi −→
∏
i∈I

Gi(
(gi)i∈I , (hi)i∈I

)
7−→ (gi · hi)i∈I .

The direct product of groups has the universal property of the category
theoretic product in the category of groups, i.e., homomorphisms to the direct
product group are in one-to-one correspondence with families of homomor-
phisms to the factors.

The direct product of two groups is an extension of the second factor by
the first one (taking the canonical inclusion and projection as maps):

Definition 2.3.2 (Group extension). Let Q and N be groups. An extension
of Q by N is an exact sequence

1 // N
i // G

π // Q // 1

of groups, i.e., i is an injective group homomorphism, π is a surjective group
homomorphism, and im i = kerπ.

Not every group extension has as extension group the direct product of
the kernel and the quotient; for example, we can deform the direct product
by introducing a twist on the kernel:

Definition 2.3.3 (Semi-direct product). Let N and Q be groups, and let
ϕ : Q −→ Aut(N) be a group homomorphism (i.e., Q acts on N via ϕ).
The semi-direct product of Q by N with respect to ϕ is the group N oϕ Q
whose underlying set is the cartesian product N ×Q and whose composition
is

(N oϕ Q)× (N oϕ Q) −→ (N oϕ Q)(
(n1, q1), (n2, q2)

)
7−→

(
n1 · ϕ(q1)(n2), q1 · q2

)
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In other words, whenever we want to swap the position of an element of N
with an element of Q, then we have to take the twist ϕ into account. E.g., if
ϕ is the trivial homomorphism, then the corresponding semi-direct product
is nothing but the direct product.

Remark 2.3.4 (Semi-direct products and split extensions). A group extension
1 // N

i // G
π // Q // 1 splits if there exists a group homomor-

phism s : Q −→ G such that π ◦ s = idQ. If ϕ : Q −→ Aut(N) is a homomor-
phism, then

1 // N
i // N oϕ Q

π // Q // 1

is a split extension; here, i : N −→ N oϕ Q is the inclusion of the first
component, π is the projection onto the second component, and a split is
given by

Q −→ N oϕ Q
q 7−→ (e, q).

Conversely, in a split extension, the extension group is a semi-direct product
of the quotient by the kernel: Let 1 // N

i // G
π // Q // 1 be an

extension of groups that admits a splitting s : Q −→ G. Then

N oϕ Q −→←−G

(n, q) 7−→ n · s(q)(
g · (s ◦ π(g))−1, π(g)

)
←− [ g

are well-defined mutually inverse group homomorphisms, where

ϕ : Q −→ Aut(N)

q 7−→
(
n 7→ s(q) · n · s(q)−1

)
.

However, there are also group extensions that do not split; in particular,
not every group extension is a semi-direct product. For example, the extension

1 // Z 2· // Z // Z/2 // 1

does not split because there is no non-trivial homomorphism from the torsion
group Z/2 to Z. One way to classify group extensions (with Abelian kernel)
is to consider group cohomology [34, Chapter IV][101, Chapter 1.4.4].

Example 2.3.5 (Semi-direct product groups).
• If N and Q are groups and ϕ : Q −→ Aut(N) is the trivial homomor-

phism, then the identity map (on the level of sets) yields an isomor-
phism N oϕ Q ∼= N ×Q.
• Let n ∈ N≥3. Then the dihedral group Dn = 〈s, t | sn, t2, tst−1 = s−1〉

(see Example 2.2.20) is a semi-direct product
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Dn −→←−Z/noϕ Z/2

s 7−→ ([1], 0)

t 7−→ (0, [1]),

where ϕ : Z/2 −→ AutZ/n is given by multiplication by −1. Similarly,
also the infinite dihedral group D∞ = 〈s, t | t2, tst−1 = s−1〉 ∼= Isom(Z)
can be written as a semi-direct product of Z/2 by Z with respect to
multiplication by −1 (Exercise 2.E.31).
• Semi-direct products of the type ZnoϕZ lead to interesting examples of

groups provided the automorphism ϕ(1) ∈ GL(n,Z) ⊂ GL(n,R) is cho-
sen suitably, e.g., if ϕ(1) has interesting eigenvalues (Exercise 6.E.18).
• Let G be a group. Then the lamplighter group over G is the semi-direct

product group
(∏

ZG
)
oϕ Z, where Z acts on the product

∏
ZG by

shifting the factors:

ϕ : Z −→ Aut

(∏
Z
G

)
z 7−→

(
(gn)n∈Z 7→ (gn+z)n∈Z

)
• More generally, the wreath product of two groups G and H is the semi-

direct product
(∏

H G
)
oϕH, where ϕ is the shift action of H on

∏
H G.

The wreath product of G and H is denoted by G oH.
• Similarly, one can define lamplighter and wreath product groups us-

ing
⊕

H G instead of
∏
H G (Exercise 2.E.34).

2.3.2 Free products and amalgamated free products

We now describe a construction that “glues” two groups along a common
subgroup. In the language of category theory, glueing processes are modelled
by the universal property of pushouts (a special type of colimits):

Definition 2.3.6 (Pushout of groups, free product (with amalgamation)). Let
A be a group and let α1 : A −→ G1 and α2 : A −→ G2 be group homo-
morphisms. A group G together with homomorphisms β1 : G1 −→ G and
β2 : G2 −→ G satisfying β1 ◦ α1 = β2 ◦ α2 is called a pushout of G1 and G2

over A (with respect to α1 and α2) if the following universal property is
satisfied:

G1 β1

!!

ϕ1

  

A

α1 >>

α2
  

G
ϕ
// H

G2
β2

==

ϕ2

??
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For every group H and all group homomorphisms ϕ1 : G1 −→ H and
ϕ2 : G2 −→ H with ϕ1 ◦ α1 = ϕ2 ◦ α2 there is exactly one homomor-
phism ϕ : G −→ H with ϕ ◦ β1 = ϕ1 and ϕ ◦ β2 = ϕ2. Such a pushout
is denoted by G1 ∗A G2 (see Theorem 2.3.9 for existence and uniqueness).

Two special cases deserve their own names:
• If A is the trivial group, then we write G1 ∗ G2 := G1 ∗A G2 and

call G1 ∗G2 the free product of G1 and G2.
• If α1 and α2 both are injective, then the pushout group G1 ∗A G2 is

an amalgamated free product of G1 and G2 over A (with respect to α1

and α2).

Caveat 2.3.7. In the situation of the above definition, in general, pushout
groups and amalgamated free products do depend on the glueing homomor-
phisms α1, α2; however, usually, it is clear implicitly which homomorphisms
are meant and so they are omitted from the notation.

Example 2.3.8 (Pushout groups, (amalgamated) free products).
• Free groups can also be viewed as free products of several copies of the

additive group Z; e.g., the free group of rank 2 is nothing but Z ∗ Z
(which can be seen by comparing the respective universal properties
and using uniqueness).
• The infinite dihedral group D∞ ∼= Isom(Z) (Example 2.3.5) is isomor-

phic to the free product Z/2 ∗ Z/2; for instance, reflection at 0 and
reflection at 1/2 provide generators of D∞ corresponding to the obvi-
ous generators of Z/2 ∗ Z/2 (Exercise 2.E.31).
• The matrix group SL(2,Z) is isomorphic to the amalgamated free prod-

uct Z/6 ∗Z/2 Z/4 [159, Example I.4.2] (Outlook 4.4.3).
• Pushout groups occur naturally in topology: By the theorem of Seifert

and van Kampen, the fundamental group of a pointed space glued to-
gether out of two components is a pushout of the fundamental groups
of the components over the fundamental group of the intersection (the
two subspaces and their intersection have to be non-empty and path-
connected) [115, Chapter IV] (see Figure 2.3). A quick introduction to
fundamental groups is given in Appendix A.1.

Theorem 2.3.9 (Pushout groups: uniqueness and construction). All pushout
groups exist and are unique up to canonical isomorphism.

In particular, all amalgamated free products and all free products of groups
exist and are unique up to canonical isomorphism.

Proof. The uniqueness proof is similar to the one that free groups are uniquely
determined up to canonical isomorphism by the universal property of free
groups (Proposition 2.2.6).

We now prove the existence of pushout groups: The idea is to use genera-
tors and relations to enforce the desired universal property. Let A be a group
and let α1 : A −→ G1 and α2 : A −→ G2 be group homomorphisms. Let
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X1 X2

A

π1(X1 ∪A X2) ∼= π1(X1) ∗π1(A) π1(X2)

Figure 2.3.: The theorem of Seifert and van Kampen, schematically

G :=
〈
{xg | g ∈ G1}t{xg | g ∈ G2}

∣∣ {xα1(a)xα2(a)
−1 | a ∈ A}∪RG1

∪RG2

〉
,

where (for j ∈ {1, 2})

RGj := {xgxhxk−1 | g, h, k ∈ Gj with g · h = k in Gj}.

Furthermore, we define for j ∈ {1, 2} group homomorphisms

βj : Gj −→ G

g 7−→ xg;

the relations RGj ensure that βj indeed is compatible with the compositions
in Gj and G respectively. Moreover, the relations {xα1(a)xα2(a)

−1 | a ∈ A}
show that β1 ◦ α1 = β2 ◦ α2.

The groupG (together with the homomorphisms β1 and β2) has the univer-
sal property of the pushout group of G1 and G2 over A: Let H be a group and
let ϕ1 : G1 −→ H, ϕ2 : G2 −→ H be homomorphisms with ϕ1 ◦α1 = ϕ2 ◦α2.
We define a homomorphism ϕ : G −→ H using the universal property of
groups given by generators and relations (Proposition 2.2.18): The map on
the set of all words in the generators {xg | g ∈ G} t {xg | g ∈ G} and their
formal inverses induced by the map

{xg | g ∈ G1} t {xg | g ∈ G2} −→ H

xg 7−→

{
ϕ1(g) if g ∈ G1

ϕ2(g) if g ∈ G2

vanishes on the relations in the above presentation of G (it vanishes on RGj
because ϕj is a group homomorphism, and it vanishes on the relations in-
volving A because ϕ1 ◦α1 = ϕ2 ◦α2). Let ϕ : G −→ H be the homomorphism
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X

f

X

π1(mapping torus of f) ∼= π1(X)∗π1(f)

Figure 2.4.: The fundamental group of a mapping torus, schematically

corresponding to this map provided by the universal property of generators
and relations.

Furthermore, by construction, ϕ ◦ β1 = ϕ1 and ϕ ◦ β2 = ϕ2.
As (the image of) S := {xg | g ∈ G1} t {xg | g ∈ G2} generates G and

as every homomorphism ψ : G −→ H with ψ ◦ β1 = ϕ1 and ψ ◦ β2 = ϕ2

has to satisfy “ψ|S = ϕ|S”, we obtain ψ = ϕ. In particular, ϕ is the unique
homomorphism of type G −→ H with ϕ ◦ β1 = ϕ1 and ϕ ◦ β2 = ϕ2.

Clearly, the same construction as in the proof above can be applied to every
presentation of the summands; this produces more efficient presentations of
the amalgamated free product.

Instead of glueing two different groups along subgroups, we can also glue
a group to itself along an isomorphism of two of its subgroups:

Definition 2.3.10 (HNN-extension). Let G be a group, let A, B ⊂ G be
subgroups, and let ϑ : A −→ B be an isomorphism. Then the HNN-extension
of G with respect to ϑ is the group

G∗ϑ :=
〈
{xg | g ∈ G} t {t}

∣∣ {t−1xat = xϑ(a) | a ∈ A} ∪RG
〉
,

where
RG := {xgxhxk−1 | g, h, k ∈ G with g · h = k in G}.

One also says that t is the stable letter of this HNN-extension.

In other words, using an HNN-extension, we can force two given subgroups
to be conjugate; iterating this construction leads to interesting examples of
groups [107, Chapter IV][150, Chapter 12]. HNN-extensions are named after
G. Higman, B.H. Neumann, and H. Neumann who were the first to system-
atically study such groups (Remark 2.3.12). Topologically, HNN-extensions
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arise naturally as fundamental groups of certain self-glueings, e.g., of map-
ping tori of maps that are injective on the level of fundamental groups [107,
p. 180] (see Figure 2.4).

Outlook 2.3.11 (Amalgamated free products and HNN-extensions as building
blocks). The class of (non-trivial) amalgamated free products and of (non-
trivial) HNN-extensions plays an important role in geometric group theory;
more precisely, they are the key objects in Stallings’s classification of groups
with infinitely many ends [166] (Theorem 8.2.14), and they are the starting
point of Bass-Serre theory [159] (Outlook 4.2.7), which is concerned with ac-
tions of groups on trees (Outlook 4.2.7). Moreover, free groups, free products,
amalgamated free products, and HNN-extensions can be understood in very
concrete terms via suitable normal forms (Outlook 3.3.8).

Remark 2.3.12 (The (von) Neumann forest). The name “Neumann” is ubiq-
uitous in geometric group theory. On the one hand, there is the Neumann
family (Hanna Neumann, Bernhard Neumann, Peter Neumann, Walter Neu-
mann were/are all involved in geometric group theory and related fields); on
the other hand, there is also John von Neumann, who – among many other
disciplines – shaped geometric group theory:

(Jo)Hanna Neumann

(née von Caemmerer)

1914–1971

∞ Bernhard Neumann

1909–2002

Irene Peter Barbara Walter Daniel

1939– 1940– 1943– 1946– 1951–

John von Neumann

1903–1957

The contributions to geometric group theory of the (von) Neumanns are
too numerous to be listed here [10, 9, 140]; for the topics in this book, the
most important ones are:
• Bernhard Neumann and Hanna Neumann developed and applied to-

gether with Higman the theory of a class of groups that is now accord-
ingly named HNN extensions (Definition 2.3.10).
• There is/was the Hanna Neumann conjecture on ranks of certain sub-

groups of free groups (Outlook 4.2.13).
• There is a joint article by Bernhard, Hanna, and Peter Neumann [129].
• There is/was the von Neumann conjecture on the relation between non-

amenability and free subgroups (Remark 9.1.12).
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2.E Exercises

Basic group theory

Quick check 2.E.1 (Subgroups*). Let G be a group and let H and K be
subgroups of G.

1. Is H ∩K a subgroup of G ?
2. Is H ∪K a subgroup of G ?

Quick check 2.E.2 (Squares of groups*).
1. Are the additive groups Z and Z2 isomorphic?
2. Are the additive groups R and R2 isomorphic?

Exercise 2.E.3 (Kernels and injectivity*). Let ϕ : G −→ H be a group homo-
morphism.

1. Show that ϕ is injective if and only if kerϕ is trivial.
2. Let ϕ : G/ kerϕ −→ H be the group homomorphism from the quotient

group induced by ϕ. Show that ϕ is injective.

Exercise 2.E.4 (Finitely generated groups**).
1. Is the additive group Q finitely generated?
2. Is the symmetric group SX of an infinite set X finitely generated?

Exercise 2.E.5 (The normal subgroup trick**). Let G be a group.

1. Let H,K ⊂ G be subgroups of finite index. Show that also H ∩K has
finite index in G.

2. Let H ⊂ G be a subgroup and S ⊂ G be a set of representatives
of {g ·H | g ∈ G}. Show that⋂

g∈G
g ·H · g−1 =

⋂
g∈S

g ·H · g−1.

3. Let H ⊂ G be a subgroup of finite index. Show that there exists a
normal subgroup N ⊂ G of finite index with N ⊂ H.
Hints. Consider

⋂
g∈G g ·H · g−1 . . .

Exercise 2.E.6 (Outer automorphism groups*).
1. Let G be a group. Show that the set Inn(G) of inner automorphisms

of G is a normal subgroup of Aut(G).
2. Determine Out(Z).
3. Determine Out(Z/2016) and Out(Z/2017).
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Exercise 2.E.7 (Galois groups***).
1. Find suitable categories that allow to interpret Galois groups as auto-

morphism groups.
2. Find suitable categories that allow to interpret deck transformation

groups as automorphism groups.

Basic isometry groups

Exercise 2.E.8 (Isometry group of the unit square**). Let Q := [0, 1] × [0, 1]
be the unit square in R2 (with the Euclidean metric).

1. Give an algebraic description of the isometry group I of Q (e.g., by
writing down the multiplication table).

2. Is there a group having the same number of elements as I that is not
isomorphic to I ?

Exercise 2.E.9 (More isometry groups**). Is there for every n ∈ N>0 a sub-
set Xn ⊂ R2 such that the isometry group of Xn is isomorphic to Z/n ?

Exercise 2.E.10 (Even more isometry groups**). Is there for every group G
an n ∈ N and a subset X ⊂ Rn such that the isometry group of X is
isomorphic to G ?

Free groups

Exercise 2.E.11 (Unfree groups*). Use the universal property of free groups
to prove the following:

1. The additive group Z/2017 is not free.
2. The additive group Z2 is not free.

Exercise 2.E.12 (Rank of free groups**).
1. Let S be a set and let F be the free group generated by S. Prove that

if S′ ⊂ F is a generating set of F , then |S′| ≥ |S|.
Hints. If S is finite, one can apply the universal property of free groups
to homomorphisms to Z/2 and a counting argument. If S is infinite, one
can use a cardinality argument or pass to the vector space Fab ⊗Z Q,
where Fab denotes the abelianisation of F (Exercise 2.E.18).

2. Conclude that all free generating sets of a free group have the same
cardinality.

3. Show that the free group generated by two elements contains a subgroup
that cannot be generated by two elements.
Hints. Map surjectively to a big finite symmetric group and find a sub-
group (e.g., Abelian) of this symmetric group that cannot be generated
by two elements.
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Exercise 2.E.13 (Mapping class groups***).
1. Look up the term mapping class group (e.g., of manifolds, topological

spaces). Which formal similarity is there between this definition and
the definition of outer automorphism groups of groups?

2. Let F be a free group of rank 2. How are Out(F ) and the figure
eight S1 ∨ S1 (Figure 2.5) related?

Figure 2.5.: The figure eight, S1 ∨ S1

Generators and relations

Quick check 2.E.14 (Generators and relations, examples*).
1. Is the group 〈x, y |xyx−1y−1〉 isomorphic to Z2 ?
2. Are the groups 〈s, t | t2, tst−1 = s−1〉 and 〈a, b | a2, b2〉 isomorphic?
3. Is the group 〈x, y |xy2014x = yx2015〉 trivial?
4. Is the group 〈x, y |xyx = yxy〉 trivial?

Exercise 2.E.15 (Universal property for generators and relations*). Let S be a
set and let R ⊂ (S ∪ S−1)∗.

1. Show that the group 〈S |R〉 generated by S with the relations R to-
gether with the canonical map π : S −→ F (S)/〈R〉/F (S) = 〈S |R〉
has the following universal property: For every group H and every
map ϕ : S −→ H satisfying

∀r∈R ϕ∗(r) = e

there is exactly one group homomorphism ϕ : 〈S |R〉 −→ H with

ϕ ◦ π = ϕ;

here, ϕ∗ : (S ∪ S−1)∗ −→ H is defined inductively by ϕ∗(ε) = e and

∀s∈S ∀x∈(S∪S−1)∗ ϕ∗(sx) = ϕ(s) · ϕ∗(x)

∀s∈S ∀x∈(S∪S−1)∗ ϕ∗(s−1x) =
(
ϕ(s)

)−1 · ϕ∗(x).

2. Prove that up to canonical isomorphism there is exactly one group that
has this universal property.
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Exercise 2.E.16 (Finite normal generation of kernels**). Let ϕ : G −→ H be
a surjective group homomorphism, where G is finitely generated and H is
finitely presented. Show that then kerϕ is finitely normally generated, i.e.,
there is a finite set N ⊂ G with

kerϕ = 〈N〉/G.

Hints. First show that the property of finite presentability is independent
of the chosen finite generating set.

Exercise 2.E.17 (Positive relations** [77, Exercise V.12]). A group presenta-
tion 〈S |R〉 is positive if R ⊂ S∗, i.e., if no negative exponents occur in any
of the relations. Show that for every presentation 〈S |R〉 there is a positive
presentation 〈S′ |R′〉 with 〈S′ |R′〉 ∼= 〈S |R〉 and

|S′| ≤ |S|+ 1 and |R′| ≤ |R|+ 1.

Exercise 2.E.18 (Abelianisation**). Let G be a group and let [G,G] be its
commutator subgroup, i.e., the subgroup generated by {[g, h] | g, h ∈ G}. The
commutator of g, h ∈ G is defined by [g, h] := g · h · g−1 · h−1. The quotient
group

Gab := G/[G,G]

is the abelianisation of G.

1. Prove that [G,G] indeed is a normal subgroup of G and that the quo-
tient group Gab is Abelian.

2. Prove that abelianisation enjoys the following universal property: For
every Abelian group H and every group homomorphism ϕ : G −→ H
there exists exactly one group homomorphism ϕ : Gab −→ H satisfying
ϕ ◦ π = ϕ, where π : G −→ Gab denotes the canonical projection.

3. How can this construction be turned into a functor ·ab : Group −→ Ab ?
4. Determine Fab for all free groups F , using appropriate universal prop-

erties.
5. Let G = 〈S |R〉. Show that there is a canonical isomorphism

Gab
∼=
〈
S
∣∣ R ∪ {st = ts | s, t ∈ S}

〉
.

Exercise 2.E.19 (The infinite dihedral group**). Let

D∞ := 〈s, t | t2, tst−1 = s−1〉

be the infinite dihedral group. We consider Z ⊂ R with the metric induced
by the standard metric on R. Show that D∞ ∼= Isom(Z).

Exercise 2.E.20 (Thompson’s group F **). Let F denote Thompson’s group

F :=
〈
x0, x1, . . .

∣∣ {x−1
k xnxk = xn+1 | k, n ∈ N, k < n}

〉
.



th
is

is
a

dra
ft

ve
rsi

on
!

2.E. Exercises 43

1. Show that
F ∼=

〈
a, b

∣∣ [ab−1, a−1ba], [ab−1, a−2ba2]
〉

(in particular, F is finitely presented).
2. Look up in the literature how PL-homeomorphisms of [0, 1] are defined

and how they are related to Thompson’s group F . A graphical repre-
sentation of an example of such a PL-homeomorphism is depicted in
Figure 2.6.

Figure 2.6.: An example of a PL-homeomorphism of [0, 1]

Exercise 2.E.21 (Baumslag-Solitar groups**).
1. Show that BS(1, 1) ∼= Z2 (e.g., by comparing appropriate universal

properties).
2. Let m,n ∈ N>0. Prove that BS(m,n) is infinite by studying the follow-

ing matrices in GL(2,Q):(
1 1
0 1

) (
n
m 0
0 1

)
3. Let m,n ∈ N>0. Show that BS(m,n) is not cyclic.
4. Show that

ϕ : BS(2, 3) −→ BS(2, 3)

a 7−→ a2

b 7−→ b

describes a well-defined surjective group homomorphism and that the
commutator [bab−1, a] represents an element of kerϕ.

Exercise 2.E.22 (A normal form for BS(1, 2) **). We consider the defining
presentation 〈a, b | bab−1 = a2〉 of BS(1, 2); let a, b ∈ BS(1, 2) be the group
elements corresponding to a and b, respectively.

1. Show that every element of BS(1, 2) can be written in the form b
−j ·ak ·b`

with j, ` ∈ N and k ∈ Z and the following additional condition: The
exponent k is odd or j · ` = 0.
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2. Show that the exponents in the first part are unique.
Hints. Consider the matrices specified in Exercise 2.E.21 and elemen-
tary number theory.

Exercise 2.E.23 (Surface groups**). For n ∈ N we define

Gn :=
〈
a1, . . . , an, b1, . . . , bn

∣∣∣ n∏
j=1

[aj , bj ]
〉
.

Then by the Seifert and van Kampen theorem Gn is isomorphic to the funda-
mental group of an oriented closed connected surface of genus n (Figure 2.7).

1. Prove that for all n,m ∈ N we have Gn ∼= Gm if and only if n = m.
Hints. Abelianisation (Exercise 2.E.18) might help.

2. For which n ∈ N is the group Gn Abelian?

 a1

b1
a1

b1

a2

b2

a2

b2

Figure 2.7.: The fundamental group of an oriented closed connected surface
of genus 2

Exercise 2.E.24 (Coxeter groups**). A Coxeter group is a group W such that
there exist n ∈ N and a symmetric matrix m ∈Mn×n(Z ∪ {∞}) with

W ∼=
〈
s1, . . . , sn

∣∣ {(sjsk)mjk | j, k ∈ {1, . . . , n}}
〉
,

where the Coxeter matrix m satisfies the following: For all j ∈ {1, . . . , n}
we have mjj = 1 and for all j, k ∈ {1, . . . , n} we have mkj = mjk ≥ 2; if
mjk =∞, then the relation (sjsk)mjk = e is viewed as empty condition.

1. Let j, k ∈ {1, . . . , n} with j 6= k and mjk = 2. Show that the corre-
sponding elements sj and sk commute in W .

2. Show that
〈
s1, s2, s3

∣∣ (s1s2)2, (s1s3)2, (s2s3)2
〉 ∼= (Z/2)3.

3. How can the isometry group of a regular n-gon be viewed as a Coxeter
group?

More information on the rich geometry of Coxeter groups can be found in
the book by Davis [45].
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Exercise 2.E.25 (Geometric finite presentation***). LetX be a path-connected
CW-complex with finite 2-skeleton. Prove that the fundamental group of X
is finitely presented. How can one read off a finite presentation from the
2-skeleton?
Hints. It can be helpful to use the fact every path-connected CW-complex is
homotopy equivalent to a CW-complex with a single 0-cell. Then the theorem
of Seifert and van Kampen will produce a finite presentation.

Exercise 2.E.26 (Braid groups**). For n ∈ N the braid group on n strands is
defined by

Bn :=
〈
s1, . . . , sn−1

∣∣ {sjsj+1sj = sj+1sjsj+1 | j ∈ {1, . . . , n− 2}}
{sjsk = sksj | j, k ∈ {1, . . . , n− 1}, |j − k| ≥ 2}

〉
.

1. Show that

Bn −→ Z
sj 7−→ 1

defines a well-defined group homomorphism. For which n ∈ N is this
homomorphism surjective?

2. Show that

Bn −→ Sn

sj 7−→ (j, j + 1)

defines a well-defined surjective homomorphism onto the symmetric
group Sn.

3. Geometrically, the group Bn can be described as follows [88]:

. . . . . .

1 j j + 1 n

Figure 2.8.: Geometric generator sj of the braid group Bn

Elements of Bn are isotopy classes of n-braids. Here, an n-braid is a
sequence (α1, . . . , αn) of paths [0, 1] −→ R3 with the following proper-
ties:
• For each j ∈ {1, . . . , n}, the last coordinate of αj is strictly in-

creasing.
• For each j ∈ {1, . . . , n} we have αj(0) = (j, 0, 0).
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• There exists a permutation π ∈ Sn such that for all j ∈ {1, . . . , n}
we have αj(1) =

(
π(j), 0, 1

)
.

An (ambient) isotopy between two n-braids α and β is a continuous
map F : R3×[0, 1] −→ R3 with the following properties: For all t ∈ [0, 1],
the map F ( · , t) is a self-homeomorphism of R3 that is the identity
on R2 × {0, 1} and that maps α to an n-braid, and furthermore we
have F ( · , 0) = idR3 , and F ( · , 1) maps α to β. In this terminology,
vertical concatenation (and rescaling) of braids corresponds to compo-
sition in Bn and the braid depicted in Figure 2.8 corresponds to the
generator sj of Bn.
Draw the geometric braid relations corresponding to the defining alge-
braic relations in the braid group Bn.

Exercise 2.E.27 (A finitely generated group that is not finitely presented**).
We consider the group

G :=
〈
s, t

∣∣ {[tnst−n, tmst−m] | n,m ∈ Z}
〉
.

The goal of this exercise is to prove that G is not finitely presentable.
1. Show that G ∼=

〈
s, t

∣∣ {[s, tnst−n] | n ∈ N>0}
〉
.

2. For N ∈ N>0 let GN :=
〈
s, t

∣∣ {[s, tnst−n] | n ∈ {1, . . . , N}}
〉
.

Show that the homomorphism πN : GN −→ GN+1 given by the identity
on {s, t} is surjective but not injective.
Hints. Use the universal property of generators and relations and try
to map s to the transposition (1 2) ∈ S2·N+3 and t to the permuta-
tion (1 7→ 3, 2 7→ 4, 3 7→ 5, . . . ) ∈ S2·N+3.

3. Use the second part to conclude that G is not finitely presentable.

Exercise 2.E.28 (Normal forms**). Let G be a group and let S ⊂ G be
a generating set. A normal form for G over S is a split of the canonical
projection (S∪ Ŝ)∗ −→ G. We then say that G admits a regular normal form

if G has a finite generating set and a normal form N : G −→ (S ∪ Ŝ)∗ for

which the language N(G) ⊂ (S ∪ Ŝ)∗ is regular [40, Chapter 1][2]. Similarly,
groups with context-free normal form are defined.

1. Give regular normal forms for Z, Z/2017, and Z2.
2. Show that the existence of a regular normal form is independent of the

chosen finite generating set.
3. Use the pumping lemma for regular languages to show that every

finitely generated infinite group with regular normal form contains an
element of infinite order [117].

4. Use the pumping lemma for context-free languages to show that every
finitely generated infinite group with context-free normal form contains
an element of infinite order.

Exercise 2.E.29 (Random groups***). Look up in the literature how random
finitely presented groups can be defined. There are several popular models;
choose one of these models and describe it in detail.
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New groups out of old

Quick check 2.E.30 (Special pushouts*). Let A and G be groups.
1. Does G ∗A contain a subgroup that is isomorphic to G ?
2. What is the pushout group G ∗A 1 with respect to a given homomor-

phism A −→ G and the trivial homomorphism A −→ 1 ?
3. What is the pushout group G ∗A A with respect to a given homomor-

phism A −→ G and idA ?

Exercise 2.E.31 (The infinite dihedral group strikes back**). Let D∞ be the
infinite dihedral group (Exercise 2.E.19).

1. Show that D∞ ∼= Z/2 ∗ Z/2.
2. Show that Isom(Z) ∼= Z oϕ Z/2, where ϕ : Z/2 −→ Aut(Z) is given by

multiplication by −1.

Exercise 2.E.32 (Heisenberg group**). Let H be the Heisenberg group, i.e.,

H =


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ Z

 ⊂ SL(3,Z).

1. The Heisenberg group is an extension of Z2 by Z:

1 // Z i // H
π // Z2 // 1;

here, i : Z −→ H and π : H −→ Z2 are defined as follows:

i : z 7−→

1 0 z
0 1 0
0 0 1

 π :

1 x z
0 1 y
0 0 1

 7−→ (x, y).

Show that this group extension does not split.
2. Show that 〈

x, y, z
∣∣ [x, z], [y, z], [x, y] = z

〉
is a presentation of the Heisenberg group.

Exercise 2.E.33 (Equivalence of extensions**).
1. Look up how the notion of equivalence is defined for group extensions.
2. Give three pairwise non-equivalent group extensions of the following

type:
1 // Z ? // ?

? // Z/3 // 1.

Exercise 2.E.34 (Restricted lamplighter groups**). For a family (Gi)i∈I of
groups, we write

⊕
i∈I Gi for the subgroup of

∏
i∈I Gi of all sequences that

are trivial almost everywhere (i.e., in each sequence, only a finite number of
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entries is non-trivial). Let G be a non-trivial finitely generated group and let
H be a finitely generated group.

1. Show that
⊕

H G is not finitely generated.
2. Show that (

⊕
H G)oϕH is finitely generated, where ϕ denotes the shift

action of H on
⊕

H G.

Exercise 2.E.35 (A finitely generated group with big centre**). The goal of
this exercise is to construct a finitely generated group that contains a cen-
tral subgroup isomorphic to

⊕
N Z. Let A and B be free Z-modules with

bases (an)n∈N>0
and (bn)n∈Z (we view A and B as Abelian groups) and let

f : B ×B −→ A be the unique Z-bilinear map with

f(bm, bn) =

{
an−m if n > m

0 if n ≤ m

for all n,m ∈ Z. We then define the composition

H ×H −→ H(
(a, b), (a′, b′)

)
7−→

(
a+ a′ + f(b, b′), b+ b′

)
on the set H := A×B. Moreover, we consider the map

T : H −→ H(
a,
∑
n∈Z

βn · bn
)
7−→

(
a,
∑
n∈Z

βn · bn+1

)
and set G := H o(1 7→T ) Z.

1. Prove that H is a group with respect to the composition defined above.
2. Show that A× {0} is a central subgroup of H.
3. Compute the commutators

[
(0, b0), (0, bn)

]
in H for all n ∈ N>0.

4. Conclude that {(0, bn) | n ∈ Z} is a generating set of H.
5. Prove that T is a group automorphism of H.
6. Show that G is generated by σ := ((0, b0), 0) and τ := ((0, 0), 1).
7. Show that A× {0} × {0} is a central subgroup of G that is isomorphic

to
⊕

N Z.
8. Show that s 7→ σ, t 7→ τ induces a well-defined epimorphism〈

s, t
∣∣ {[[s, tnst−n], s] | n ∈ Z} ∪ {[[s, tnst−n], t] | n ∈ Z}

〉
−→ G.

Conclude that the subgroup generated by {[s, tnst−n] | n ∈ Z} contains
a subgroup isomorphic to

⊕
N Z.

Quick check 2.E.36 (Baumslag-Solitar groups and HNN-extensions*). How can
Baumslag-Solitar groups be viewed as HNN-extensions?
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Exercise 2.E.37 (Ascending HNN-extensions*). An ascending HNN-extension
is an HNN-extension of the form G∗ϑ, where G is a group and ϑ : G −→ G
is an injective homomorphism.

1. What happens if ϑ = idG ?
2. Let ϑ ∈ Aut(G). Prove that G∗ϑ ∼= Go1 7→ϑ Z.

Exercise 2.E.38 (Free wreath product**).
1. Let I be a set and let (Gi)i∈I be a family of groups. Formulate the

universal property of the corresponding free product group Fi∈I Gi as
a suitable colimit universal property.

2. Indicate how such general free products can be constructed and how
free groups can be viewed as such free products.

3. Let G and H be groups. Then H acts on the free product FH G by
shifting the summands. We call the corresponding semi-direct product

G o∗ H :=
(
FH G

)
oH

the free wreath product of G and H. Show that the obvious homomor-
phisms H −→ G o∗ H and G −→ G o∗ H induce an isomorphism

G ∗H ∼= G o∗ H.
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Part II

Groups → Geometry
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Cayley graphs

A fundamental question of geometric group theory is how groups can be
viewed as geometric objects; one way to view a (finitely generated) group as
a geometric object is via Cayley graphs:

1. As first step, one associates a combinatorial structure to a group and a
given generating set: the corresponding Cayley graph. This step already
has a rudimentary geometric flavour and is discussed in this chapter.

2. As second step, one adds a metric structure to Cayley graphs via word
metrics. We will study this step in Chapter 5.

We start by reviewing some basic notation from graph theory (Chap-
ter 3.1). We will then introduce Cayley graphs and discuss basic examples of
Cayley graphs (Chapter 3.2); in particular, we will show that free groups can
be characterised combinatorially by trees: The Cayley graph of a free group
with respect to a free generating set is a tree; conversely, if a group admits
a Cayley graph that is a tree, then the corresponding generating set is free
(Chapter 3.3).

Overview of this chapter

3.1 Review of graph notation 54

3.2 Cayley graphs 57

3.3 Cayley graphs of free groups 61

3.E Exercises 68
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54 3. Cayley graphs

3.1 Review of graph notation

We start by reviewing basic terminology from graph theory; more information
can be found in the literature [49, 79, 43]. In the following, we will always
consider undirected, simple graphs without loops:

Definition 3.1.1 (Graph). A graph is a pair X = (V,E) of disjoint sets where
E is a set of subsets of V that contain exactly two elements, i.e.,

E ⊂ V [2] := {e | e ⊂ V, |e| = 2};

the elements of V are the vertices, the elements of E are the edges of X.

In other words, graphs are a different point of view on (symmetric) re-
lations, and normally graphs are used to model relations. Classical graph
theory has many applications, mainly in the context of networks of all sorts
and in computer science (where graphs are a fundamental structure).

Definition 3.1.2 (Adjacent, neighbour, degree). Let (V,E) be a graph.
• We say that two vertices v, v′ ∈ V are neighbours or adjacent if they

are joined by an edge, i.e., if {v, v′} ∈ E.
• The number of neighbours of a vertex is the degree of this vertex.

Example 3.1.3 (Graphs). Let V := {1, 2, 3, 4}, and let

E :=
{
{1, 2}, {2, 3}, {3, 1}

}
.

Then the graph X1 := (V,E) can be illustrated as in Figure 3.1; however,
differently looking pictures can in fact represent the same graph (a graph is
a combinatorial object!). In X1, the vertices 2 and 3 are neighbours, while 2
and 4 are not.

Similarly, we can consider the following graphs (see Figure 3.1):

X2 :=
(
{1, . . . , 5}, {{j, k} | j, k ∈ {1, . . . , 5}, j 6= k}

)
,

X3 :=
(
{1, . . . , 9},
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 6}, {3, 7}, {4, 8}, {8, 9}}

)
.

The graph X2 is a complete graph: all vertices are neighbours of each other.

Example 3.1.4 (Complete graphs). Let n,m ∈ N. The graph

Kn :=
(
{1, . . . , n}, {{j, k} | j, k ∈ {1, . . . , n}, j 6= k}

)
is “the” complete graph on n vertices. If n > 0, then Kn has exactly n vertices
(each of degree n− 1) and 1/2 · n · (n− 1) edges. The graph
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1

2

3

4

1

2

3 4

5

1 2 3 4 5

6

7 8 9

X1 X2 X3

1 3

2

4

also X1

Figure 3.1.: Some graphs

Kn,m :=
(
{(1, 0), . . . , (n, 0), (1, 1), . . . , (m, 1)},
{{(j, 0), (k, 1)} | j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}}

)
is “the” complete bipartite graph graph. If n,m > 0, then Kn,m has exactly
n+m vertices and n ·m edges.

Definition 3.1.5 (Graph isomorphisms). Let X = (V,E) and X ′ = (V ′, E′) be
graphs. The graphs X and X ′ are isomorphic, if there is a graph isomorphism
between X and X ′, i.e., a bijection f : V −→ V ′ such that for all v, w ∈ V we
have {v, w} ∈ E if and only if

{
f(v), f(w)

}
∈ E′. Thus, isomorphic graphs

only differ in the labels of the vertices.1

The problem to decide whether two given graphs are isomorphic or not is
a difficult problem – in the case of finite graphs, this problem seems to be a
problem of high algorithmic complexity, though its exact complexity class is
still unknown [91].

In order to work with graphs, we introduce geometric terms for graphs:

Definition 3.1.6 (Paths, cycles). Let X = (V,E) be a graph.

• Let n ∈ N ∪ {∞}. A path in X of length n is a sequence v0, . . . , vn of
different vertices v0, . . . , vn ∈ V with the property that {vj , vj+1} ∈ E
holds for all j ∈ {0, . . . , n − 1}; if n < ∞, then we say that this path
connects the vertices v0 and vn.

1Of course, this notion of graph isomorphism can also be obtained as isomorphisms of a

category of graphs with suitable morphisms. However, there are several natural choices

for such a category; therefore, we prefer the above concrete formulation.
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p

p′

. . .
v v′

Figure 3.2.: Constructing a cycle (blue) out of two different paths.

• The graph X is called connected if every two of its vertices can be
connected by a path in X.
• Let n ∈ N>2. A cycle in X of length n is a path v0, . . . , vn−1 in X

with {vn−1, vn} ∈ E.

Example 3.1.7. In Example 3.1.3, the graphs X2 and X3 are connected, but
X1 is not connected (e.g., in X1 there is no path connecting the vertex 4 to
vertex 1). The sequence 1, 2, 3 is a path in X3, but 7, 8, 9 and 2, 3, 2 are no
paths in X3. In X1, the sequence 1, 2, 3 is a cycle.

Definition 3.1.8 (Tree). A tree is a connected graph that does not contain
any cycles. A graph that does not contain any cycles is a forest ; so, a tree is
the same as a connected forest.

Example 3.1.9 (Trees). The graph X3 in Example 3.1.3 is a tree, while X1

and X2 are not.

Proposition 3.1.10 (Characterising trees). A graph is a tree if and only if for
every pair of vertices there exists exactly one path connecting these vertices.

Proof. Let X be a graph such that every pair of vertices can be connected
by exactly one path in X; in particular, X is connected. Assume for a con-
tradiction that X contains a cycle v0, . . . , vn−1. Because n > 2, the two
paths v0, vn−1 and v0, . . . , vn−1 are different, and both connect v0 with vn−1,
which is a contradiction. Hence, X is a tree.

Conversely, let X be a tree; in particular, X is connected, and every two
vertices can be connected by a path in X. Assume for a contradiction that
there exist two vertices v and v′ that can be connected by two different paths p
and p′. By looking at the first index at which p and p′ differ and at the first
indices of p and p′ respectively where they meet again, we can construct a
cycle in X (see Figure 3.2), contradicting the fact that X is a tree. Hence,
every two vertices of X can by connected by exactly one path in X.

An alternative characterisation of finite trees is given in Exercise 3.E.4.
Trees can be viewed as basic ingredients of graphs: every connected graph

contains a spanning tree (Exercise 3.E.6).
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−2 −1 0 1 2 −2 −1 0 1 2

Cay
(
Z, {1}

)
Cay

(
Z, {2, 3}

)
Figure 3.3.: Cayley graphs of the additive group Z

Definition 3.1.11 (Spanning tree). A spanning tree of a graph X is a subgraph
of X that is a tree and contains all vertices of X. A subgraph of a graph (V,E)
is a graph (V ′, E′) with V ′ ⊂ V and E′ ⊂ E.

For example, in algebraic topology, spanning trees are used to calculate
the fundamental group of connected 1-dimensional complexes. Moreover, we
will use an equivariant version of spanning trees in Chapter 4.2.1 in order to
characterise free groups.

3.2 Cayley graphs

Given a generating set of a group, we can organise the combinatorial structure
given by the generating set as a graph:

Definition 3.2.1 (Cayley graph). Let G be a group and let S ⊂ G be a gen-
erating set of G. Then the Cayley graph of G with respect to the generating
set S is the graph Cay(G,S) whose

• set of vertices is G, and whose
• set of edges is {

{g, g · s}
∣∣ g ∈ G, s ∈ (S ∪ S−1) \ {e}

}
.

I.e., two vertices in a Cayley graph are adjacent if and only if they differ
by right multiplication by an (inverse of an) element of the generating set in
question. By definition, the Cayley graph with respect to a generating set S
coincides with the Cayley graphs for S−1 and for S ∪ S−1.

Example 3.2.2 (Cayley graphs).
• The Cayley graphs of the additive group Z with respect to the gener-

ating sets {1} and {2, 3} respectively are depicted in Figure 3.3. When
looking at these two graphs “from far away” they seem to have the
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(−2,−2)

(−2,−1)

(−2, 0)

(−2, 1)

(−2, 2)

(−1,−2)

(−1,−1)

(−1, 0)

(−1, 1)

(−1, 2)

(0,−2)

(0,−1)

(0, 0)

(0, 1)

(0, 2)

(1,−2)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

(2,−2)

(2,−1)

(2, 0)

(2, 1)

(2, 2)

Figure 3.4.: The Cayley graph Cay
(
Z2, {(1, 0), (0, 1)}

)
same global structure, namely they look like the real line; in more tech-
nical terms, these graphs are quasi-isometric with respect to the cor-
responding word metrics – a concept that we will introduce and study
thoroughly in later chapters (Chapters 5–9.).

• The Cayley graph of the additive group Z2 with respect to the generat-
ing set {(1, 0), (0, 1)} looks like the integer lattice in R2, see Figure 3.4;
when viewed from far away, this Cayley graph looks like the Euclidean
plane.

• The Cayley graph of the cyclic group Z/6 with respect to the generating
set {[1]} looks like a cycle graph (Figure 3.5).

• We now consider the symmetric group S3. Let τ be the transposition
exchanging 1 and 2, and let σ be the cycle 1 7→ 2, 2 7→ 3, 3 7→ 1; the
Cayley graph of S3 with respect to the generating set {τ, σ} is depicted
in Figure 3.5.
The Cayley graph Cay(S3, S3) is a complete graph on six vertices; sim-
ilarly, Cay(Z/6,Z/6) is a complete graph on six vertices. In particular,
we see that non-isomorphic groups may have isomorphic Cayley graphs
with respect to certain generating sets. The question which groups
admit isomorphic Cayley graphs is discussed in more detail in Out-
look 3.2.4.

• The Cayley graph of a free group with respect to a free generating set
is a tree (see Theorem 3.3.1 below).

Further examples of Cayley graphs are subject of various exercises (Chap-
ter 3.E)

Remark 3.2.3 (Elementary properties of Cayley graphs).
1. Cayley graphs are connected as every vertex g can be reached from the

vertex of the neutral element by walking along the edges corresponding
to a presentation of minimal length of g in terms of the given generators.
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[0]

[1][2]

[3]

[4] [5]

σid

σ2

σ · ττ

σ2 · τ

Cay
(
Z/6, {[1]}

)
Cay

(
S3, {τ, σ}

)
Cay(S3, S3)

∼= Cay(Z/6,Z/6)

Figure 3.5.: Cayley graphs of Z/6 and S3

2. Cayley graphs are regular in the sense that every vertex has the same
number |(S ∪ S−1) \ {e}| of neighbours.

3. A Cayley graph is locally finite if and only if the generating set is finite;
a graph is said to be locally finite if every vertex has only finitely many
neighbours.

Already in this basic setup we can witness an interesting geometric phe-
nomenon: rigidity.

Outlook 3.2.4 (Isomorphism rigidity of Cayley graphs). It is natural to consider
the combinatorial problem of which finitely generated groups admit isomor-
phic Cayley graphs, i.e., for which finitely generated groups G and H there
exist finite generating sets S ⊂ G and T ⊂ H such that the graphs Cay(G,S)
and Cay(H,T ) are isomorphic. This question is related to the problem of de-
termining for which groups isomorphisms/automorphisms of Cayley graphs
are affine, i.e., given (up to translation by a fixed group element) by a group
isomorphism. Both of these questions ask for rigidity properties of Cayley
graphs, namely, how much of the algebraic structure is rigid enough to be
visible in the combinatorics of all Cayley graphs of a given group.

These questions are well studied for finite groups [97]. For infinite groups,
the following is known:

• Cayley graphs of finitely generated Abelian groups are rigid in the sense
that automorphisms are affine on the free part and that these Cayley
graphs remember the rank and the size of the torsion part [102].
• Moreover, it is known that automorphisms of Cayley graphs of finitely

generated torsion-free nilpotent groups are affine and that Cayley
graphs of finitely generated nilpotent groups remember the group mod-
ulo torsion [177].
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• Finitely generated free groups admit isomorphic Cayley graphs if and
only if they have the same rank. The proof is probabilistic; more pre-
cisely, it is based on the relation between the expected degree of random
spanning forests and the first L2-Betti number [108].

So far, we considered only the combinatorial structure of Cayley graphs;
later, we will also consider Cayley graphs from the point of view of group
actions (most groups act freely on their Cayley graphs) (Chapter 4), and from
the point of view of large scale geometry, by introducing metric structures
on Cayley graphs (Chapter 5).

Outlook 3.2.5 (Presentation complex, classifying space). There are higher di-
mensional analogues of group presentations and Cayley graphs in topology:

Associated with a presentation of a group, there is the presentation com-
plex [31, Chapter I.8A], which is a two-dimensional object. Roughly speaking,
the presentation complex is the two-dimensional CW-complex given by

• taking a point,
• attaching a circle for every generator,
• and attaching a disk for every relation (in such a way that the boundary

of the disk represents the word of the relation in the fundamental group
of the glued circles).

By the Seifert and van Kampen theorem, the fundamental group of the pre-
sentation complex coincides with the given group. The presentation complex
is finite/compact if and only if the underlying presentation is finite.

For example, the presentation complex associated with the presenta-
tion

〈
x, y

∣∣ [x, y]
〉

is the torus and the presentation complex associated with
the presentation 〈x |x2〉 is the projective plane RP 2 (Figure 3.6).

More generally, every group admits a classifying space (or Eilenberg-
MacLane space of type K( · , 1)), a space whose fundamental group is the
given group, and whose higher dimensional homotopy groups are trivial [81,
Chapter I.B]; one way to construct classifying spaces is to start with a pre-
sentation complex and then to add higher dimensional cells that kill the
higher homotopy groups. These spaces are unique up to homotopy equiva-
lence and allow to model group theory (both groups and homomorphisms)
in topology. Classifying spaces play an important role in the study of group
cohomology [34, 101] (Appendix A.2). Hence, classifying spaces (and their
(co)homology) can be viewed as higher dimensional versions of group presen-
tations.

For example, the torus is a classifying space for Z2 and the infinite-
dimensional projective space RP∞ is a classifying space for Z/2.

How is all this related to Cayley graphs? The one-dimensional part (i.e.,
the 1-skeleton) of the universal covering of the presentation complex of a pre-
sentation 〈S |R〉 almost is the Cayley graph Cay(〈S |R〉, S) (in case of gen-
erators of order 2 some modifications might be necessary) [45, Chapter 2.2].
We will return to this point of view in Outlook 4.1.21.
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glueing schematics 0-skeleton 1-skeleton presentation complex

[x, y]

xy

x−1 y−1

torus

x2

x

x
RP 2

Figure 3.6.: Examples of presentation complexes

3.3 Cayley graphs of free groups

A combinatorial characterisation of free groups can be given in terms of trees:

Theorem 3.3.1 (Cayley graphs of free groups). Let F be a free group, freely
generated by S ⊂ F . Then the corresponding Cayley graph Cay(F, S) is a
tree.

The converse is not true in general:

Example 3.3.2 (Non-free groups with Cayley trees).
• The Cayley graph Cay

(
Z/2, [1]

)
consists of two vertices joined by an

edge; clearly, this graph is a tree, but the group Z/2 is not free.
• The Cayley graph Cay

(
Z, {−1, 1}

)
coincides with Cay

(
Z, {1}

)
, which

is a tree (looking like a line). But {−1, 1} is not a free generating set
of Z.

However, these are basically the only types of things that can go wrong:

Theorem 3.3.3 (Cayley trees and free groups). Let G be a group, let S ⊂ G be a
generating set satisfying s·t 6= e for all s, t ∈ S. If the Cayley graph Cay(G,S)
is a tree, then S is a free generating set of G.
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While it might be intuitively clear that free generating sets do not lead
to any cycles in the corresponding Cayley graphs and vice versa, a formal
proof requires the description of free groups in terms of reduced words (Chap-
ter 3.3.1). More generally, any explicit and complete description of the Cayley
graph of a group G with respect to a generating set S basically requires to
solve the word problem of G with respect to S.

3.3.1 Free groups and reduced words

The construction F (S) of the free group generated by S consisted of taking
the set of all words in elements of S and their formal inverses, and taking
the quotient by the cancellation relation (proof of Theorem 2.2.7). While
this construction is technically clean and simple, it has the disadvantage that
getting hold of the precise nature of said equivalence relation is tedious.

In the following, we discuss an alternative construction of a group freely
generated by S by means of reduced words; it is technically a little bit more
cumbersome, but has the advantage that every group element is represented
by a canonical word:

Definition 3.3.4 (Reduced word). Let S be a set, and let (S ∪ Ŝ)∗ be the set
of words over S and formal inverses of elements of S.

• Let n ∈ N and let s1, . . . , sn ∈ S ∪ Ŝ. The word s1 . . . sn is reduced if

sj+1 6= ŝj and ŝj+1 6= sj

holds for all j ∈ {1, . . . , n− 1}. (In particular, ε is reduced.)

• We write Fred(S) for the set of all reduced words in (S ∪ Ŝ)∗.

Proposition 3.3.5 (Free groups via reduced words). Let S be a set.

1. The set Fred(S) of reduced words over S ∪ Ŝ forms a group with respect
to the composition Fred(S)× Fred(S) −→ Fred(S) given by

(s1 . . . sn, sn+1 . . . sm) 7−→ (s1 . . . sn−rsn+1+r . . . sn+m),

where s1 . . . sn and sn+1 . . . sm are in Fred(S) (with s1, . . . , sm ∈ S∪Ŝ),
and

r := max
{
k ∈ {0, . . . ,min(n,m− 1)}

∣∣ ∀j∈{0,...,k−1} sn−j = ŝn+1+j

∨ ŝn−j = sn+1+j

}
.

In other words, the composition of reduced words is given by first con-
catenating the words and then reducing maximally at the concatenation
position.

2. The group Fred(S) is freely generated by S.
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x

x′

y

y′

z

z′

x · y x′ y′

(x · y) · z x′ y′ z′

y′ z′ y · z

x′ y′ z′ x · (y · z)

Figure 3.7.: Associativity of the composition in Fred(S); if the reduction areas
of the outer elements do not interfere

x

x′ x′′

y

y′′

z

z′z′′

x · y x′

(x · y) · z x′ z′z′′

z′ y · z

x′ x′′ z′ x · (y · z)

Figure 3.8.: Associativity of the composition in Fred(S); if the reduction areas
of the outer elements do interfere

Proof. Ad. 1. The above composition is well-defined because if two reduced
words are composed, then the composed word is reduced by construction.
Moreover, the composition has the empty word ε (which is reduced!) as neu-
tral element, and it is not difficult to show that every reduced word admits
an inverse with respect to this composition (take the inverse sequence and
flip the hat status of every element).

Thus it remains to prove that this composition is associative (which is
the ugly part of this construction): Instead of giving a formal proof involving
lots of indices, we explain the argument graphically (Figures 3.7 and 3.8): Let
x, y, z ∈ Fred(S); we want to show that (x·y)·z = x·(y·z). By definition, when
composing two reduced words, we have to remove the maximal reduction area
where the two words meet.

• If the reduction areas of x, y and y, z have no intersection in y, then
clearly (x · y) · z = x · (y · z) (Figure 3.7).
• If the reduction areas of x, y and y, z have a non-trivial intersection y′′

in y, then the equality (x · y) · z = x · (y · z) follows by carefully in-
specting the reduction areas in x and z and the neighbouring regions,
as indicated in Figure 3.8; because of the overlap in y′′, we know that
x′′ and z′′ coincide (they both are the inverse of y′′).

Ad. 2. We show that S is a free generating set of Fred(S) by verifying that
the universal property is satisfied: So let H be a group and let ϕ : S −→ H
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be a map. Then a straightforward (but slightly technical) computation shows
that

ϕ := ϕ∗|Fred(S) : Fred(S) −→ H

is a group homomorphism (recall that ϕ∗ is the extension of the map ϕ to

the set (S ∪ Ŝ)∗ of all words). Clearly, ϕ|S = ϕ; because S generates Fred(S),
it follows that ϕ is the only such homomorphism. Hence, Fred(S) is freely
generated by S.

As a corollary to the proof of the second part, we obtain:

Corollary 3.3.6 (Normal form for free groups). Let S be a set. Every element of

the free group F (S) = (S ∪ Ŝ)∗/ ∼ can be represented by exactly one reduced

word over S ∪ Ŝ.

Corollary 3.3.7 (Word problem for free groups). The word problem in free
groups with respect to free generating sets is solvable.

Proof. Let F be a free group with free generating set S. If w ∈ (S ∪ Ŝ)∗,
then we inductively reduce the word w until we reach a reduced word w′.
Then the words w and w′ represent the same element of F . Arguing as in
the proof of the second part of Proposition 3.3.5 via the canonical isomor-
phism Fred(S) ∼= F , we now only need to check whether w′ is the empty word
or not to determine whether the group element w is trivial or not.

Outlook 3.3.8 (Reduced words in free products etc.). Using the same method
of proof as in Proposition 3.3.5, one can describe free products G1 ∗ G2 of
groups G1 and G2 by reduced words: In this case, one calls a word

g1 . . . gn ∈ (G1 tG2)∗

with n ∈ N and g1, . . . , gn ∈ G1 tG2 reduced, if for all j ∈ {1, . . . , n− 1}
• either gj ∈ G1 \ {e} and gj+1 ∈ G2 \ {e},
• or gj ∈ G2 \ {e} and gj+1 ∈ G1 \ {e}.

Such reduced words can be composed by “concatenation and then maximal
reduction at the concatenation position”. The resulting group is the free
product of G1 and G2 (all of this is not hard to check).

One can also describe amalgamated free products and HNN-extensions by
suitable classes of reduced words [159, Chapter I][150, Chapter 11] (however,
these generalisations are slightly more involved because more bookkeeping is
needed and more ambiguities occur):

1. Amalgamated free products. Let A, G1, G2 be groups, let α1 : A −→ G1,
α2 : A −→ G2 be injective group homomorphisms. Let n ∈ N and let
g0, . . . , gn ∈ G1, h0, . . . , hn ∈ G2 with

∀j∈{1,...,n} gj 6∈ imα1 and ∀k∈{0,...,n−1} hk 6∈ imα2.
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gn−1

g0

g1 g2

sn

s1

s2

gn−1

g0

g1 g2

ϕ(sn)

ϕ(s1)

ϕ(s2)

(a) (b)

Figure 3.9.: Cycles lead to reduced words, and vice versa

Then the corresponding product g0 ·h0 · · · · · gn ·hn in G1 ∗AG2 is non-
trivial. Moreover, every non-trivial element of G1 ∗AG2 can be written
in this so-called reduced form.

2. HNN-Extensions. LetG and A be groups, let ϑ : A −→ G be an injective
group homomorphism, and let t denote the stable letter of G∗ϑ. Let
n ∈ N, m1, . . . ,mn ∈ Z \ {0}, and g0, . . . , gn ∈ G with

∀j∈{1,...,n} mj < 0 =⇒ gj 6∈ A
∀j∈{1,...,n} mj > 0 =⇒ gj 6∈ ϑ(A).

Then g0 · tm1 · g1 · · · · · gn−1 · tmn · gn is non-trivial in G∗ϑ. Moreover,
every element of G∗ϑ can be written in this so-called reduced form.

3.3.2 Free groups → trees

Proof of Theorem 3.3.1. Suppose the group F is freely generated by S. By
Proposition 3.3.5, the group F is isomorphic to Fred(S) via an isomorphism
that is the identity on S; without loss of generality we can therefore assume
that F is Fred(S).

We now show that the Cayley graph Cay(F, S) is a tree: Because S gen-
erates F , the graph Cay(F, S) is connected. Assume for a contradiction that
Cay(F, S) contains a cycle g0, . . . , gn−1 of length n with n ≥ 3; in particular,
the elements g0, . . . , gn−1 are distinct, and

sj+1 := gj+1 · gj−1 ∈ S ∪ S−1

for all j ∈ {0, . . . , n−2}, as well as sn := g0·gn−1
−1 ∈ S∪S−1 (Figure 3.9 (a)).

Because the vertices are distinct, the word s0 . . . sn−1 is reduced; on the other
hand, we obtain
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ε a

ab

ab−1

a2

b ba

Figure 3.10.: Cayley graph of the free group of rank 2 with respect to a free
generating set {a, b}

sn . . . s1 = g0 · gn−1
−1 · · · · · g2 · g1

−1 · g1 · g0
−1 = e = ε

in F = Fred(S), which is impossible. Therefore, Cay(F, S) cannot contain
any cycles. So Cay(F, S) is a tree.

Example 3.3.9 (Cayley graph of the free group of rank 2). Let S be a set
consisting of two different elements a and b. Then the corresponding Cayley
graph Cay

(
F (S), {a, b}

)
is a regular tree whose vertices have exactly four

neighbours (see Figure 3.10).

3.3.3 Trees → free groups

Proof of Theorem 3.3.3. Let G be a group and let S ⊂ G be a generating set
satisfying s · t 6= e for all s, t ∈ S and such that the corresponding Cayley
graph Cay(G,S) is a tree. In order to show that then S is a free generating
set of G, in view of Proposition 3.3.5, it suffices to show that G is isomorphic
to Fred(S) via an isomorphism that is the identity on S.

Because Fred(S) is freely generated by S, the universal property of free
groups provides us with a group homomorphism ϕ : Fred(S) −→ G that is
the identity on S. As S generates G, it follows that ϕ is surjective. As-
sume for a contradiction that ϕ is not injective. Let s1 . . . sn ∈ Fred(S) \ {ε}
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with s1, . . . , sn ∈ S ∪ Ŝ be an element of minimal length that is mapped to e
by ϕ. We consider the following cases:
• Because ϕ|S = idS is injective, it follows that n > 1.
• If n = 2, then it would follow that

e = ϕ(s1 · s2) = ϕ(s1) · ϕ(s2) = s1 · s2

in G, contradicting that s1 . . . sn is reduced and that s · t 6= e holds in G
for all s, t ∈ S.
• If n ≥ 3, we consider the sequence g0, . . . , gn−1 of elements of G given

inductively by g0 := e and

gj+1 := gj · sj+1

for all j ∈ {0, . . . , n− 2} (Figure 3.9 (b)). The sequence g0, . . . , gn−1 is
a cycle in Cay(G,S) because by minimality of the word s1 . . . sn, the
elements g0, . . . , gn−1 are all distinct; moreover, Cay(G,S) contains the
edges {g0, g1}, . . . , {gn−2, gn−1}, and the edge

{gn−1, g0} = {s1 · s2 · · · · · sn−1, e}
= {s1 · s2 · · · · · sn−1, s1 · s2 · · · · · sn}.

However, this contradicts the hypothesis that Cay(G,S) is a tree.
Hence, ϕ : Fred(S) −→ G is injective.
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3.E Exercises

Basic graph theory

Quick check 3.E.1 (Isomorphic graphs?*). Which of the graphs in Figure 3.11
are isomorphic?

Figure 3.11.: Three 3-regular graphs

Quick check 3.E.2 (Index*). Show that the index of this book is not a forest.
Hints. Look for a silly cycle.

Exercise 3.E.3 (Regular graphs of degree 2 *). Classify (up to isomorphism)
all connected graphs where each vertex has degree 2.

Exercise 3.E.4 (Characterisation of finite trees*). Let X = (V,E) be a finite
connected graph with V 6= ∅. Show that X is a tree if and only if

|E| = |V | − 1.

Exercise 3.E.5 (Locally finite trees**). Let T be a tree with infinitely many
vertices that all have finite degree. Show that T contains an infinite path.

Exercise 3.E.6 (Spanning trees**). Use Zorn’s lemma to prove that every
connected graph contains a spanning tree.

Exercise 3.E.7 (Infinite paths**). Let X be a connected graph with infinitely
many vertices.

1. Does X necessarily contain an infinite path?
2. Show that X contains an infinite path, if every vertex has finite degree.

Hints. Consider a spanning tree of X and apply Exercise 3.E.5.

Exercise 3.E.8 (Marriage theorem***). In the following, we will prove Hall’s
marriage theorem: Let W , M be non-empty sets and let F : W −→ P fin(M)
be a map satisfying the marriage condition

∀V ∈P fin(W ) F (V ) :=

∣∣∣∣ ⋃
w∈V

F (w)

∣∣∣∣ ≥ |V |;
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here, P fin(W ) denotes the set of all finite subsets of W . Then there exists
a (W,M,F )-marriage, i.e., an injective map µ : W −→M with

∀w∈W µ(w) ∈ F (w).

The name marriage theorem is derived from the interpretation where W
represents a set of women, M represents a set of men, and F models which
men appear attractive to which women. By the theorem, there always exists
a marriage W −→M that makes all women happy, provided that the obvious
necessary condition is satisfied.

1. Formulate this theorem in terms of graph theory.
2. Prove the theorem in the case that W and M are finite.

Hints. Proceed by induction over |W |. In the induction step, distin-
guish between two cases, depending on whether |F (V )| ≥ |V |+ 1 holds
for all V ∈ P fin(W ) or not.

3. Prove the theorem in the general case.
Hints. Use Zorn’s lemma and the finite case. Zorn’s lemma can, for
example, be applied to the partially ordered set of all extendable partial
marriages:
• Let W ′ ⊂ W be finite. Then an extendable W ′-marriage is a

(W ′,M, F |W ′)-marriage µ′ such that for all finite W ′′ ⊂ W with
W ′ ⊂W ′′ there exists a (W ′′,M, F |W ′′)-marriage that extends µ′.

• For a general (not necessarily finite) subset W ′ ⊂ W an extend-
able W ′-marriage is a (W ′,M, FW ′)-marriage whose restriction to
every finite subset W ′′ ⊂W ′ is an extendable W ′′-marriage.

Cayley graphs

Quick check 3.E.9 (Cayley graphs with few edges?*).
1. Does there exist a group that has a Cayley graph with exactly 2016 ver-

tices and exactly 2017 edges?
2. Does there exist a group that has a Cayley graph with exactly 2016 ver-

tices and exactly 2016 edges?

Quick check 3.E.10 (Cycles in Cayley graphs*). Let G be an Abelian group
that is not cyclic.

1. Does G admit a Cayley graph with cycles of length 3 ?
2. Does every Cayley graph of G contain a cycle of length 4 ?

Exercise 3.E.11 (Characterising infinite groups**). Let G be a group and let
S ⊂ G be a generating set ofG. Show thatG is infinite if and only if Cay(G,S)
contains an infinite path.
Hints. If S is finite, then Exercise 3.E.7 will help. If S is infinite, then there
is enough space for a naive inductive construction.
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Exercise 3.E.12 (Klein bottle**). Let

ϕ : Z −→ Aut(Z)

n 7−→ (−1)n · idZ

and G := Z oϕ Z.
1. Show that G is not isomorphic to Z2.
2. Sketch a Cayley graph of G with respect to some finite generating set

of your choice.
3. Prove that G is isomorphic to the fundamental group of the Klein bottle

(Figure 3.12).

 

Figure 3.12.: The Klein bottle

Exercise 3.E.13 (Petersen graph**). Show that there is no group that has a
finite generating set such that the associated Cayley graph is isomorphic to
the Petersen graph (Figure 3.13).
Hints. It might be useful to first show that the Petersen graph is no Cayley
graph of Z/10 and no Cayley graph of D5.

Figure 3.13.: The Petersen graph

Exercise 3.E.14 (Cayley graphs of free products*).
1. Sketch the Cayley graph of Z/2 ∗ Z/5 with respect to some finite gen-

erating set of your choice.
Hints. Use the description of free products in terms of reduced words
(Outlook 3.3.8).
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2. Sketch the Cayley graph of D∞ with respect to some finite generating
set of your choice.

Exercise 3.E.15 ((Im)Possible Cayley graphs?**).
1. Is there a finitely generated group G with a finite generating set S such

that the corresponding Cayley graph Cay(G,S) is a a tree all of whose
vertices have degree 3 (Figure 3.14.(a))?

2. Is there a finitely generated group G with a finite generating set S such
that the corresponding Cayley graph Cay(G,S) is isomorphic to the
graph in Figure 3.14.(b)?

· · · · · ·

(a) (b)

Figure 3.14.: (Im)Possible Cayley graphs?

Exercise 3.E.16 (Cayley graph of BS(1, 2) **). Sketch the Cayley graph of
the Baumslag-Solitar group BS(1, 2) = 〈a, b | bab−1 = a2〉 with respect to the
generating set {a, b}.
Hints. Use the normal form from Exercise 2.E.22 or a suitable description
of HNN-extensions in terms of reduced words.

Free groups via reduced words

Quick check 3.E.17 (Powers in free groups*).
1. Which elements g ∈ F2 satisfy g2 = e ?
2. Which elements g, h ∈ F2 satisfy g2 = h2 ?
3. Are there elements g, h ∈ F2 with g2017 = h2018 ?

Exercise 3.E.18 (Trivial inner automorphisms of free groups*). Let S be a set.
1. Let s ∈ S and let g ∈ F (S) with s = g · s · g−1. Show that there exists

a k ∈ Z with g = sk.
2. Conclude: If |S| ≥ 2 and g ∈ F (S) satisfies

∀x∈F (S) g · x · g−1 = x,

then g = e.

Exercise 3.E.19 (A large spanning tree**). Find a finite generating set S of
the free group F of rank 2 such that Cay(F, S) contains a spanning tree that
is regular of degree 6.
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Exercise 3.E.20 (Free Abelian subgroups of Out(Fn)**). Let n ∈ N≥2 and let
Fn be the free group of rank n.

1. Show that Aut(Fn) contains a subgroup that is isomorphic to Z2·n−2.
2. Show that Out(Fn) contains a subgroup that is isomorphic to Z2·n−3.

Hints. Let {x1, . . . , xn} be a free generating set of Fn. Consider the building
blocks “xj 7→ xj · x1” and “xj 7→ x1 · xj” . . . Exercise 3.E.18 might help
to prove that the constructed subgroup indeed is free Abelian of the correct
rank.

Isomorphisms of Cayley graphs

Exercise 3.E.21 (Isomorphic Cayley graphs**).
1. Show that there exist finite generating sets S of Z and T of D∞

with Cay(Z, S) ∼= Cay(D∞, T ).
2. Show that there exist finite generating sets S of Z×Z/2 and T of D∞

with Cay(Z× Z/2, S) ∼= Cay(D∞, T ).

Exercise 3.E.22 (Isomorphic Cayley graphs?!***). Cay and Ley obtained their
bachelor degree in “Evaluation of children’s behaviour and transport logis-
tics (EU-directive St. Nicholas)” and are now discussing how to arrange the
reindeers in front of their sleighs:

Cay Ha, I patented all arrangements of reindeers and cords between
them that look like Cayley graphs of Z×Z/2 (with respect to finite
generating sets)!

Ley Why would I care? My sleigh is faster anyway – I use a Cayley
graph of Z.

Cay Uh-oh, that will be expensive for you; you’ll have to pay serious
licence fees to me: I’ll easily find a finite generating set S of Z×Z/2
such that your sluggish sleigh arrangement is Cay(Z× Z/2, S).

Ley Are you out of your mind? Despite of Z and Z × Z/2 being
quasi-isometric there are no finite generating sets S and S′ of Z
and Z×Z/2 respectively such that Cay(Z, S) and Cay(Z×Z/2, S′)
are isomorphic.

Are you able to help?

Hints. Look at the automorphism given by inversion.

Exercise 3.E.23 (Free products with isomorphic Cayley graphs**). Let n ∈ N>0

and let
Gn := 〈a1, . . . , an | an1 , . . . , ann〉 ∼= (Z/n)∗n.

Show that

Cay
(
Gn, {a1, . . . , an}

) ∼= Cay
(
F (a1, . . . , an−1), {a1, . . . , an−1, a1 · · · · ·an−1}

)
.
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Exercise 3.E.24 (Automorphisms of Cayley trees**). Let F be a free group
of rank 2 and let S ⊂ F be a free generating set. Show that the Cayley
graph Cay(F, S) admits uncountably many graph automorphisms.

Exercise 3.E.25 (Cayley graphs of free groups∞*). Let F and F ′ be finitely
generated free groups. Show that the following are equivalent:

1. The free groups F and F ′ have the same rank.
2. There exist finite generating sets S ⊂ F and S′ ⊂ F ′ such that the

graphs Cay(F, S) and Cay(F ′, S′) are isomorphic.
Hints. There is a probabilistic proof of this fact (Outlook 3.2.4). However,
no elementary, geometric, proof is known.

Chromatic number of groups+

Cayley graphs of groups allow to apply invariants from graph theory to
groups, for example the chromatic number. The following exercises will dis-
cuss some basic properties and problems related to chromatic numbers of
groups, as introduced by Babai [11, 165].

Definition 3.E.1 (Chromatic number). Let X = (V,E) be a graph. Let C be
a set. A colouring of X by C is a map c : V −→ C satisfying

∀{v,w}∈E c(v) 6= c(w).

The chromatic number ch(X) of X is the smallest n ∈ N such that X admits
a colouring by {1, . . . , n}.

Quick check 3.E.26 (Chromatic number of small graphs*). Let n,m ∈ N.
1. Is ch(Kn) = n ?
2. Is ch(Kn,m) = min(n,m) ?

Definition 3.E.2 (Chromatic number of a group). Let G be a group. Then the
chromatic number ch(G) of G is defined by

ch(G) := inf
{

ch(Cay(G,S))
∣∣ S ⊂ G generates G

}
∈ N ∪ {∞}.

Quick check 3.E.27 (High chromatic numbers?*).
1. Does S6 contain a generating set S with ch(Cay(S6, )) ≥ 2017 ?
2. Does Z contain a generating set S with ch(Cay(Z, S)) ≥ 2017 ?

Exercise 3.E.28 (Chromatic number of small groups*). Let n ∈ N.
1. Determine ch(Z/n).
2. Determine ch(Zn).

Exercise 3.E.29 (Groups with chromatic number 2 ** [11]). Let G be a group.
1. Let N ⊂ G be a normal subgroup. Show that chG ≤ ch(G/N).
2. Show that ch(G) = 2 if and only if G contains a subgroup of index 2.



th
is

is
a

dra
ft

ve
rsi

on
!

74 3. Cayley graphs

Exercise 3.E.30 (Chromatic number of finitely generated groups***). Let G be
a finitely generated group.

1. Show that

chG = min
{

ch(Cay(G,S))
∣∣ S ⊂ G generates G and S is finite

}
.

2. Let S ⊂ G be a finite generating set of G. Show that

ch
(
Cay(G,S)

)
= max

{
chX

∣∣ X is a finite subgraph of Cay(G,S)
}
.

Exercise 3.E.31 (Groups with large chromatic number?!∞*). Let n ∈ N. Does
there exist a finitely generated group G with chG ≥ n ?!
Hints. This is an open problem. Reasonable answers exist for the expected
chromatic number of random generating sets [4].
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Group actions

In the previous chapter, we took the first step from groups to geometry
by considering Cayley graphs. In the present chapter, we consider another
geometric aspect of groups by looking at group actions, which can be viewed
as a generalisation of seeing groups as symmetry groups. We start by recalling
some basic concepts about group actions (Chapter 4.1).

As we have seen, free groups can be characterised combinatorially as the
groups admitting trees as Cayley graphs (Chapter 3.3). In Chapter 4.2, we
will prove that this characterisation can be promoted to a first geometric
characterisation of free groups: A group is free if and only if it admits a free
action on a tree. An important consequence of this characterisation is that it
leads to an elegant proof of the fact that subgroups of free groups are free –
which is a purely algebraic statement! (Chapter 4.2.3)

Another group action tool that helps to recognise that a given group is
free is the ping-pong lemma (Chapter 4.3); this is particularly useful when
proving that certain matrix groups are free – which also is a purely algebraic
statement (Chapter 4.4).

Overview of this chapter

4.1 Review of group actions 76

4.2 Free groups and actions on trees 86

4.3 The ping-pong lemma 95

4.4 Free subgroups of matrix groups 97

4.E Exercises 105
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4.1 Review of group actions

Recall that for an object X in a category C the set AutC(X) of all C-auto-
morphisms of X is a group with respect to composition in the category C.

Definition 4.1.1 (Group action). Let G be a group, let C be a category, and
let X be an object in C. An action of G on X in the category C is a group
homomorphism G −→ AutC(X). In other words, a group action of G on X
consists of a family (fg)g∈G of automorphisms of X such that

fg ◦ fh = fg·h

holds for all g, h ∈ G.

Example 4.1.2 (Group actions, generic examples).
• Every group G admits an action on any object X in any category C,

namely the trivial action:

G −→ AutC(X)

g 7−→ idX .

• If X is an object in a category C, the automorphism group AutC(X)
canonically acts on X via the homomorphism

idAutC(X) : AutC(X) −→ AutC(X).

In other words: group actions are a concept generalising automorphism
and symmetry groups.
• Let G be a group and let X be a set. If % : G −→ AutSet(X) is an action

of G on X by bijections, then we also use the notation

g · x :=
(
%(g)

)
(x)

for g ∈ G and x ∈ X, and we can view % as a map G×X −→ X.
If % : G −→ AutSet(X) is a map, then % is a G-action on X if and only
if

∀g,h∈G ∀x∈X (g · h) · x = g · (h · x).

More generally, a map · : G×X −→ X defines a G-action on X if and
only if

∀g,h∈G ∀x∈X (g · h) · x = g · (h · x)

∀x∈X e · x = x.

We also use this notation whenever the group G acts on an object in
a category, where objects are sets (with additional structure), where
morphisms are (structure preserving) maps of sets and the composition
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of morphisms is nothing but composition of maps. This applies for
example to

– actions by isometries on a metric space (isometric actions),
– actions by homeomorphisms on a topological space (continuous

actions),
– actions by linear isomorphisms on vector spaces (representations),
– . . .

• Further examples of group actions are actions of groups on a topo-
logical space by homotopy equivalences or actions on a metric space
by quasi-isometries (see Chapter 5); in these cases, automorphisms are
equivalence classes of maps of sets and composition of morphisms is per-
formed by composing representatives of the corresponding equivalence
classes.

On the one hand, group actions allow us to understand groups better by
looking at suitable objects on which the groups act nicely; on the other hand,
group actions also allow us to understand geometric objects better by looking
at groups that can act nicely on these objects. Further introductory material
on group actions and symmetry can be found in Armstrong’s book [6].

4.1.1 Free actions

The relation between groups and geometric objects acted upon is particularly
strong if the group action is a so-called free action. Important examples of free
actions are the natural actions of groups on their Cayley graphs (provided
the group does not contain any elements of order 2), and the action of the
fundamental group of a space on its universal covering.

Definition 4.1.3 (Free action on a set). Let G be a group, let X be a set, and
let G×X −→ X be an action of G on X. This action is free if

g · x 6= x

holds for all g ∈ G \ {e} and all x ∈ X. In other words, an action is free if
and only if every non-trivial group element acts without fixed points.

Example 4.1.4 (Left translation action). If G is a group, then the left trans-
lation action

G −→ SG = AutSet(G)

g 7−→ (h 7→ g · h)

is a free action of G on itself by bijections.

Example 4.1.5 (Rotations on the circle). Let S1 := {z ∈ C | |z| = 1} be the
unit circle in C, and let α ∈ R. Then the rotation action
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R

universal covering map

S1

Figure 4.1.: Universal covering of S1

Z× S1 −→ S1

(n, z) 7−→ e2πi·α·n · z

of Z on S1 is free if and only if α is irrational.

Example 4.1.6 (Isometry groups). In general, the action of an isometry group
on its underlying geometric object is not necessarily free: For example, the
isometry group of the unit square does not act freely on the unit square –
e.g., the vertices of the unit square are fixed by reflection along the diagonal
through the vertex in question. Moreover, the centre of the square is fixed by
all isometries of the square.

Example 4.1.7 (Universal covering). Let X be a “nice” path-connected topo-
logical space (e.g., a CW-complex). Associated with X there is a universal

covering space X̃, a path-connected space covering X that has trivial funda-
mental group [115, Chapter V].

The fundamental group π1(X) can be identified with the deck transforma-

tion group of the universal covering X̃ −→ X and the action of π1(X) on X̃ by
deck transformations is free (and properly discontinuous) [115, Chapter V].

For instance:

• The fundamental group of S1 is isomorphic to Z, the universal cov-
ering of S1 is the exponential map R −→ S1, and the action of the
fundamental group of S1 on R is given by translation (Figure 4.1).
• The fundamental group of the torus S1 × S1 is isomorphic to Z × Z,

the universal covering of S1 × S1 is the component-wise exponential
map R2 −→ S1×S1, and the action of the fundamental group of S1×S1

on R2 is given by translation.
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• The fundamental group of the figure eight S1 ∨ S1 is isomorphic to
the free group F2, the universal covering space of S1 ∨ S1 is the CW-
complex T whose underlying combinatorics is given by the regular tree
of degree 4 (Figure 3.10), the universal covering map T −→ S1 ∨ S1

collapses all 0-cells to the glueing point of S1 ∨S1 and wraps the “hor-
izontal” and “vertical” edges around the two different circles.

There are two natural definitions of free actions on graphs – one that
requires that no vertex and no edge is fixed by any non-trivial group element
and one that only requires that no vertex is fixed. We will use the first,
stronger, one:

Definition 4.1.8 (Free action on a graph). Let G be a group acting on a
graph (V,E) by graph isomorphisms via % : G −→ Aut(V,E). The action %
is free if for all g ∈ G \ {e} we have

∀v∈V
(
%(g)

)
(v) 6= v, and

∀{v,v′}∈E
{

(%(g))(v), (%(g))(v′)
}
6= {v, v′}.

Example 4.1.9 (Left translation action on Cayley graphs). LetG be a group and
let S be a generating set of G. Then the group G acts by graph isomorphisms
on the Cayley graph Cay(G,S) via left translation:

G −→ Aut
(
Cay(G,S)

)
g 7−→ (h 7→ g · h);

notice that this map is indeed well-defined and a group homomorphism.

Proposition 4.1.10 (Free actions on Cayley graphs). Let G be a group and let
S be a generating set of G. Then the left translation action on the Cayley
graph Cay(G,S) is free if and only if S does not contain any elements of
order 2.

Recall that the order of a group element g of a group G is the infimum of
all n ∈ N>0 with gn = e; here, we use the convention inf ∅ :=∞.

Proof. The action on the vertices is nothing but the left translation action
by G on itself, which is free. It therefore suffices to determine under which
conditions the action of G on the edges is free:

If the action of G on the edges of the Cayley graph Cay(G,S) is not free,
then S contains an element of order 2: Let g ∈ G, and let {v, v′} be an edge
of Cay(G,S) with {v, v′} = g · {v, v′} = {g · v, g · v′}; by definition, we can
write v′ = v ·s with s ∈ S∪S−1 \{e}. Then one of the following cases occurs:

1. We have g ·v = v and g ·v′ = v′. Because the action of G on the vertices
is free, this is equivalent to g = e.

2. We have g · v = v′ and g · v′ = v. Then in G we have

v = g · v′ = g · (v · s) = (g · v) · s = v′ · s = (v · s) · s = v · s2
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and so s2 = e. As s 6= e, it follows that S contains an element of order 2.

Conversely, if s ∈ S has order 2, then s fixes the edge {e, s} = {s2, s}
of Cay(G,S).

4.1.2 Orbits and stabilisers

A group action can be disassembled into orbits, leading to the orbit space of
the action. Conversely, one can try to understand the whole object by looking
at the orbit space and the orbits/stabilisers.

Definition 4.1.11 (Orbit). Let G be a group acting on a set X.

• The orbit of an element x ∈ X with respect to this action is the set

G · x := {g · x | g ∈ G}.

• The quotient of X by the given G-action (or orbit space) is the set

G \X := {G · x | x ∈ X}

of orbits; we write “G \X” because G acts “from the left.”

In a sense, the orbit space describes the original object “up to symmetry”
or “up to irrelevant transformations.”

If a group does not only act by bijections on a set, but if the set is equipped
with additional structure that is preserved by the action (e.g., an action
by isometries on a metric space), then usually also the orbit space inherits
additional structure similar to the one on the space acted upon. However,
in general, the orbit space is not as well-behaved as the original space; e.g.,
the quotient space of an action on a metric space by isometries in general is
only a pseudo-metric space – even if the action is free (e.g., this happens for
irrational rotations on the circle).

Example 4.1.12 (Rotation on C). We consider the action of the unit circle S1

(which is a group with respect to multiplication) on the complex numbers C
given by multiplication of complex numbers. The orbit of the origin 0 is
just {0}; the orbit of an element z ∈ C \ {0} is the circle around 0 passing
through z (Figure 4.2). The quotient of C by this action can be identified
with R≥0 (via the absolute value).

Example 4.1.13 (Universal covering). Let X be a “nice” path-connected topo-

logical space (e.g., a CW-complex). The quotient of the universal covering X̃
by the action of the fundamental group π1(X) by deck transformations is
homeomorphic to X [115, Chapter V]. It is worthwhile to check this asser-
tion in the cases of Example 4.1.7.
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0

z

S1 · z

Figure 4.2.: Orbits of the rotation action of S1 on C

Definition 4.1.14 (Stabiliser, fixed set). Let G be a group acting on a set X.
• The stabiliser group of an element x ∈ X with respect to this action is

given by
Gx := {g ∈ G | g · x = x};

notice that Gx indeed is a group (a subgroup of G).
• The fixed set of an element g ∈ G is given by

Xg := {x ∈ X | g · x = x};

more generally, if H ⊂ G is a subset, then we write XH :=
⋂
h∈H X

h.
• We say that the action of G on X has a global fixed point , if XG 6= ∅.

Example 4.1.15 (Isometries of the unit square). Let Q = [0, 1] × [0, 1] be the
(filled) unit square in R2, and let G be the isometry group of Q with respect
to the Euclidean metric on R2. Then G naturally acts on Q by isometries
and we know that G ∼= D4 (Example 2.2.20).
• Let t ∈ G be the reflection along the diagonal passing through (0, 0)

and (1, 1). Then
Qt =

{
(x, x)

∣∣ x ∈ [0, 1]
}
.

• Let s ∈ G be rotation around 2π/4. Then

Qs = {(1/2, 1/2)}.

• The orbit of (0, 0) are all four vertices of Q, and the stabiliser of (0, 0)
is G(0,0) = {idQ, t}.
• The stabiliser of (1/3, 0) is the trivial group.
• The stabiliser of (1/2, 1/2) is G(1/2,1/2) = G, so (1/2, 1/2) is a global

fixed point of this action.

Proposition 4.1.16 (Actions of finite groups on trees). Every action of a finite
group on a (non-empty) tree has a global fixed point (in the sense that there
is a vertex fixed by all group elements or an edge fixed by all group elements).
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Proof. This can be shown by looking at a “minimal” orbit of a vertex and
paths between vertices of this orbit (Exercise 4.E.7).

Proposition 4.1.17 (Counting orbits). Let G be a group acting on a set X.

1. If x ∈ X, then the map

Ax : G/Gx −→ G · x
g ·Gx 7−→ g · x

is well-defined and bijective. Here, G/Gx denotes the set of all Gx-co-
sets in G, i.e., G/Gx = {g ·Gx | g ∈ G}.

2. Moreover, the number of distinct orbits equals the average number of
points fixed by a group element: If G and X are finite, then

|G \X| = 1

|G|
·
∑
g∈G
|Xg|.

Proof. Ad 1. We start by showing that Ax is well-defined, i.e., that the values
on cosets do not depend on the chosen representatives inG/Gx: Let g1, g2 ∈ G
with g1 · Gx = g2 · Gx. Then there exists an h ∈ Gx with g1 = g2 · h. By
definition of Gx, we then have g1 · x = (g2 · h) · x = g2 · (h · x) = g2 · x; thus,
Ax is well-defined.

By construction, the map Ax is surjective. Why is Ax also injective? Let
g1, g2 ∈ G with g1 · x = g2 · x. Then (g−1

1 · g2) · x = x and so g−1
1 · g2 ∈ Gx.

Therefore, g1 ·Gx = g1 · (g−1
1 · g2) ·Gx = g2 ·Gx. Hence, Ax is injective.

Ad 2. This equality is proved by double counting: More precisely, we con-
sider the set

F := {(g, x) | g ∈ G, x ∈ X, g · x = x} ⊂ G×X.

By definition of stabiliser groups and fixed sets, we obtain∑
x∈X
|Gx| = |F | =

∑
g∈G
|Xg|.

We now transform the left hand side: We know |G/Gx| · |Gx| = |G| because
every coset of Gx in G has the same size as Gx; therefore, using the first part,
we obtain∑

x∈X
|Gx| =

∑
x∈X

|G|
|G/Gx|

=
∑
x∈X

|G|
|G · x|

=
∑

G·x∈G\X

∑
y∈G·x

|G|
|G · x|

=
∑

G·x∈G\X

|G · x| · |G|
|G · x|

= |G \X| · |G|.
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Figure 4.3.: The same punchcard seen from different sides/angles

4.1.3 Application: Counting via group actions

Group actions can be used to solve counting problems. A standard example
from algebra is the proof of the Sylow theorems in finite group theory: in this
proof, the conjugation action of a group on the set of certain subgroups is
considered [6, Chapter 20]. Moreover, group actions also provide a convenient
means to organise the proof of normal form theorems for amalgamated free
products and HNN-extensions [150, Chapter 11]

Another class of examples arises in combinatorics:

Example 4.1.18 (Counting punchcards [3]). How many 3×3-punchcards with
exactly two holes are there, if front and back sides of the punchcards are not
distinguishable, and also all vertices are indistinguishable? For example, the
punchcards depicted in Figure 4.3 are all considered to be the same.

In terms of group actions, this question can be reformulated as follows:
We consider the set of all configurations{

(x, y)
∣∣ x, y ∈ {0, 1, 2} × {0, 1, 2}, x 6= y

}
of two holes in a 3 × 3-square, on which the isometry group D4 of the
“square” {0, 1, 2}2 acts, and we want to know how many different orbits
this action has.

In view of Proposition 4.1.17, it suffices to determine for each element
of D4 = 〈s, t | t2, s4, tst−1 = s−1〉 (Example 2.2.20) the number of configu-
rations fixed by this element. Taking into account that conjugate elements
have the same number of fixed points, we obtain the following table (where
s and t denote the images of s and t respectively under the canonical map
from F ({s, t}) to D4):

conjugacy class in D4 number of fixed configurations

e 36
s, s−1 0
s2 4
t, s2 · t 3 + 3 = 6
s · t, t · s 3 + 3 = 6
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Figure 4.4.: The punchcards fixed by rotation around π

For example, the element s2, i.e., rotation around π, fixes exactly the four
configurations shown in Figure 4.4. Using the formula of Proposition 4.1.17,
we obtain that in total there are exactly

1

8
· (1 · 36 + 2 · 0 + 1 · 4 + 2 · 6 + 2 · 6) = 8

different punchcards.
In this example, it is also possible to go through all 36 configurations and

check by hand which of the configurations lead to the same punchcards; how-
ever, the argument given above, easily generalises to bigger punchcards – the
formula of Proposition 4.1.17 provides a systematic way to count essentially
different configurations.

4.1.4 Transitive actions

Transitive actions on “connected spaces” yield generating sets through “close
neighbours”. A first instance of this general principle is Proposition 4.1.20.
A metric version of this principle is the Švarc-Milnor lemma (Chapter 5.4).

Definition 4.1.19 (Transitive action on a set). A group action on a set is
transitive if it has at most one orbit.

For example, if G is a group and S ⊂ G is a generating set, then the left
translation action of G on the vertices of Cay(G,S) is transitive (and free).
In fact, this property can be used to characterise Cayley graphs in terms of
actions on graphs:

Proposition 4.1.20 (Actions on graphs yield Cayley graphs). Let G be a group
and let G act on a connected graph X = (V,E) by graph automorphisms. If
this action is free and transitive on V of vertices of X and if x ∈ V , then the
set

S :=
{
s ∈ G

∣∣ {x, s · x} ∈ E}
generates G and the Cayley graph Cay(G,S) is isomorphic to X.

Proof. As first step, we use the action on the vertices to identify V with the
acting group G: Because the G-action on V is free and transitive, the map



th
is

is
a

dra
ft

ve
rsi

on
!

4.1. Review of group actions 85

xj = gj · x

xj+1 = gj+1 · x

x0 = x x1

xn = g · x
 
g−1
j ·

x

g−1
j · gj+1 · x

Figure 4.5.: From paths to words, using a transitive action

ϕ : G −→ V

g 7−→ g · x

is bijective (Proposition 4.1.17). As second step, we show that the set S indeed
is a generating set of G: Let g ∈ G. Because the graph X is connected, there
is a path x0 = x, x1, . . . , xn = g · x in X joining x and g · x. We now only
need to translate this path into steps in the group G, using the action of G
on X (Figure 4.5). For all j ∈ {0, . . . , n− 1} we let

gj := ϕ−1(xj) ∈ G

and
sj := g−1

j · gj+1 ∈ G.

Why is sj ∈ S ? Because x0, . . . , xn is a path in X, we know that {xj , xj+1}
is an edge of X. As G acts by graph automorphisms, also {g−1

j ·xj , g
−1
j ·xj+1}

is an edge of X. By construction,

g−1
j · xj =

(
ϕ−1(xj)

)−1 · xj =
(
ϕ−1(xj)

)−1 · ϕ−1(xj) · x = x

and
g−1
j · xj+1 = g−1

j · gj+1 · x = sj · x

Thus, sj ∈ S. On the other hand, by definition,

g = gn = g0 · g−1
0 · g1 · · · · · gn−1 · g−1

n−1 · gn
= e · s0 · s1 · · · · · sn−1.

Therefore, S is a generating set of G.

It remains to prove that Cay(G,S) is isomorphic to the given graph X.
To this end, we prove that ϕ induces such a graph isomorphism: We already
know that ϕ is bijective on the vertices. What about the edges? Let g, h ∈ G.
Then {

ϕ(g), ϕ(h)
}

= {g · x, h · x}.
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Because G acts by graph automorphisms on X, this set is an edge of X if
and only if

{x, g−1 · hx} =
{
g−1 · (g · x), g−1 · (h · x)

}
is an edge of X. By construction of S, this is equivalent to g−1 · h ∈ S,
whence equivalent to {g, h} being an edge of Cay(G,S). Hence, Cay(G,S) is
isomorphic to the graph X.

Outlook 4.1.21 (Cayley complex). Let G be a group. By Proposition 4.1.20,
a Cayley graph of G is nothing but a connected graph with a G-action whose
induced action on the vertices is free and transitive. Cayley complexes are a
two-dimensional version of this concept: A Cayley complex of G is a simply
connected two-dimensional CW-complex with a cellular action by G such that
the induced action on the vertices is free and transitive. The condition of being
simply connected is a higher version of connectedness from algebraic topology
(Definition A.1.3) and CW-complexes are a topological higher-dimensional
generalisation of graphs.

If 〈S |R〉 is a presentation of G, then the universal covering of the presen-
tation complex of 〈S |R〉 is a Cayley complex of G (Outlook 3.2.5). Moreover,
for every generating set S of G there is a Cayley complex of G such that its
1-skeleton corresponds (almost) to Cay(G,S) [45, Chapter 2.2].

4.2 Free groups and actions on trees

In this section, we show that free groups can be characterised geometrically
via free actions on trees; recall that for a free action of a group on a graph
no non-trivial group element is allowed to fix any vertices or edges (Defini-
tion 4.1.8).

Theorem 4.2.1 (Free groups and actions on trees). A group is free if and only
if it admits a free action on a (non-empty) tree.

Proof of Theorem 4.2.1, part I. Let F be a free group, freely generated by a
set S ⊂ F ; then the Cayley graph Cay(F, S) is a tree by Theorem 3.3.1. We
consider the left translation action of F on Cay(F, S).

Looking at the description of F in terms of reduced words (Proposi-
tion 3.3.5) or applying the universal property of F with respect to the free
generating set S to maps S −→ Z it is easily seen that S cannot contain
elements of order 2; therefore, the left translation action of F on Cay(F, S)
is free by Proposition 4.1.10.

Conversely, suppose that a group G acts freely on a tree T . How can we
prove that G has to be free? Roughly speaking, we will show that out of T
and the G-action on T we can construct – by contracting certain subtrees –
a tree that is a Cayley graph of G for a suitable generating set and such that
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Figure 4.6.: A spanning tree (red) for a shift action of Z

the assumptions of Theorem 3.3.3 are satisfied. This allows us to deduce that
the group G is free.

The subtrees that will be contracted are (equivariant) spanning trees,
which we will discuss in the following section.

4.2.1 Spanning trees for group actions

Spanning trees for group actions are a natural generalisation of spanning
trees of graphs:

Definition 4.2.2 (Spanning tree of an action). Let G be a group acting on a
connected graph X by graph automorphisms. A spanning tree of this action
is a subgraph of X that is a tree and that contains exactly one vertex of every
orbit of the induced G-action on the vertices of X.

Example 4.2.3 (Spanning trees). We consider the action of Z by “horizontal”
shifting on the (infinite) tree depicted in Figure 4.6. Then the red subgraph
is a spanning tree for this action.

Theorem 4.2.4 (Existence of spanning trees). Every action of a group on a
connected graph by graph automorphisms admits a spanning tree.

Proof. Let G be a group acting on a connected graph X. In the following,
we may assume that X is non-empty (otherwise the empty tree is a spanning
tree for the action). We consider the set TG of all subtrees of X that contain
at most one vertex of every G-orbit. We show that TG contains an element T
that is maximal with respect to the subtree relation. The set TG is non-empty,
e.g., the empty tree is an element of TG. Clearly, the set TG is partially ordered
by the subgraph relation, and every totally ordered chain of TG has an upper
bound in TG (namely the “union” over all trees in this chain). By Zorn’s
lemma, there is a maximal element T in TG; because X is non-empty, so
is T .

We now show that T is a spanning tree for the G-action on X: Assume
for a contradiction that T is not a spanning tree for the G-action on X.
Then there is a vertex v such that none of the vertices of the orbit G · v is a
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Figure 4.7.: Contracting the spanning tree and all its translates to vertices
(red), in the situation of Example 4.2.3

vertex of T . We now show that there is such a vertex v such that one of the
neighbours of v is a vertex of T :

As X is connected there is a path p connecting some vertex u of T with v.
Let v′ be the first vertex on p that is not in T . We distinguish the following
two cases:

1. None of the vertices of the orbit G · v′ is contained in T ; then the
vertex v′ has the desired property.

2. There is a g ∈ G such that g · v′ is a vertex of T . If p′ denotes the
subpath of p starting in v′ and ending in v, then g ·p′ is a path starting
in the vertex g · v′, which is a vertex of T , and ending in g · v, a vertex
such that none of the vertices in G · g · v = G · v is in T . Because the
path p′ is shorter than the path p, iterating this procedure produces
eventually a vertex with the desired property.

Let v be a vertex such that none of the vertices of the orbit G · v is in T ,
and such that some neighbour u of v is in T . Then clearly, adding v and
the edge {u, v} to T produces a tree in TG, which contains T as a proper
subgraph. This contradicts the maximality of T . Hence, T is a spanning tree
for the G-action on X.

4.2.2 Reconstructing a Cayley tree

In the following, we use the letter “e” both for the neutral group element,
and for edges in a graph; it will always be clear from the context which of
the two is meant.

Proof of Theorem 4.2.1, part II. Let G be a group acting freely on a tree T
by graph automorphisms. By Theorem 4.2.4 there exists a spanning tree T ′

for this action.

The idea is to think about the graph obtained from T by contracting T ′

and all its copies g · T ′ for g ∈ G each to a single vertex (Figure 4.7 shows
this in the situation of Example 4.2.3); here, g ·T ′ denotes the subgraph of T
obtained by translating T ′ by g. This idea of contracting T ′ can be made
precise and concludes the proof with an application of Proposition 4.1.20
(Remark 4.2.5). However, we prefer to proceed directly in the original tree T :

As in Proposition 4.1.20, the candidate for a generating set comes from
the edges joining these new vertices: An edge of T is called essential if it does
not belong to T ′, but if one of the vertices of the edge in question belongs
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e

ge · T ′T ′

Figure 4.8.: An essential edge (red) for the shift action of Z (Example 4.2.3)

to T ′ (then the other vertex cannot belong to T ′ as well, by uniqueness of
paths in trees (Proposition 3.1.10)).

As first step we construct a candidate S ⊂ G for a free generating set of G:
Let e be an essential edge of T , say e = {u, v} with u a vertex of T ′ and v
not a vertex of T ′. Because T ′ is a spanning tree, there is an element ge ∈ G
such that g−1

e · v is a vertex of T ′; equivalently, v is a vertex of ge · T ′. The
element ge is uniquely determined by this property as the orbit G · v shares
only a single vertex with T ′, and as G acts freely on T .

We define

S̃ := {ge ∈ G | e is an essential edge of T}.

This set S̃ has the following properties:
1. By definition, the neutral element is not contained in S̃.
2. The set S̃ does not contain an element of order 2 because G acts freely

on a non-empty tree (and so cannot contain any non-trivial elements
of finite order by Proposition 4.1.16).

3. If e and e′ are essential edges with ge = ge′ , then e = e′ (because T is
a tree and therefore there cannot be two different edges connecting the
connected subgraphs T ′ and ge · T ′ = ge′ · T ′).

4. If g ∈ S̃, say g = ge for some essential edge e, then also g−1 = gg−1·e is

in S̃, because g−1 · e is easily seen to be an essential edge.
In particular, there is a subset S ⊂ S̃ with

S ∩ S−1 = ∅ and |S| = |S̃|
2

=
1

2
·#essential edges of T .

The set S̃ (and hence S) generates G: Let g ∈ G. We pick a vertex v of T ′.
Because T is connected, there is a path p in T connecting v and g · v. The
path p passes through several copies of T ′, say, g0 · T ′, . . . , gn · T ′ of T ′ in
this order, where gj+1 6= gj for all j ∈ {0, . . . , n − 1}, and g0 = e, gn = g
(Figure 4.9).

Let j ∈ {0, . . . , n − 1}. Because T ′ is a spanning tree and gj 6= gj+1, the
copies gj · T ′ and gj+1 · T ′ are joined by an edge ej . By definition, g−1

j · ej is
an essential edge, and the corresponding group element
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p

ej

v

T ′

g1 · T ′

gj · T ′

gj+1 · T ′

g · T ′

g · v

Figure 4.9.: The set S̃ generates G

sj := g−1
j · gj+1

lies in S̃. Therefore, we obtain that

g = gn = g−1
0 · gn

= g−1
0 · g1 · g−1

1 · g2 · · · · · g−1
n−1 · gn

= s0 · · · · · sn−1

is in the subgroup of G generated by S̃. In other words, S̃ is a generating
set of G. (And we can view the graph obtained by collapsing each of the

translates of T ′ in T to a vertex as the Cayley graph Cay(G, S̃)).
The set S is a free generating set of G: In view of Theorem 3.3.3 it suf-

fices to show that the Cayley graph Cay(G,S) does not contain any cycles.
Assume for a contradiction that there is an n ∈ N≥3 and a cycle g0, . . . , gn−1

in Cay(G,S) = Cay(G, S̃). By definition, the elements

∀j∈{0,...,n−2} sj+1 := g−1
j · gj+1

and sn := g−1
n−1 · g0 are in S̃. For j ∈ {1, . . . , n} let ej be an essential edge

joining T ′ and sj · T ′.
Because each of the translates of T ′ is a connected subgraph, we can con-

nect those vertices of the edges gj · ej and gj · sj · ej+1 = gj+1 · ej+1 that lie
in gj+1 ·T ′ by a path in gj+1 ·T ′ (Figure 4.10). Using the fact that g0, . . . , gn−1

is a cycle in Cay(G, S̃), one sees that the resulting concatenation of paths is
a cycle in T , which contradicts the hypothesis that T is a tree.

Remark 4.2.5 (Contracting a spanning tree). The contraction construction
idea in the previous proof can also be implemented as follows: Let X = (V,E)
be the following graph:
• We set

V := {g · T ′ | g ∈ G}

• and
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gj · T ′ gj+1 · T ′ gj+2 · T ′

gj · ej

gj+1 · ej+1

Figure 4.10.: Cycles in Cay(G, S̃) lead to cycles in T by connecting trans-
lates of essential edges in the corresponding translates of T ′

(red path)

E :=
{
{g ·T ′, h ·T ′}

∣∣ g, h ∈ G and g · T ′ and h · T ′ are adjacent in T
}
.

For g, h ∈ G we call g · T ′ and h · T ′ adjacent in T , if g · T ′ 6= h · T ′ and
there exist vertices v ∈ g · T ′ and w ∈ h · T ′ such that {v, w} is an edge
of T .

One then establishes the following facts (Exercise 4.E.11):
1. For all g, h ∈ G with g 6= h, the copies g ·T ′ and h ·T ′ have no common

vertex. If g ·T ′ and h ·T ′ are adjacent, then there is a unique connecting
edge between g · T ′ and h · T ′.

2. The graph X is a tree.
3. The graph X admits a G-action that is free and transitive on the set V

of vertices.
Therefore, Proposition 4.1.20 (applied to the action of G on X) shows that

G admits a generating set S̃ such that the Cayley graph Cay(G, S̃) is a tree
(namely, the tree X). Because G acts freely on the tree T , the group G cannot
contain any elements of order 2 (Proposition 4.1.16). Therefore, one can select

a generating set S ⊂ S̃ that satisfies the hypotheses of Theorem 3.3.3.

Remark 4.2.6 (Topological proof). Let G be a group acting freely on a tree;
then G also acts freely, continuously, cellularly, and properly discontinuously
on the CW-realisation X of this tree, which is contractible. Covering theory
shows that the quotient space G \X is homeomorphic to a one-dimensional
CW-complex and that G ∼= π1(G\X). The Seifert-van Kampen theorem then
yields that G is a free group [115, Chapter VI].

Outlook 4.2.7 (Bass-Serre theory). We characterised free groups as those
groups that admit free actions on trees. What happens if we relax the free-
ness condition for actions on trees? The ultimate result regarding actions on
trees is given by Bass-Serre theory in terms of so-called graphs of groups and
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their fundamental groups [159, Chapter 5][66, Chapter 6]. Roughly speaking,
if a group G admits an action on a tree (without inversions), then G can be
decomposed into groups, where the combinatorics of this decomposition is re-
lated to the orbit structure and the corresponding stabilisers of the G-action
on the tree.

The simplest cases of such decompositions are amalgamated free products
and HNN-extensions. In other words, free products, amalgamated free prod-
ucts, and HNN-extensions also admit characterisations in terms of actions on
trees with suitable orbit structures and stabilisers.

4.2.3 Application: Subgroups of free groups are free

The characterisation of free groups in terms of free actions on trees allows
us to prove freeness of subgroups in many situations that are algebraically
rather inaccessible:

Corollary 4.2.8 (Nielsen-Schreier theorem). Subgroups of free groups are free.

Proof. Let F be a free group, and let G ⊂ F be a subgroup of F . Be-
cause F is free, the group F acts freely on a non-empty tree; hence, also the
(sub)group G acts freely on this non-empty tree. Therefore, G is a free group
by Theorem 4.2.1.

Example 4.2.9. Free groups do not contain subgroups that are isomorphic
to Z2: Let F be a free group and let H ⊂ F be a subgroup. Then H is free
(by the Nielsen-Schreier theorem, Corollary 4.2.8). Because Z2 is not free
(Exercise 2.E.11), we obtain that H 6∼= Z2. We will see a vast, geometric,
generalisation of this fact in Corollary 7.5.15.

Recall that the index of a subgroup H ⊂ G of a group G is the number
of cosets of H in G; we denote the index of H in G by [G : H]. For example,
the subgroup 2 · Z of Z has index 2 in Z.

Corollary 4.2.10 (Nielsen-Schreier theorem, quantitative version). Let F be a
free group of rank n ∈ N, and let G ⊂ F be a subgroup of index k ∈ N. Then
G is a free group of rank k · (n− 1) + 1.

In particular, finite index subgroups of free groups of finite rank are finitely
generated.

Proof. Let S be a free generating set of F , and let T := Cay(F, S); so T is a
tree and the left translation action of F on T is free. Therefore, also the left
translation action of the subgroup G on T is free (and so G is free). Looking
at the proof of Theorem 4.2.1 shows that the rank of G equals E/2, where E
is the number of essential edges of the action of G on T .

We determine E by a counting argument: Let T ′ be a spanning tree of the
action of G on T . From [F : G] = k we deduce that T ′ has exactly k vertices.



th
is

is
a

dra
ft

ve
rsi

on
!

4.2. Free groups and actions on trees 93

For a vertex v in T we denote by dT (v) the degree of v in T , i.e., the number
of neighbours of v in T . Because T is a regular tree all of whose vertices have
degree 2 · |S| = 2 ·n, we obtain (where V (T ′) denotes the set of vertices of T ′)

2 · n · k =
∑

v∈V (T ′)

dT (v).

On the other hand, T ′ is a finite tree with k vertices and therefore T ′ has
exactly k − 1 edges (Exercise 3.E.4). Because the edges of T ′ are counted
twice when summing up the degrees of the vertices of T ′, we obtain

2 · n · k =
∑

v∈V (T ′)

dT (v) = 2 · (k − 1) + E;

in other words, the G-action on T has 2 · (k · (n− 1) + 1) essential edges, as
desired.

Remark 4.2.11 (Topological proof of the Nielsen-Schreier theorem). A topo-
logical version of the proof of the Nielsen-Schreier theorem can be given via
covering theory [115, Chapter VI]: Let F be a free group of rank n; then F is
the fundamental group of an n-fold bouquet X of circles. If G is a subgroup
of F , we can look at the corresponding covering X −→ X of X. As X can be
viewed as a one-dimensional CW-complex, also the covering space X inherits
the structure of a one-dimensional CW-complex. On the other hand, every
such space is homotopy equivalent to a bouquet of circles, and hence has free
fundamental group. Because X −→ X is the covering corresponding to the
subgroup G of F , it follows that G ∼= π1(X) is a free group.

Taking into account that the Euler characteristic of finite CW-complexes
is multiplicative with respect to finite coverings, one can also prove the quan-
titative version of the Nielsen-Schreier theorem via covering theory.

Corollary 4.2.12. If F is a free group of rank at least 2, and n ∈ N, then
there is a subgroup of G that is free of finite rank at least n.

Proof. Using a surjective homomorphism F −→ Z, one can construct sub-
groups of finite index in F . We can then apply the quantitative version of
the Nielsen-Schreier theorem to obtain free subgroups of large rank (Exer-
cise 4.E.12).

Outlook 4.2.13 (Hanna Neumann conjecture). Let F be a free group, and let
G and H be subgroups of F . Hence, G and H are free. Suppose that the
ranks m and n of G and H respectively are finite and non-zero. Then Hanna
Neumann (Remark 2.3.12) conjectured that the rank r of G∩H (which as a
subgroup of a free group again is free) satisfies

r − 1 ≤ (m− 1) · (n− 1).
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This conjecture was proved to be correct by J. Friedman [62] and I. Mi-
neyev [121, 122], in 2011. A short, rather elementary, proof was provided by
W. Dicks [47].

Corollary 4.2.14. Finite index subgroups of finitely generated groups are
finitely generated.

Proof. Let G be a finitely generated group, and let H be a finite index sub-
group of G. If S is a finite generating set of G, then the universal prop-
erty of the free group F (S) freely generated by S provides us with a surjec-
tive homomorphism π : F (S) −→ G. Let H ′ be the preimage of H under π;
so H ′ is a subgroup of F (S), and a straightforward calculation shows that
[F (S) : H ′] = [G : H].

By Corollary 4.2.10, the group H ′ is finitely generated; but then also the
image H = π(H ′) is finitely generated.

We will later see an alternative proof of Corollary 4.2.14 via the Švarc-
Milnor lemma (Corollary 5.4.5).

Corollary 4.2.15 (Free subgroups of free products). Let G and H be finite
groups. Then all torsion-free subgroups of the free product G ∗ H are free
groups.

Sketch of proof. Without loss of generality we may assume that G and H are
non-trivial. We construct a tree on which the group G ∗ H acts with finite
stabilisers:

Let X be the graph,
• whose set of vertices is V := {x ·G | x ∈ G ∗H} ∪ {x ·H | x ∈ G ∗H}

(where we view the vertices as subsets of G ∗H), and
• whose set of edges is {

{x ·G, x ·H}
∣∣ x ∈ G ∗H}

(see Figure 4.11 for the free product Z/2 ∗Z/3). Using the description of the
free product G ∗H in terms of reduced words (Outlook 3.3.8) one can show
that the graph X is a tree.

The free product G ∗ H acts on the tree X by left translation, given on
the vertices by

(G ∗H)× V −→ V

(y, x ·G) 7−→ (y · x) ·G
(y, x ·H) 7−→ (y · x) ·H.

What are the stabilisers of this action? Let x ∈ G ∗ H, and y ∈ G ∗ H.
Then y is in the stabiliser of x ·G if and only if

x ·G = y · (x ·G) = (y · x) ·G,
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eZ/2 = aZ/2
bZ/2

b2Z/2

abZ/2

ab2Z/2

eZ/3 = bZ/3 = b2Z/3 aZ/3 = abZ/3 = ab2Z/3

Figure 4.11.: The tree for the free product Z/2 ∗ Z/3 ∼= 〈a, b | a2, b3〉

which is equivalent to y ∈ x ·G ·x−1. Analogously, y is in the stabiliser of the
vertex x ·H if and only if y ∈ x ·H · x−1. A similar computation shows that
the stabiliser of an edge {x ·G, x ·H} is x ·G · x−1 ∩ x ·H · x−1 = {e}.

Because G and H are finite, all stabilisers of the above action of G ∗ H
on the tree X are finite. Therefore, every torsion-free subgroup of G ∗H acts
freely on the tree X. Applying Theorem 4.2.1 finishes the proof.

A similar technique as in the previous proof shows for all primes p ∈ Z
that all torsion-free subgroups of SL(2,Qp) are free [159].

4.3 The ping-pong lemma

The following sufficient criterion for freeness via suitable actions is due to
F. Klein; it should be noted that there are lots of variations of this principle
in the literature that all go by the name of ping-pong lemma.

Theorem 4.3.1 (Ping-pong lemma). Let G be a group, generated by elements a
and b. Suppose there is a G-action on a set X such that there are non-empty
subsets A, B ⊂ X with B not contained in A and such that for all n ∈ Z\{0}
we have

an ·B ⊂ A and bn ·A ⊂ B.

Then G is free of rank 2, freely generated by {a, b}.

Proof. Let α 6= β. It suffices to find an isomorphism Fred({α, β}) ∼= G that
maps {α, β} to {a, b}. By the universal property of the free group Fred({α, β})
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B A

an

bm

Figure 4.12.: The ping-pong lemma

there is a group homomorphism ϕ : Fred({α, β}) −→ G mapping α to a and
β to b. Because G is generated by {a, b}, the homomorphism ϕ is surjective.

Assume for a contradiction that ϕ is not injective; hence, there is a reduced
word w ∈ Fred({α, β}) \ {ε} with ϕ(w) = e. Depending on the first and last
letter of w, there are four cases:

1. The word w starts and ends with a (non-trivial) power of α, i.e.,
we can write w = αn0βm1αn1 . . . βmkαnk for some k ∈ N and cer-
tain n0, . . . , nk,m1, . . . ,mk ∈ Z \ {0}. Then (ping-pong! – see Fig-
ure 4.12)

B = e ·B = ϕ(w) ·B
= an0 · bm1 · an1 · · · · · bmk · ank ·B
⊂ an0 · bm1 · an1 · · · · · bmk ·A ping!

⊂ an0 · bm1 · an1 · · · · · ank−1 ·B pong!

⊂ · · ·
...

⊂ an0 ·B
⊂ A,

which contradicts the assumption that B is not contained in A.
2. The word w starts and ends with non-trivial powers of β. Then αwα−1

is a reduced word starting and ending in non-trivial powers of α. So

e = ϕ(α) · e · ϕ(α)−1 = ϕ(α) · ϕ(w) · ϕ(α−1) = ϕ(αwα−1),

contradicting what we already proved for the first case.
3. The word w starts with a non-trivial power of α and ends with a non-

trivial power of β, say w = αnw′βm with n,m ∈ Z\{0} and w′ a reduced
word not starting with a non-trivial power of α and not ending in a non-
trivial power of β. Let r ∈ Z \ {0,−n}. Then αrwα−r = αr+nw′βmαr

starts and ends with a non-trivial power of α and
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e = ϕ(αrwα−r),

contradicting what we already proved for the first case.
4. The word w starts with a non-trivial power of β and ends with a

non-trivial power of α. Then the inverse of w falls into the third case
and ϕ(w−1) = e, which is impossible.

Therefore, ϕ is injective, and so ϕ : Fred({α, β}) −→ G is an isomorphism
with ϕ({α, β}) = {a, b}, as was to be shown.

Outlook 4.3.2 (Ping-pong lemma for free products). Similarly, using the de-
scription of free products in terms of reduced words (Outlook 3.3.8), one can
show the following [77, II.24]: Let G be a group, let G1 and G2 be two sub-
groups of G with |G1| ≥ 3 and |G2| ≥ 2, and suppose that G is generated
by the union G1 ∪G2. If there is a G-action on a set X such that there are
non-empty subsets X1, X2 ⊂ X with X2 not contained in X1 and such that

∀g∈G1\{e} g ·X2 ⊂ X1 and ∀g∈G2\{e} g ·X1 ⊂ X2,

then G ∼= G1 ∗G2.

The ping-pong lemma is a standard tool to establish that certain matrix
groups are free (Chapter 4.4). Further examples are given in de la Harpe’s
book [77, Chapter II.B]; in particular, it can be shown that the group of
homeomorphisms R −→ R contains a free group of rank 2 (Exercise 4.E.16).

4.4 Free subgroups of matrix groups

Via the ping-pong lemma we can establish that certain matrix groups are free.
We will illustrate this first in a simple example in SL(2,Z) (Chapter 4.4.1),
which has applications in graph theory (Chapter 4.4.2); finally, we will briefly
discuss the Tits alternative (Chapter 4.4.3).

4.4.1 Application: The group SL(2,Z) is virtually free

As a first example, we consider the case of the modular group:

Example 4.4.1 (A free subgroup of SL(2,Z)). Let a, b ∈ SL(2,Z) be given by

a :=

(
1 2
0 1

)
and b :=

(
1 0
2 1

)
.

We show that the subgroup of SL(2,Z) generated by {a, b} is a free group of
rank 2 (freely generated by {a, b}) via the ping-pong lemma:



th
is

is
a

dra
ft

ve
rsi

on
!

98 4. Group actions

The matrix group SL(2,Z) acts on R2 by matrix multiplication. We con-
sider the subsets

A :=

{(
x
y

)
∈ R2

∣∣∣∣ |x| > |y|} and B :=

{(
x
y

)
∈ R2

∣∣∣∣ |x| < |y|}
of R2. Then A and B are non-empty and B is not contained in A. Moreover,
for all n ∈ Z \ {0} and all (x, y) ∈ B we have

an ·
(
x
y

)
=

(
1 2 · n
0 1

)
·
(
x
y

)
=

(
x+ 2 · n · y

y

)
and

|x+ 2 · n · y| ≥ |2 · n · y| − |x| ≥ 2 · |y| − |x|
> 2 · |y| − |y|
= |y|;

so an ·B ⊂ A. Similarly, we see that bn ·A ⊂ B for all n ∈ Z \ {0}. Thus, we
can apply the ping-pong lemma and deduce that the subgroup of SL(2,Z)
generated by {a, b} is freely generated by {a, b}. Notice that it would be
rather awkward to prove this by hand, using only matrix calculations.

A more careful analysis shows that this free subgroup of rank 2 has index 12
in SL(2,Z):

Proposition 4.4.2 (SL(2,Z) is virtually free). Let

a :=

(
1 2
0 1

)
and b :=

(
1 0
2 1

)
.

Then F := 〈{a, b}〉SL(2,Z) has finite index in SL(2,Z). More specifically: We
consider the subgroups

F ′ :=

{(
4m+ 1 2r

2s 4n+ 1

) ∣∣∣∣ m,n, r, s ∈ Z, det

(
4m+ 1 2r

2s 4n+ 1

)
= 1

}
G :=

{(
2m+ 1 2r

2s 2n+ 1

) ∣∣∣∣ m,n, r, s ∈ Z, det

(
2m+ 1 2r

2s 2n+ 1

)
= 1

}
of SL(2,Z).

1. Then [G : F ′] = 2 and
[
SL(2,Z) : G

]
= 6. In particular,[

SL(2,Z) : F ′
]

= 12.

2. Moreover, F = F ′.

Proof. Ad 1. We first show that [G : F ′] = 2: Let
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x :=

(
2m+ 1 2r

2s 2n+ 1

)
∈ G.

Considering the determinant condition modulo 4 shows that either both m
and n are odd, or they are both even. If m and n are even, then clearly x ∈ F ′.
In the case that m and n are odd, a straightforward calculation shows that
(−E2) · x ∈ F ′, where E2 denotes the unit 2× 2-matrix. Thus,

{g · F ′ | g ∈ G} = F ′ t (−E2) · F ′,

which proves that [G : F ′] = 2.
We now show that

[
SL(2,Z) : G

]
= 6: By definition, G is the kernel of

the homomorphism SL(2,Z) −→ SL(2,Z/2) given by reduction modulo 2.
Therefore, [

SL(2,Z) : G
]

=
∣∣SL(2,Z/2)

∣∣.
A simple counting argument shows that

∣∣SL(2,Z/2)
∣∣ = 6 (Exercise 4.E.18).

Elementary group theory shows that the index is multiplicative with re-
spect to intermediate groups and so

[
SL(2,Z) : F ′

]
= 6 · 2 = 12.

Ad 2. A straightforward induction shows that F ⊂ F ′. Why does also the
converse inclusion F ′ ⊂ F hold? Let

x =

(
x11 x12

x21 x22

)
∈ F ′.

We show by induction over min(|x11|, |x12|) that x ∈ F , using the following
arguments:
• Base case. If x12 = 0, then the determinant 1 condition implies that
x11 = 1 = x22, and so x ∈ 〈b〉SL(2,Z) ⊂ F .
• Induction step I. If |x12| ≥ |x11|, then we proceed as follows: We use

integer division to find k ∈ Z and R ∈ {0, . . . , |2x11| − 1} with

x12 + |x11| = −k · 2x11 +R.

We then consider the matrix

x′ := x · ak =

(
x11 x12 + 2k · x11

x21 x22 + 2k · x21

)
.

By construction, we have x′ ∈ x · F and

|x′12| = |x12 + 2k · x11| =
∣∣−|x11| − 2k · x11 +R+ 2k · x11

∣∣
≤ |x11| = |x′11|.

Moreover, parity shows that |x′12| 6= |x′11| and so |x′12| < |x′11|. In par-
ticular, min(|x′11|, |x′12|) = |x′12| < |x′11| = |x11| = min(|x11|, |x12|).
• Induction step II. Similarly, if |x12| < |x11|, then we can find k ∈ Z and
R ∈ {0, . . . , |2x12| − 1} with x11 + |x12| = −k · 2x12 + R. We consider
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the matrix
x′ := x · bk ∈ x · F

and obtain min(|x′11|, |x′12|) < min(|x11, |x12|), similar to the previous
case.

Therefore, inductively, we obtain that x ∈ F .

The fact that free groups can be embedded into SL(2,Z) also has other
interesting group-theoretic consequences for free groups; for example, finitely
generated free groups can be approximated in a reasonable way by finite
groups (Exercise 4.E.26).

Outlook 4.4.3 (SL(2,Z) as amalgamated free product). The discussion above
can be extended to prove the following fact [159, Example I.4.2]: Let

G1 :=

〈(
0 −1
1 1

)〉
SL(2,Z)

, G2 :=

〈(
0 −1
1 0

)〉
SL(2,Z)

, A := G1 ∩G2.

Then G1
∼= Z/6, G2

∼= Z/4, and A ∼= Z/2 and the inclusions of A into G1

and G2 (and into SL(2,Z)) induce an isomorphism

Z/6 ∗Z/2 Z/4 ∼= G1 ∗A G2
∼= SL(2,Z).

4.4.2 Application: Regular graphs of large girth

We will now discuss a graph-theoretic application of Example 4.4.1, namely
the construction of regular graphs with few vertices and large girth.

Definition 4.4.4 (Girth). The girth g(X) of a graph X is the length of a
shortest cycle in X. By definition, forests have infinite girth.

Example 4.4.5 (Girth of basic graphs). If n ∈ N≥3, then the complete
graph Kn satisfies g(Kn) = 3 and g(Cay(Z/n, {[1]})) = n.

It is a classical construction problem from graph theory to find graphs
of large girth that satisfy additional constraints. A prominent example is
the probabilistic proof [20] of the existence of finite graphs of large girth
and large chromatic number (Definition 3.E.1), which shows that colouring
graphs indeed is a global problem. A first, constructive, step in this direction
is Mycielski’s iterated graph construction [127] (Exercise 4.E.23). Another
construction problem of this type is to exhibit regular graphs of large girth
with “few” vertices.

Margulis [113] solved this problem, using Cayley graphs; for simplicity, we
only treat the case of 4-regular graphs.

Theorem 4.4.6 (Regular graphs of large girth). Let N ∈ N≥5. Then there
exists a graph XN with the following properties:
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• The graph XN is 4-regular.
• The graph XN has at most N3 vertices.
• The graph XN satisfies

g(XN ) ≥ 2 · logd
N

2
− 1,

where d := 1 +
√

2.

It should be noted that this result is asymptotically optimal in the sense
that the girth grows at most logarithmically in the vertices (Exercise 4.E.22).
Moreover, the proof by Margulis is constructive.

Proof. We construct the desired graphs explicitly: Let

a :=

(
1 2
0 1

)
and b :=

(
1 0
2 1

)
be the matrices in SL(2,Z) of Example 4.4.1. Then F := 〈{a, b}〉SL(2,Z) is free
of rank 2. For N ∈ N≥5 we consider the homomorphism

ϕN : SL(2,Z) −→ SL(2,Z/N)

given by reduction modulo N and we set

aN := ϕN (a) and bN := ϕN (b).

Moreover, we define

GN := 〈aN , bN 〉SL(2,Z/N) ⊂ SL(2,Z/N),

XN := Cay(GN , {aN , bN}).

In the following, we will show that this graph XN has the claimed prop-
erties: By construction, XN is 4-regular and XN has at most∣∣SL(2,Z/N)

∣∣ ≤ N3

vertices. Therefore, it remains to prove the lower girth bound: To this end,
we consider two different paths in XN having the same start and endpoints,
i.e., we consider reduced words w, v ∈ Fred(α, β) such that w 6= v and

ϕN (w) = ϕN (v) in GN ;

here, α 6= β, and w, v ∈ F denote the images of w and v respectively under the
canonical homomorphism Fred(α, β) −→ F given by α 7→ a, β 7→ b. In other
words, we evaluate w and v on a, b and on aN , bN . By definition of g(XN ),
we may assume that the lengths m,n ∈ N of w and v respectively satisfy
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g(XN ) = m+ n and max(m,n) ≤ m+ n+ 1

2
.

Because F is free and w 6= v, we obtain w 6= v. Let

c := w − v ∈M2×2(Z).

Then c 6= 0, but the reduction cN of c in M2×2(Z/N) is ϕN (w)−ϕN (v) = 0.
Therefore, all entries of c are divisible by N , i.e., there exists c′ ∈ M2×2(Z)
with

c = N · c′.

In particular, we obtain the following estimates for the operator norms (where
we consider the action of SL(2,Z) on R2 by matrix multiplication)

‖w‖+ ‖v‖ ≥ ‖c‖ = N · ‖c′‖ ≥ N ·max
(
|c′11|, |c′12|, |c′21|, |c′22|

)
≥ N ;

the last inequality follows because the entries of c′ are integral and c′ 6= 0.
On the other hand, a straightforward calculation shows

‖a‖ ≤ 1 +
√

2 = d and ‖b‖ ≤ d.

Therefore, we obtain

N ≤ ‖c‖ ≤ dm + dn ≤ 2 · d
m+n+1

2 = 2 · d
g(XN )+1

2 ,

which gives the desired lower bound for g(XN ).

4.4.3 Application: The Tits alternative

In contrast to SL(2,Z), for n ∈ N≥3, the groups SL(n,Z) do not contain a free
group of finite index (Exercise 4.E.19). But non-Abelian free groups appear
frequently as building blocks in linear groups; more precisely, J. Tits [172]
discovered the following:

Theorem 4.4.7 (Tits alternative). For all fields K and all n ∈ N≥1 the fol-
lowing holds: If G is a finitely generated subgroup of GL(n,K), then
• either G contains a free subgroup of rank 2
• or G contains a finite index subgroup that is solvable.

Solvable groups are discussed in more detail in Chapter 6.3.1; the definition
of solvability is recalled in Definition 6.3.3.

In the following, we will sketch the main steps of the proof of the Tits
alternative. As we will see below, a complete proof requires more machinery
and background in linear algebraic groups and number theory; a detailed
proof can be found in the book by Druţu and Kapovich [53]. The proof of
the Tits alternative consists of the following components:
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• The two alternatives exclude each other (Exercise 4.E.20).
• Recognition of free groups via the ping-pong lemma.
• Eigenvalue analysis to set up the ping-pong lemma.

In Example 4.4.1 we have seen one way to find a free subgroup of rank 2
in SL(2,Z). However, this example of free linear groups does not generalise
well to larger classes of groups. Therefore, we consider a slightly different
type of examples:

Example 4.4.8 (Another free linear group). Let λ ∈ C. We consider the ma-
trices

a :=

(
λ 0
0 1

)
, b := c · a · c−1, c :=

(
1 −1
1 1

)
in GL(2,C) and the action of GL(2,C) on C2 by matrix multiplication. A
straightforward calculation then shows that the subsets

A :=

{(
x
y

)
∈ C2

∣∣∣∣ |x||y| ∈ (1− ε, 1 + ε)

}
,

B := c−1 ·A

satisfy the condition of the ping-pong lemma (Theorem 4.3.1) provided that
|λ| is large enough and ε ∈ R>0 is small enough (Exercise 4.E.21). Hence, in
this case the subgroup 〈a, b〉GL(2,C) is free of rank 2.

Of course, we can argue similarly if a has eigenvalues λ1 and λ2 with big
ratio |λ1|/|λ2|.

In this example, the attracting/repelling nature of eigenspaces is essential;
a convenient way to describe this phenomenon is to pass to the corresponding
action on projective space and to formulate the attraction/repelling proper-
ties for the points in projective space associated with the one-dimensional
eigenspaces of a (and b).

This example suggests that the structure of the spectrum of the matrices
in question plays a central role in finding free subgroups in matrix groups.

As an experiment, let us try to prove the Tits alternative “by hand” for
finitely generated subgroups G of GL(2,C). If G does not contain a solvable
subgroup of finite index, then as suggested above, we will try to find a matrix
in G with a unique largest eigenvalue and a suitable conjugate of this matrix.
Looking at the possible Jordan normal forms shows that a priori it is not
entirely clear that we will find a matrix a in G with eigenvalues of different
norms, and then that we will find a conjugate b of a such that the eigenspaces
of a and b are not related by inclusion. Therefore, even in the simple-looking
case of GL(2,C) input from the theory of linear algebraic groups and of
normed fields enters.

Sketch of proof of the Tits alternative over the field C. Let d ∈ N and let
G ⊂ GL(d,C) be a finitely generated group that does not contain a solv-
able subgroup of finite index. We now indicate how to find a free subgroup
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in G of rank 2, using the theory of linear algebraic groups and of normed
fields:

1. Finding diagonalisable elements in G. Dividing out the solvable radical,
one can show that it is sufficient to consider the case that the Zariski
closure G of G is a semi-simple linear algebraic group.
The structure theory of semi-simple linear algebraic groups implies:
• The group G is perfect, i.e., G = [G,G]; in particular, we may

assume that G is a subgroup of SL(d,C).
• The elements of finite order in G are not dense in G.
• The diagonalisable elements of G contain a dense open subset of G.

Therefore, we will find a diagonalisable matrix a ∈ G of infinite or-
der; in particular, we have det a = 1 (so, a has at least two different
eigenvalues) and one of the eigenvalues of a is not a root of unity.

2. Finding a unique large eigenvalue. As far as we know so far, all of the
eigenvalues of a might lie on the unit circle in C. The beautiful idea of
Tits is to change the point of view and to consider other normed fields:
Let S ⊂ G be a finite generating set, let B ⊂ Cd be an eigenbasis of a,
and let k be the field extension of Q generated by the matrix entries
of S and a with respect to B. We can then view G as an algebraic
subgroup of GL(d, k).
By the first step, there is an eigenvalue λ ∈ k× of a that is not a root
of unity. Because k is a finitely generated extension of Q, there exists
an extension of k to a locally compact field k′ with absolute value | · |′
that satisfies

|λ|′ 6= 1.

Passing to a−1 if necessary we hence may assume that |λ|′ > 1.
Let µ be a | · |′-maximal eigenvalue of a. Passing to suitable exterior
powers, we may assume that the eigenspace of µ is one-dimensional
and that G acts absolutely irreducibly on k′d. By now, we did not only
change the field of definition but possibly also the linear representation
of our group G !

3. Finding a unique maximal and a unique minimal eigenvalue. A careful
analysis of conjugates/commutators and Jordan form calculations show
(using the element a from the previous step) that the set of elements
of G that have a unique maximal and a unique minimal eigenvalue
(with respect to | · |′) is Zariski dense in G. Therefore, we can find such
an element a′ that in addition is also diagonalisable over the algebraic
closure of k′. In view of absolute irreducibility of the G-action, we can
pass to a finite extension of k′ so that a′ is diagonalisable and the
G-action still is absolutely irreducible. Using this irreducibility, one can
find a suitable conjugate b′ so that the ping-pong lemma can be applied
to (large powers of) a′ and b′ in a similar way as in Example 4.4.8.

A quantitative version of the Tits alternative was recently established by
Breuillard (see Chapter 6.4.3).
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4.E Exercises

General actions

Quick check 4.E.1 (Fixed sets of continuous actions*). We consider a group
action of a group G on a topological space X by homeomorphisms. Let H ⊂ G
be a subset of G.

1. Is the fixed set XH always open?
2. Is the fixed set XH always closed?

Quick check 4.E.2 (Actions on the real line?*).
1. Is there a free isometric action of Z/2 on R ?
2. Is there a free isometric action of Z/2 on R \ {0} ?
3. Is there a free isometric action of Z/3 on R ?
4. Is there a free isometric action of Z2 on R ?

Exercise 4.E.3 (Fixed points of matrix groups*). Let n ∈ N, let a ∈ GL(n,R),
and let G := 〈a〉GL(n,C).

1. Suppose that G acts freely by matrix multiplication on Rn \ {0}. Show
that G then also acts freely by matrix multiplication on Cn \ {0}.

2. Let n ≥ 2. Give an example of a non-trivial element a ∈ SL(n,R) such
that G acts freely on Rn \ {0}.

Exercise 4.E.4 (Conjugation of permutations**). Determine the fixed sets and
stabiliser groups of the conjugation action of S3 on itself.

Exercise 4.E.5 (Rubik’s cube**). Model playing with Rubik’s cube by a suit-
able group action. Give some examples of interesting group elements in this
group.

Exercise 4.E.6 (Essentially free actions**). Let G be a countable group act-
ing on a probability space (X,µ) by measure-preserving measurable iso-
morphisms. Such an action is essentially free if for all g ∈ G \ {e} we
have µ(Xg) = 0. We consider the shift action of Z on the infinite prod-
uct X :=

⊗
Z
(
{0, 1}, 1/2δ0+1/2δ1

)
. I.e., X is the probability space modelling

a bi-infinite sequence of independent coin tosses with a fair two-sided coin.
1. Show that this action is not free.
2. Show that this action is essentially free.

Actions on graphs

Exercise 4.E.7 (Actions of finite groups on trees**). Prove (without using the
characterisation of free groups in terms of free actions on trees) that every
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action of a finite group on a non-empty tree has a global fixed point (i.e., a
vertex or an edge on which all group elements act trivially).
Hints. Consider a “minimal” orbit of a vertex and paths between vertices
of this orbit.

Quick check 4.E.8 (Free actions on graphs?*). Which groups admit free ac-
tions on the graphs in Figure 4.13 ?

Figure 4.13.: Do these graphs admit interesting free actions?

Quick check 4.E.9 (Actions on trees*).
1. Is every action of a free group on a tree free?
2. Suppose that a free group acts freely on a graph X. Is X then a tree?

Quick check 4.E.10 (Spanning trees for group actions*).
1. Sketch a spanning tree for the action of the group Z on the Cayley

graph Cay(F ({a, b}), {a, b}), where the action is given by left transla-
tion by the powers of a. Are all spanning trees of this action isomorphic?

2. The group Z/4 acts on Cay(Z2, {(1, 0), (0, 1)}) via rotation by π; i.e., the
generator [1] ∈ Z/4 acts by rotation by π around 0. Sketch a spanning
tree for this action. Are all spanning trees of this action isomorphic?

Exercise 4.E.11 (Contracting a spanning tree**). Fill in the details in Re-
mark 4.2.5 to complete this version of the proof of Theorem 4.2.1.

Exercise 4.E.12 (Subgroups of large rank**). Let F be a free group of rank
at least 2. Prove that for every n ∈ N there is a free subgroup of F that has
rank at least n.

Exercise 4.E.13 (Rank gradient**). The rank rkG of a group G is the minimal
cardinality of a generating set of G. The rank gradient rgG of a finitely
generated group G is defined by

rgG := inf
H∈S(G)

rkH

[G : H]
,

where S(G) denotes the set of all finite index subgroups of G.
1. Determine rgZd for all d ∈ N.
2. Determine the rank gradient of finitely generated free groups.
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Exercise 4.E.14 (Characterisation of finite cyclic groups**).
1. Find a class C of graphs with the following property: A group is finite

cyclic (i.e., generated by an element of finite order) if and only if it
admits a free action on some graph in C.

2. Is there such a class of graphs for the set {Z/n × Z/n | n ∈ N>0} of
isomorphism types of groups?

Ping-pong

Quick check 4.E.15 (Ping-pong?*). Let G be a group that is generated by the
elements a, b. Suppose that there exists an action of G on a set X = A t B,
where A and B are non-empty and

a ·B ⊂ A and b ·A ⊂ B.

1. Is G free of rank 2 if a and b have infinite order?
2. Is G ∼= Z/2 ∗ Z/2 if a and b have order 2 ?

Exercise 4.E.16 (Free subgroups of the homeomorphism group of R ** [77,
Example II.29]). We consider the homeomorphism

f : [0, 1] −→ [0, 1]

t 7−→

{
4 · t if t ∈ [0, 1/5]
4
5 + 1

4 ·
(
t− 1

5

)
if t ∈ [1/5, 1]

and the maps

a : R −→ R
t 7−→ btc+ f({t})

(where b·c denotes the lower integral part and {·} := id−b·c denotes the
fractional part) and

b := c · a · c−1,

where c : t 7→ t− 1/2.

1. Show that a and b are self-homeomorphisms of R.
2. Show that a and b generate a free group of rank 2 in the self-

homeomorphism group of R.
Hints. Consider the sets fn([1/5, 1]) and f−n([0, 4/5]) for n ∈ N>0 as
well as⋃

k∈Z

[
k − 1

5
, k +

1

5

]
and

⋃
k∈Z

[
k +

1

2
− 1

5
, k +

1

2
+

1

5

]
.
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Exercise 4.E.17 (Free rotation group***). Show that the special orthogonal
group SO(3) contains a free subgroup of rank 2.
Hints. Consider the matrices

3
5

4
5 0

− 4
5

3
5 0

0 0 1

 and

1 0 0

0 3
5 − 4

5

0 4
5

3
5


and divisibility by 5 in Z3 ⊂ R3 [170, Chapter 2.2].

Special linear groups

Exercise 4.E.18 (Small linear group*). Show that SL(2,Z/2) contains exactly
six elements.

Exercise 4.E.19 (SL(n,Z) is not virtually free**). Let n ∈ N≥3. Show that
SL(n,Z) does not contain a free group of finite index.
Hints. Try to find a subgroup of SL(n,Z) that is isomorphic to Z2.

Exercise 4.E.20 (Free subgroups imply non-solvability**). Let G be a group
that contains a free subgroup of rank 2.

1. Let G′ ⊂ G be a subgroup of finite index. Show that then G′ contains
a free subgroup of rank 2.

2. Show that the commutator subgroup [G,G] of G contains a free sub-
group of rank 2.

3. In particular, deduce that groups that contain a free subgroup of rank 2
do not contain a solvable subgroup of finite index.

4. Let n ∈ N≥2. Conclude that SL(n,Z) does not contain a solvable sub-
group of finite index.

Exercise 4.E.21 (Eigenspace ping-pong**). We use the notation from Exam-
ple 4.4.8.

1. Sketch the eigenspaces of the R-versions of a and b in R2.
2. Find explicit bounds for |λ| and ε so that the ping-pong lemma indeed

can be applied to the situation specified in Example 4.4.8.

Girth of graphs

Exercise 4.E.22 (Moore bound**). Let d ∈ N≥2. Show that there exists a
constant C ∈ R>0 such that: For all finite d-regular graphs X = (V,E) we
have

g(X) ≤ 2 · logd−1 |V |+ C.

Hints. Choose a vertex v and look at the subgraph (subtree!) of vertices
that can be reached from v by paths of length smaller than 1/2 · g(X).
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Exercise 4.E.23 (The Mycielski graph**). Given a graph X = (V,E), we can
construct the associated Mycielski graph µ(X) as follows: The graph µ(X)
has the vertex set (

V × {0, 1}
)
t {u}

(where u 6∈ V × {0, 1}) and the edge set{
{(v, 0), (w, 0)}

∣∣ {v, w} ∈ E}
∪
{
{(v, 0), (w, 1)}

∣∣ {v, w} ∈ E}
∪
{
{(v, 1), u}

∣∣ v ∈ V }.
In other words, µ(X) consists of three layers (Figure 4.14): The first layer is
X itself. The second layer is a copy of the vertices of X that are connected
with the original vertices of X as indicated by the edges of X. The third layer
is an additional vertex u that is connected with all the vertices in the second
layer.

Prove the following inheritance properties of the Mycielski graph construc-
tion:

1. If X is a graph with g(X) ≥ 3, then also g(µ(X)) ≥ 3.
2. We have ch(µ(X)) ≥ chX + 1.

Hints. The chromatic number is introduced in Definition 3.E.1.

v w

u

X

Figure 4.14.: The Mycielski graph construction, schematically

Exercise 4.E.24 (Graphs with few vertices and large girth – higher degree***).
Generalise the techniques of the proof of Theorem 4.4.6 to produce regular
graphs of degree 6, 8, . . . with high girth and few vertices.

Residually finite groups+

It is a common theme of group theory to approximate groups by simpler
groups. One instance of this is the class of residually finite groups:
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Definition 4.E.1 (Residually finite group). A group G is residually finite if it
has the following property: For every g ∈ G\{e} there exists a finite group F
and a homomorphism ϕ : G −→ F with ϕ(g) 6= e.

Exercise 4.E.25 (Residually finite groups*).
1. Prove that subgroups of residually finite groups are residually finite.
2. Prove that a group G is residually finite if and only if⋂

H∈N(G)

H = {e},

where N(G) denotes the set of all finite index normal subgroups of G.
3. Prove that a group G is residually finite if and only if⋂

H∈S(G)

H = {e},

where S(G) denotes the set of all finite index subgroups of G.
Hints. The normal subgroup trick (Exercise 2.E.5) might be useful.

4. Prove that a group G is residually finite if and only if the diagonal
action of G on

∏
H∈N(G)G/H is free.

Exercise 4.E.26 (Free groups are residually finite**).
1. Let n ∈ N. Prove that the matrix group SL(n,Z) is residually finite.

Hints. Consider for N ∈ Z the canonical homomorphism

SL(n,Z) −→ SL(n,Z/N)

given by reduction mod N .
2. Deduce that free groups of rank 2 are residually finite.
3. Conclude that all free groups of finite rank are residually finite.

Exercise 4.E.27 (Non-residually finite groups**).
1. Show that the additive group Q is not residually finite.
2. Let σ := (x 7→ x + 1) ∈ SZ be the shift map and let τ ∈ SZ be

the bijection swapping 1 and 2 (and fixing everything else). We then
consider the finitely generated subgroup G := 〈σ, τ〉SZ of SZ. Show that
G is not residually finite.
Hints. Let F be a finite group and let ϕ : G −→ F be a group ho-
momorphism. Let n ∈ N≥5 with n! > |F |. Show that ϕ induces a
well-defined group homomorphism ϕ : Sn −→ F . What happens to the
cycle (1 7→ 2, 2 7→ 3, 3 7→ 1) under ϕ and ϕ ?

Exercise 4.E.28 (Residually finite groups are Hopfian**). A group G is Hopfian
if every surjective group homomorphism G −→ G is an automorphism of G.

1. Show that all finitely generated residually finite groups are Hopfian.
Hints. If G is a finitely generated group and F is a finite group,
then the set Hom(G,F ) is finite. Hence, every surjective homomor-
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phism ϕ : G −→ G defines a permutation of Hom(G,F ) by composi-
tion . . .

2. Show that free groups of infinite rank are residually finite but not Hop-
fian.

Exercise 4.E.29 (Profinite completion**). Let G be a group. The profinite
completion of G is the group

Ĝ := lim←−
H∈N(G)

G/H ⊂
∏

H∈N(G)

G/H,

where N(G) denotes the set of all finite index normal subgroups of G, par-
tially ordered by inclusion (the structure maps in this inverse system then

are the associated canonical projection homomorphisms); more explicitly, Ĝ
is the group of all sequences in

∏
H∈N(G)G/H whose entries are compatible

with respect to the canonical projections. We can view Ĝ as a topological
group by taking the discrete topology on all finite quotients G/H and the
product topology on

∏
H∈N(G)G/H.

1. Show that Ĝ indeed is a topological group, i.e., that the inversion
map Ĝ −→ Ĝ and the composition map Ĝ × Ĝ −→ Ĝ are continu-
ous.

2. Show that the image of the diagonal map G −→ Ĝ is dense in Ĝ.
3. Show that the diagonal map G −→ Ĝ is injective if and only if G is

residually finite.

Exercise 4.E.30 (A topological characterisation of residual finiteness***). For-
mulate and prove a characterisation of residual finiteness in terms of covering
theory.

A far-reaching generalisation of approximating groups by finite pieces is
the class of sofic groups [39].

The first Grigorchuk group+

The (first) Grigorchuk group [69] is defined as follows, via tree automor-
phisms:

We first introduce the underlying tree. Let {0, 1}∗ the set of finite se-
quences over {0, 1}; we will denote the empty sequence by ε and we will
concatenate such finite sequences by just writing them next to each other.
Then the rooted binary tree (Figure 4.15) is the graph

T :=
(
{0, 1}∗, {(w,wx) | w ∈ {0, 1}∗, x ∈ {0, 1}}

)
.
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ε

0 1

00 01 10 11
...

Figure 4.15.: The rooted binary tree T

Exercise 4.E.31 (The rooted binary tree*).
1. Show that T indeed is a tree.
2. Show that T has a single vertex of degree 2 (namely ε) and that all

other vertices have degree 3.
3. Show that every graph automorphism of T fixes ε.
4. Show that the group Aut(T ) of graph automorphisms of T is uncount-

able.

We will now introduce four special automorphisms a, b, c, d of T (which
will then form the generating set of the Grigorchuk group). We define a by
swapping the first subtrees of T :

a : {0, 1}∗ −→ {0, 1}∗

ε 7−→ ε

0w 7−→ 1w

1w 7−→ 0w

Then we define b, c, d by mutual induction over the length of words by

b : {0, 1}∗ −→ {0, 1}∗

ε 7−→ ε

0w 7−→ 0a(w)

1w 7−→ 1c(w)

c : {0, 1}∗ −→ {0, 1}∗

ε 7−→ ε

0w 7−→ 0a(w)

1w 7−→ 1d(w)

d : {0, 1}∗ −→ {0, 1}∗

ε 7−→ ε

0w 7−→ 0w

1w 7−→ 0b(w).

These definitions are illustrated in Figure 4.16.

Quick check 4.E.32 (Generators of the Grigorchuk group*).
1. What is a(001101) ?
2. What is b(10011011001) ?
3. What is c(10011011001) ?
4. Why does the inductive definition of b, c, d work?
5. Why are a, b, c, d indeed graph automorphisms of T ?



th
is

is
a

dra
ft

ve
rsi

on
!

4.E. Exercises 113

ε

0 1

a

a c

b

ε

0 1

a d

ε

0 1

c

id b

ε

0 1

d

Figure 4.16.: The generators of the Grigorchuk group, schematically

Definition 4.E.2 (First Grigorchuk group). The subgroup

Gri := 〈a, b, c, d〉Aut(T )

of Aut(T ) is the (first) Grigorchuk group.

Exercise 4.E.33 (Elementary relations in the Grigorchuk group*).
1. Prove that a, b, c, d ∈ Gri have order 2.
2. Prove that

b · c = d = c · b, d · c = b = c · d, d · b = c = b · d.

holds in Gri.

By construction, the Grigorchuk group Gri acts on the rooted binary
tree T . The subgroups that preserve the first levels of the tree are an im-
portant tool in studying the whole group Gri:

Definition 4.E.3 (Level stabiliser subgroups of the Grigorchuk group). For n ∈ N
we define

Ln :=
{
g ∈ Gri

∣∣ ∀w∈{0,1}n g(w) = w
}
⊂ Gri .

Exercise 4.E.34 (Basic properties of level stabilisers*). Let n ∈ N.
1. Show that Ln is a normal subgroup of Gri of finite index.
2. Show that Ln+1 ⊂ Ln.
3. Show that

⋂
n∈N Ln = {e} and conclude that Gri is residually finite.

Definition 4.E.4 (The child homomorphism). Every g ∈ L1 defines two auto-
morphisms g0, g1 ∈ Gri by

∀w∈{0,1}∗ g(0w) = 0g0(w)

∀w∈{0,1}∗ g(1w) = 1g1(w).

We then set

ϕ : L1 −→ Gri×Gri

g 7−→ (g0, g1)
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and we write ϕ0, ϕ1 : L1 −→ Gri for the compositions with the projections
on the two factors.

Exercise 4.E.35 (Basic properties of the child homomorphism*).
1. Let g ∈ L1. Prove that indeed g0, g1 ∈ Gri holds.
2. Show that ϕ : L1 −→ Gri×Gri is an injective group homomorphism.
3. Show that ϕ0(Ln+1) ⊂ Ln and ϕ1(Ln+1) ⊂ Ln for all n ∈ N.
4. Prove that ϕ0, ϕ1 : L1 −→ Gri are surjective.

Hints. Look at b, c, d, a · b · a, a · c · a, a · d · a.
5. Conclude that the group Gri is infinite.

The Grigorchuk group exhibits the following self-similarity property: The
group Gri is almost isomorphic to Gri×Gri. More precisely, the finite index
subgroup L1 is isomorphic to a finite index subgroup of Gri×Gri:

Exercise 4.E.36 (Weak self-similarity of the Grigorchuk group**). We now let
N := 〈b〉/Gri be the normal subgroup generated by b in Gri.

1. Show that the subgroup 〈a, d〉Gri is finite (more precisely: this subgroup
is isomorphic to D4).

2. Show that L1 is generated by {b, c, d, a · b · a, a · c · a, a · d · a}.
3. Show that N has finite index in Gri.
4. Show that N × {e} ⊂ ϕ(L1) and {e} ×N ⊂ ϕ(L1).
5. Show that N ×N ⊂ ϕ(L1).
6. Conclude that ϕ(L1) has finite index in Gri.

Exercise 4.E.37 (The Grigorchuk group is a torsion group***).
1. Show that all elements of L1 have finite order.

Hints. First write elements of L1 in terms of the generators a, b, c, d
and then proceed by induction over the minimal number of generators
needed to represent a given element (i.e., induction over the so-called
word length).

2. Conclude that all elements of Gri have finite order.

Hence, the Grigorchuk group is a finitely generated infinite torsion group
that is almost self-similar. The first Grigorchuk group Gri has further notable
properties [77, Chapter VIII][69]: For example, it is known that Gri is not
finitely presented, that all of its quotient groups are finite, and that it is of
intermediate growth (Exercises 6.E.12 and 6.E.13).
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Quasi-isometry

One of the objectives of geometric group theory is to view groups as geometric
objects. We now add the metric layer to the combinatorics given by Cayley
graphs: If G is a group and S is a generating set of G, then the paths in the
associated Cayley graph Cay(G,S) induce a metric on G, the word metric
with respect to the generating set S; unfortunately, in general, this metric
depends on the chosen generating set.

In order to obtain a notion of geometry on a group independent of the
choice of generating sets we pass to large scale geometry. Using the language
of quasi-geometry, we arrive at such a notion for finitely generated groups –
the quasi-isometry type, which is central to geometric group theory.

We start with some generalities on isometries, bilipschitz equivalences, and
quasi-isometries. As next step, we will specialise to the case of finitely gener-
ated groups. The key to linking the geometry of groups to actual geometry is
the Švarc-Milnor lemma (Chapter 5.4). Moreover, we will discuss Gromov’s
dynamic criterion for quasi-isometry (Chapter 5.5) and give an outlook on
geometric properties of groups and quasi-isometry invariants (Chapter 5.6).

Overview of this chapter

5.1 Quasi-isometry types of metric spaces 116

5.2 Quasi-isometry types of groups 122

5.3 Quasi-geodesics and quasi-geodesic spaces 127

5.4 The Švarc-Milnor lemma 132

5.5 The dynamic criterion for quasi-isometry 141

5.6 Quasi-isometry invariants 148

5.E Exercises 156
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5.1 Quasi-isometry types of metric spaces

In the following, we consider different levels of similarity between metric
spaces: isometries, bilipschitz equivalences and quasi-isometries. Intuitively,
we want a large scale geometric notion of similarity – i.e., we want metric
spaces to be equivalent if they seem to be the same when looked at from far
away. A guiding example to keep in mind is that we want the real line and
the integers (with the induced metric from the real line) to be equivalent. A
category theoretic framework will be explained in Remark 5.1.12.

For the sake of completeness, we recall the definition of a metric space:

Definition 5.1.1 (Metric space). A metric space is a pair (X, d) consisting of
a set X and a map d : X ×X −→ R≥0 satisfying the following conditions:
• For all x, y ∈ X we have d(x, y) = 0 if and only if x = y.
• For all x, y ∈ X we have d(x, y) = d(y, x).
• For all x, y, z ∈ X the triangle inequality holds:

d(x, z) ≤ d(x, y) + d(y, z).

Sometimes we will abuse notation and say that X is a metric space if the
metric is clear from the context.

We start with the strongest type of similarity between metric spaces:

Definition 5.1.2 (Isometry). Let f : X −→ Y be a map between metric
spaces (X, dX) and (Y, dY ).
• We say that f is an isometric embedding if

∀x,x′∈X dY
(
f(x), f(x′)

)
= dX(x, x′).

• The map f is an isometry if it is an isometric embedding and if there
is an isometric embedding g : Y −→ X such that

f ◦ g = idY and g ◦ f = idX .

• Two metric spaces are isometric if there exists an isometry between
them.

Remark 5.1.3. Clearly, every isometric embedding is injective, and every
isometry is a homeomorphism with respect to the topologies induced by the
metrics. Moreover, an isometric embedding is an isometry if and only if it is
bijective.

The notion of isometry is very rigid – too rigid for our purposes. We want a
notion of “similarity” for metric spaces that only reflects the large scale shape
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of the space, but not the local details. A first step is to relax the isometry
condition by allowing for a uniform multiplicative error:

Definition 5.1.4 (Bilipschitz equivalence). Let f : X −→ Y be a map between
metric spaces (X, dX) and (Y, dY ).
• We say that f is a bilipschitz embedding if there is a constant c ∈ R>0

such that

∀x,x′∈X
1

c
· dX(x, x′) ≤ dY

(
f(x), f(x′)

)
≤ c · dX(x, x′).

• The map f is a bilipschitz equivalence if it is a bilipschitz embedding
and if there is a bilipschitz embedding g : Y −→ X such that

f ◦ g = idY and g ◦ f = idX .

• Two metric spaces are called bilipschitz equivalent if there exists a bilip-
schitz equivalence between them.

Remark 5.1.5. Clearly, every bilipschitz embedding is injective, and every
bilipschitz equivalence is a homeomorphism with respect to the topologies
induced by the metrics. Moreover, a bilipschitz embedding is a bilipschitz
equivalence if and only if it is bijective.

Also bilipschitz equivalences preserve local information; so bilipschitz
equivalences still remember too much detail for our purposes. As next – and
final – step, we allow for a uniform additive error:

Definition 5.1.6 (Quasi-isometry). Let f : X −→ Y be a map between metric
spaces (X, dX) and (Y, dY ).
• The map f is a quasi-isometric embedding if there are constants c ∈ R>0

and b ∈ R>0 such that f is a (c, b)-quasi-isometric embedding, i.e.,

∀x,x′∈X
1

c
· dX(x, x′)− b ≤ dY

(
f(x), f(x′)

)
≤ c · dX(x, x′) + b.

• A map f ′ : X −→ Y has finite distance from f if there is a c ∈ R≥0

with
∀x∈X dY

(
f(x), f ′(x)

)
≤ c.

• The map f is a quasi-isometry if it is a quasi-isometric embedding for
which there is a quasi-inverse quasi-isometric embedding, i.e., if there
is a quasi-isometric embedding g : Y −→ X such that g ◦ f has finite
distance from idX and f ◦ g has finite distance from idY .

• The metric spaces X and Y are quasi-isometric if there exists a quasi-
isometry X −→ Y ; in this case, we write X ∼QI Y .

Example 5.1.7 (Isometries, bilipschitz equivalences and quasi-isometries). Every
isometry is a bilipschitz equivalence, and every bilipschitz equivalence is a
quasi-isometry. In general, the converse does not hold:
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−4 −3 −2 −1 0 1 2 3 4 5
R

−4 −3 −2 −1 0 1 2 3 4 5
Z

−4 −2 0 2 4
2 · Z

Figure 5.1.: The metric spaces R, Z, and 2 · Z are quasi-isometric

We consider R as a metric space with respect to the distance function
given by the absolute value of the difference of two numbers; moreover, we
consider the subsets Z ⊂ R and 2 ·Z ⊂ R with respect to the induced metrics
(Figure 5.1).

The inclusions 2 · Z ↪→ Z and Z ↪→ R are quasi-isometric embeddings but
no bilipschitz equivalences (as they are not bijective). Moreover, the maps

R −→ Z
x 7−→ bxc,
Z −→ 2 · Z

n 7−→

{
n if n ∈ 2 · Z,
n− 1 if n 6∈ 2 · Z

are quasi-isometric embeddings that are quasi-inverse to the inclusions (here,
bxc denotes the integral part of x, i.e., the largest integer that is not larger
than x).

The spaces Z and 2 · Z are bilipschitz equivalent (via the map given by
multiplication by 2). However, Z and 2 · Z are not isometric – in Z there are
points having distance 1, whereas in 2 · Z the minimal distance between two
different points is 2.

Finally, because R is uncountable but Z and 2 ·Z are countable, the metric
space R cannot be isometric or bilipschitz equivalent to Z or 2 · Z.

Caveat 5.1.8. In particular, we see that:
• in general, quasi-isometries are neither injective, nor surjective,
• in general, quasi-isometries are not continuous at all,
• in general, quasi-isometries do not have finite distance to an isometry,
• in general, quasi-isometries do not preserve dimension locally.

Example 5.1.9 (More (non-)quasi-isometric spaces).
• All non-empty metric spaces of finite diameter are quasi-isometric; the

diameter of a metric space (X, d) is
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diamX := sup
x,y∈X

d(x, y).

• Conversely, if a space is quasi-isometric to a space of finite diameter,
then it has finite diameter as well. So the metric space Z (with the
metric induced from R) is not quasi-isometric to a metric space of
finite diameter.
• The metric spaces R and R2 (with respect to the Euclidean metric) are

not quasi-isometric (Exercise 5.E.24, Example 6.2.8).

Proposition 5.1.10 (Alternative characterisation of quasi-isometries). A map
f : X −→ Y between metric spaces (X, dX) and (Y, dY ) is a quasi-isometry
if and only if it is a quasi-isometric embedding with quasi-dense image; a
map f : X −→ Y has quasi-dense image if there is a constant c ∈ R>0 such
that

∀y∈Y ∃x∈X dY
(
f(x), y

)
≤ c.

Proof. If f : X −→ Y is a quasi-isometry, then, by definition, there exists a
quasi-inverse quasi-isometric embedding g : Y −→ X. Hence, there is c ∈ R>0

such that
∀y∈Y dY

(
f ◦ g(y), y

)
≤ c;

in particular, f has quasi-dense image.
Conversely, suppose that f : X −→ Y is a quasi-isometric embedding with

quasi-dense image. Using the axiom of choice, we find a quasi-inverse quasi-
isometric embedding:

Because f is a quasi-isometric embedding with quasi-dense image, there is
a constant c ∈ R>0 such that

∀x,x′∈X
1

c
· dX(x, x′)− c ≤ dY

(
f(x), f(x′)

)
≤ c · dX(x, x′) + c,

∀y∈Y ∃x∈X dY
(
f(x), y

)
≤ c.

By the axiom of choice, there exists a map

g : Y −→ X

y 7−→ xy

such that dY (f(xy), y) ≤ c holds for all y ∈ Y .
The map g is quasi-inverse to f : By construction, for all y ∈ Y we have

dY
(
f ◦ g(y), y

)
= dY (f(xy), y) ≤ c;

conversely, for all x ∈ X we obtain (using the fact that f is a quasi-isometric
embedding)

dX
(
g◦f(x), x

)
= dX(xf(x), x) ≤ c ·dY

(
f(xf(x)), f(x)

)
+c2 ≤ c ·c+c2 = 2 ·c2.

So f ◦ g and g ◦ f have finite distance from the respective identity maps.
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Moreover, g also is a quasi-isometric embedding: Let y, y′ ∈ Y . Then

dX
(
g(y), g(y′)

)
= dX(xy, xy′)

≤ c · dY
(
f(xy), f(xy′)

)
+ c2

≤ c ·
(
dY
(
f(xy), y

)
+ dY (y, y′) + dY

(
f(xy′), y

′))+ c2

≤ c ·
(
dY (y, y′) + 2 · c

)
+ c2

= c · dY (y, y′) + 3 · c2,

and

dX
(
g(y), g(y′)

)
= dX(xy, xy′)

≥ 1

c
· dY

(
f(xy), f(xy′)

)
− 1

≥ 1

c
·
(
dY (y, y′)− dY

(
f(xy), y

)
− dY

(
f(xy′), y

′))− 1

≥ 1

c
· dY (y, y′)− 2 · c

c
− 1.

(The same argument shows that quasi-inverses of quasi-isometric embeddings
are quasi-isometric embeddings).

When working with quasi-isometries, the following inheritance properties
can be useful:

Proposition 5.1.11 (Inheritance properties of quasi-isometric embeddings).

1. Every map at finite distance of a quasi-isometric embedding is a quasi-
isometric embedding.

2. Every map at finite distance of a quasi-isometry is a quasi-isometry.
3. Let X, Y , Z be metric spaces and let f, f ′ : X −→ Y be maps that have

finite distance from each other.
a) If g : Z −→ X is a map, then f ◦ g and f ′ ◦ g have finite distance

from each other.
b) If g : Y −→ Z is a quasi-isometric embedding, then also g ◦ f and

g ◦ f ′ have finite distance from each other.
4. Compositions of quasi-isometric [bilipschitz] embeddings are quasi-iso-

metric [bilipschitz] embeddings.
5. Compositions of quasi-isometries [bilipschitz equivalences] are quasi-

isometries [bilipschitz equivalences].

Proof. All these properties follow via simple calculations from the respective
definitions (Exercise 5.E.3 and Exercise 5.E.4).

In particular, we obtain the following more conceptual description of
isometries, bilipschitz equivalences, and quasi-isometries:
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Remark 5.1.12 (A category theoretic framework for quasi-isometry). Let Metisom

be the category whose objects are metric spaces, whose morphisms are isomet-
ric embeddings, and where the composition is given by the ordinary compo-
sition of maps. Then isometries of metric spaces correspond to isomorphisms
in the category Metisom.

Let Metbilip be the category whose objects are metric spaces, whose mor-
phisms are bilipschitz embeddings, and where the composition is given by the
ordinary composition of maps. Then bilipschitz equivalences of metric spaces
correspond to isomorphisms in the category Metbilip.

Let QMet′ be the category whose objects are metric spaces, whose mor-
phisms are quasi-isometric embeddings and where the composition is given by
the ordinary composition of maps. For metric spaces X, Y the relation “hav-
ing finite distance from” is an equivalence relation on MorQMet′(X,Y ) and
this equivalence relation is compatible with composition (Proposition 5.1.11).
Hence, we can define the corresponding homotopy category QMet as follows:
• Objects in QMet are metric spaces.
• For metric spaces X and Y , the set of morphisms from X to Y in QMet

is given by

MorQMet(X,Y ) := MorQMet′(X,Y )
/

finite distance.

• For metric spaces X, Y , Z, the composition of morphisms in QMet is
given by

MorQMet(Z, Y )×MorQMet(X,Y ) −→ MorQMet(X,Z)(
[g], [f ]

)
7−→ [g ◦ f ]

Then quasi-isometries of metric spaces correspond to isomorphisms in the
category QMet.

As quasi-isometries are not bijective in general, some care has to be taken
when defining quasi-isometry groups of metric spaces; however, looking at
the category QMet gives us a natural definition of quasi-isometry groups:

Definition 5.1.13 (Quasi-isometry group). Let X be a metric space. Then the
quasi-isometry group of X is defined by

QI(X) := AutQMet(X),

i.e., the group of quasi-isometries X −→ X modulo finite distance.

For example, the category theoretic framework immediately yields that
quasi-isometric metric spaces have isomorphic quasi-isometry groups.

Having the notion of a quasi-isometry group of a metric space also allows
to define what an action of a group by quasi-isometries on a metric space is
– namely, a homomorphism from the group in question to the quasi-isometry
group of the given space.
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Example 5.1.14 (Quasi-isometry groups).
• The quasi-isometry group of a metric space of finite diameter is trivial.
• The quasi-isometry group of Z is huge; for example, it contains the mul-

tiplicative group R\{0} as a subgroup via the injective homomorphism

R \ {0} −→ QI(Z)

α 7−→
[
n 7→ bα · nc

]
together with many rather large and non-commutative groups [154].

5.2 Quasi-isometry types of groups

Every generating set of a group yields a metric on the group in question by
looking at the lengths of paths in the corresponding Cayley graph. The large
scale geometric notion of quasi-isometry then allows us to associate geometric
types to finitely generated groups that do not depend on the choice of finite
generating sets.

Definition 5.2.1 (Metric on a graph). Let X = (V,E) be a connected graph.
Then the map

V × V −→ R≥0

(v, w) 7−→ min{n ∈ N | there is a path of length n

connecting v and w in X}

is a metric on V , the metric on V associated with X.

Remark 5.2.2. A map between the sets of vertices of graphs is an isometry
with respect to the associated metrics if and only if the map is an isomorphism
of graphs.

Definition 5.2.3 (Word metric, word length). Let G be a group and let S ⊂ G
be a generating set. The word metric dS on G with respect to S is the metric
on G associated with the Cayley graph Cay(G,S). In other words,

dS(g, h) = min{n ∈ N | ∃s1,...,sn∈S∪S−1 g−1 · h = s1 · · · · · sn}

for all g, h ∈ G. The distance dS(e, g) is also called word length of g with
respect to S.

Example 5.2.4 (Word metrics on Z). The word metric on Z corresponding to
the generating set {1} coincides with the metric on Z induced from the stan-
dard metric on R. On the other hand, in the word metric on Z corresponding
to the generating set Z, all group elements have distance 1 from every other
group element.
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−2 −1 0 1 2 −2 −1 0 1 2

Cay
(
Z, {1}

)
Cay

(
Z, {2, 3}

)
Figure 5.2.: Cayley graphs of Z with the same large scale geometry

In general, word metrics on a given group do depend on the chosen set of
generators. However, the difference is negligible when looking at the group
from far away:

Proposition 5.2.5. Let G be a finitely generated group, and let S and S′ be
finite generating sets of G.

1. Then the identity map idG is a bilipschitz equivalence between (G, dS)
and (G, dS′).

2. In particular, every metric space (X, d) that is bilipschitz equivalent
[or quasi-isometric] to (G, dS) is also bilipschitz equivalent [or quasi-
isometric, respectively] to (G, dS′) (via the same maps).

Proof. The second part directly follows from the first part because the com-
position of bilipschitz equivalences is a bilipschitz equivalence, and the com-
position of quasi-isometries is a quasi-isometry (Proposition 5.1.11).

Thus it remains to prove the first part: Because S is finite, the maximum

c := max
s∈S∪S−1

dS′(e, s)

is finite. Let g, h ∈ G and let n := dS(g, h). Then we can write g−1 · h as
s1 · · · · · sn for certain s1, . . . , sn ∈ S ∪S−1. Using the triangle inequality and
the fact that the metric dS′ is left-invariant by definition, we obtain

dS′(g, h) = dS′(g, g · s1 · · · · · sn)

≤ dS′(g, g · s1) + dS′(g · s1, g · s1 · s2) + . . .

+ dS′(g · s1 · · · · · sn−1, g · s1 · · · · · sn)

= dS′(e, s1) + dS′(e, s2) + · · ·+ dS′(e, sn)

≤ c · n
= c · dS(g, h).

Interchanging the roles of S and S′ shows that also a similar estimate holds
in the other direction and hence that idG : (G, dS) −→ (G, dS′) is a bilipschitz
equivalence.
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Figure 5.3.: The Cayley graph Cay
(
Z2, {(1, 0), (0, 1)}

)
resembles the geome-

try of the Euclidean plane R2

Example 5.2.6 (Cayley graphs of Z). Two different Cayley graphs for the ad-
ditive group Z with respect to finite generating sets are depicted in Figure 5.2.

For infinite generating sets the first part of the previous proposition does
not hold in general; for example, taking Z as a generating set for Z leads
to the space (Z, dZ) of finite diameter, while (Z, d{1}) does not have finite
diameter (Example 5.2.4).

Definition 5.2.7 (Quasi-isometry type of finitely generated groups). Let G be
a finitely generated group.
• The group G is bilipschitz equivalent to a metric space X if for some

(and hence every) finite generating set S of G the metric spaces (G, dS)
and X are bilipschitz equivalent.
• The group G is quasi-isometric to a metric space X if for some (and

hence every) finite generating set S of G the metric spaces (G, dS)
and X are quasi-isometric. We write G ∼QI X if G and X are quasi-
isometric.

Analogously, we define when two finitely generated groups are called bilip-
schitz equivalent or quasi-isometric.

Example 5.2.8 (Zn ∼QI Rn). If n ∈ N, then the group Zn is quasi-isometric
to Euclidean space Rn because the inclusion Zn ↪→ Rn is a quasi-isometric
embedding with quasi-dense image. In this sense, Cayley graphs of Zn (with
respect to finite generating sets) resemble the geometry of Rn (Figure 5.3).

At this point it might be more natural to consider bilipschitz equivalence of
groups as a good geometric equivalence of finitely generated groups. However,
we will see soon why considering quasi-isometry types of groups is more
appropriate: For instance, there is no suitable analogue of the Švarc-Milnor
lemma for bilipschitz equivalence (Chapter 5.4).

The question of how quasi-isometry and bilipschitz equivalence are related
for finitely generated groups leads to interesting problems and useful appli-
cations. A first step towards an answer is the following:
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Proposition 5.2.9 (Quasi-isometry vs. bilipschitz equivalence). Bijective quasi-
isometries between finitely generated groups (with respect to the word metric
of certain finite generating sets) are bilipschitz equivalences.

Proof. The proof is based on the fact that the minimal non-trivial distance
between two group elements is 1; one can then trade the additive constants in
a bijective quasi-isometry for a contribution in the multiplicative constants
(Exercise 5.E.5).

However, not all infinite finitely generated groups that are quasi-isometric
are bilipschitz equivalent. We will study in Chapter 9.4 which quasi-isometric
groups are bilipschitz equivalent; in particular, we will see then under which
conditions free products of quasi-isometric groups lead to quasi-isometric
groups.

5.2.1 First examples

As a simple example, we start with the quasi-isometry classification of finite
groups:

Remark 5.2.10 (Properness of word metrics). Let G be a group and let S ⊂ G
be a generating set. Then S is finite if and only if the word metric dS on G
is proper in the sense that all balls of finite radius in (G, dS) are finite:

If S is infinite, then the ball of radius 1 around the neutral element of G
contains |S| elements, which is infinite. Conversely, if S is finite, then every
ball B of finite radius n around the neutral element contains only finitely
many elements, because the set (S ∪ S−1)n is finite and there is a surjective
map (S ∪ S−1)n −→ B; because the metric dS is invariant under the left
translation action of G, it follows that all balls in (G, dS) of finite radius are
finite.

Example 5.2.11 (Quasi-isometry classification of finite groups). A finitely gen-
erated group is quasi-isometric to a finite group if and only if it is finite: All
finite groups lead to metric spaces of finite diameter and so all are quasi-
isometric. Conversely, if a group is quasi-isometric to a finite group, then it
has finite diameter with respect to some word metric of a finite generating
set; because balls of finite radius with respect to word metrics of finite gen-
erating sets are finite (Remark 5.2.10), it follows that the group in question
has to be finite.

In contrast, finite groups are bilipschitz equivalent if and only if they have
the same number of elements.

This explains why we drew the class of finite groups as a separate small
spot of the universe of groups (Figure 1.2).

The next step is to look at groups (not) quasi-isometric to Z:
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Cay(Z, {1}) Cay(D∞, {x, y})

−2 −1 0 1 2 e x xyyyx

(0, [0]) (1, [0])

(0, [1]) (1, [1])

e s

t st

Cay(Z× Z/2, {(1, [0]), (0, [1])}) Cay(D∞, {s, t})

Figure 5.4.: The groups Z, Z× Z/2, and D∞ are quasi-isometric

Example 5.2.12 (Some groups quasi-isometric to Z). The groups Z, Z× Z/2,
and D∞ are bilipschitz equivalent and so in particular quasi-isometric (see
Figure 5.4):

To this end we consider the following two presentations of the infinite dihe-
dral group D∞ by generators and relations (Exercise 2.E.19, Exercise 2.E.31,
Exercise 3.E.21):

〈x, y |x2, y2〉 ∼= D∞ ∼= 〈s, t | t2, tst−1 = s−1〉.

The Cayley graph Cay(D∞, {x, y}) is isomorphic to Cay(Z, {1}); in partic-
ular, D∞ and Z are bilipschitz equivalent. On the other hand, the Cayley
graph Cay(D∞, s, t) is isomorphic to Cay(Z×Z/2, {(1, [0]), (0, [1])}); in par-
ticular, D∞ and Z×Z/2 are bilipschitz equivalent. Because the word metrics
on D∞ corresponding to the generating sets {x, y} and {s, t} are bilipschitz
equivalent, it follows that also Z and Z× Z/2 are bilipschitz equivalent.

Caveat 5.2.13 (Isometry classification of finitely generated Abelian groups).
Even though Z and D∞ as well as D∞ and Z× Z/2 admit finite generating
sets with isomorphic Cayley graphs, the groups Z and Z×Z/2 do not admit
finite generating sets with isomorphic Cayley graphs (Exercise 3.E.22). More
generally, finitely generated Abelian groups admit isomorphic Cayley graphs
if and only if they have the same rank and if the torsion part has the same
cardinality [102]. More generally, a similar classification also applies to finitely
generated nilpotent groups [177].

One can also show by elementary arguments that Z and Zn are not quasi-
isometric whenever n ∈ N≥2 (Exercise 5.E.24). More conceptual arguments
will be given in Chapter 6.

However, much more is true – the group Z is quasi-isometrically rigid in
the following sense:
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Theorem 5.2.14 (Quasi-isometry rigidity of Z). A finitely generated group is
quasi-isometric to Z if and only if it is virtually Z. A group is called virtu-
ally Z if it contains a finite index subgroup isomorphic to Z.

In other words, the property of being virtually Z is a geometric property
of groups. We will give several proofs of this result later when we have more
tools available (Chapter 6.3.6, Corollary 7.5.8, Theorem 8.2.14).

More generally, it is one of the primary goals of geometric group theory to
understand as much as possible of the quasi-isometry classification of finitely
generated groups.

5.3 Quasi-geodesics and quasi-geodesic spaces

In metric geometry, it is useful to require that the metric on the space in
question is (quasi-)geodesic, i.e., that its metric can be realised (up to some
uniform error) by paths. For example, this will be an important hypothesis
in the Švarc-Milnor lemma.

5.3.1 (Quasi-)Geodesic spaces

Definition 5.3.1 (Geodesic space). Let (X, d) be a metric space.
• Let L ∈ R≥0. A geodesic of length L in X is an isometric embed-

ding γ : [0, L] −→ X, where the interval [0, L] carries the metric induced
from the standard metric on R; the point γ(0) is the start point of γ,
and γ(L) is the end point of γ.
• The metric space X is called geodesic, if for all x, x′ ∈ X there exists

a geodesic in X with start point x and end point x′.

Example 5.3.2 (Geodesic spaces). The following statements are illustrated in
Figure 5.5.
• Let n ∈ N. Geodesics in the Euclidean space Rn are precisely the Eu-

clidean line segments (parametrised via a vector of unit length). As
any two points in Rn can be joined by a line segment, the Euclidean
space Rn is geodesic.
• The space R2\{0} endowed with the metric induced from the Euclidean

metric on R2 is not geodesic (Exercise 5.E.9).
• The sphere S2 with the standard round Riemannian metric is a geodesic

metric space. The geodesics are parts of great circles on S2. However,
antipodal points can be joined by infinitely many different geodesics.
• The hyperbolic plane H2 is a geodesic metric space (Appendix A.3).

In the Poincaré disk model, geodesics are parts of circles that intersect
the boundary circle orthogonally.
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R2 S2 H2

Figure 5.5.: Geodesic spaces and example geodesics

Caveat 5.3.3. The notion of geodesic in Riemannian geometry is related to
the one above, but not quite the same; geodesics in Riemannian geometry
are only required to be locally isometric, not necessarily globally.

Finitely generated groups together with a word metric coming from a finite
generating set are not geodesic (if the group in question is non-trivial), as the
underlying metric space is discrete. However, they are geodesic in the sense
of large scale geometry:

Definition 5.3.4 (Quasi-geodesic space). Let (X, d) be a metric space, let
c ∈ R>0, and let b ∈ R≥0.
• Then a (c, b)-quasi-geodesic in X is a (c, b)-quasi-isometric embedding
γ : I −→ X, where I = [t, t′] ⊂ R is some closed interval; the point γ(t)
is the start point of γ, and γ(t′) is the end point of γ.
• The space X is (c, b)-quasi-geodesic, if for all x, x′ ∈ X there exists a

(c, b)-quasi-geodesic in X with start point x and end point x′.

Every geodesic space is also quasi-geodesic (namely, (1, 0)-quasi-geodesic);
however, not every quasi-geodesic space is geodesic:

Example 5.3.5 (Quasi-geodesic spaces).
• If X = (V,E) is a connected graph, then the associated metric on V

turns V into a (1, 1)-geodesic space: The distance between two vertices
is realised as the length of some graph-theoretic path in the graph X,
and every path in the graph X that realises the distance between
two vertices yields a (1, 1)-quasi-geodesic (with respect to a suitable
parametrisation).
• In particular: If G is a group and S is a generating set of G, then (G, dS)

is a (1, 1)-quasi-geodesic space.
• For every ε ∈ R>0 the space R2\{0} is (1, ε)-quasi-geodesic with respect

to the metric induced from the Euclidean metric on R2 (Exercise 5.E.9).

5.3.2 Geodesification via geometric realisation of graphs

Sometimes it is more convenient to be able to argue via geodesics than via
quasi-geodesics. Therefore, we explain how we can associate a geodesic space
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(
{u, v, w},{
{u, v}, {v, w}

})  u v w

(u, v)× [0, 1]

(v, u)× [0, 1]

(v, w)× [0, 1]

(w, v)× [0, 1]

 
u v w

(V,E)  Ẽ × [0, 1]  
∣∣(V,E)

∣∣
Figure 5.6.: Geometric realisation of graphs

with a connected graph and how quasi-geodesic spaces can be replaced by
geodesic spaces via graphs:

Roughly speaking the geometric realisation of a graph is obtained by glue-
ing a unit interval between every two vertices that are connected by an edge
in the given graph. This construction can be turned into a metric space by
combining the standard metric on the unit interval with the combinatorially
defined metric on the vertices given by the graph structure.

A small technical point is that the unit interval is directed while our graphs
are not. One alternative would be to choose an orientation of the given graph
(and then prove that the realisation does not depend on the chosen orienta-
tion); we resolve this issue by replacing every undirected edge by the corre-
sponding two directed edges and then identifying the corresponding intervals
accordingly (Figure 5.6):

Definition 5.3.6 (Geometric realisation of graphs). Let X = (V,E) be a con-
nected graph. The geometric realisation of X is the metric space(

|X|, d|X|
)

defined as follows:
If E = ∅, then X being connected implies that |V | ≤ 1; in this case, we

define |X| := V , and set d|X| := 0.
If E 6= ∅, every vertex of X lies on at least one edge, and we define

|X| := Ẽ × [0, 1]
/
∼ .

Here,
Ẽ :=

{
(u, v)

∣∣ u, v ∈ V, {u, v} ∈ E}
is the set of all directed edges (for every unoriented edge {u, v} = {v, u} we
obtain two directed edges (u, v) and (v, u)), and the equivalence relation “∼”
is given as follows:

For all ((u, v), t), ((u′, v′), t′) ∈ Ẽ we have ((u, v), t) ∼ ((u′, v′), t′) if and
only if (see Figure 5.7)
• the elements coincide, i.e., ((u, v), t) = ((u′, v′), t′), or
• the elements describe the same vertex lying on both edges, i.e.,
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((u, v), t) = ((v, u), 1− t)
u v

((u, v), 1) = ((v, w), 0)

u v w

Figure 5.7.: Parametrisations describing the same points in the geometric
realisation

– u = u′ and t = 0 = t′, or
– u = v′ and t = 0 and t′ = 1, or
– v = v′ and t = 1 = t′, or
– v = u′ and t = 1 and t′ = 0,

or
• the elements describe the same point on an edge but using different

orientations, i.e., (u, v) = (v′, u′) and t = 1− t′.
The metric d|X| on |X| is given by

d|X|
([

((u, v), t)
]
,
[
((u′v′), t′)

])

:=



|t− t′| if (u, v) = (u′, v′)

|t− (1− t′)| if (u, v) = (v′, u′)

min
(
t+ dX(u, u′) + t′

, t+ dX(u, v′) + 1− t′

, 1− t+ dX(v, u′) + t′

, 1− t+ dX(v, v′) + 1− t′
)

if {u, v} 6= {u′, v′}

for all [((u, v), t)], [((u′, v′), t′)] ∈ |X|, where dX denotes the metric on V
induced from the graph structure (Definition 5.2.1).

Clearly, this construction can be extended to a functor from the category
of graphs to the category of metric spaces. Hence, every action of a group
on a graph induces a corresponding piecewise linear isometric action of the
group on the geometric realisation of the given graph. It is not difficult to
see that the induced action is free [has a global fixed point] if and only if the
original action on the graph is free [has a global fixed point] in the sense of
Definition 4.1.8 and Proposition 4.1.16.

Example 5.3.7 (Geometric realisations).
• The geometric realisation of the graph ({0, 1}, {{0, 1}}) consisting of

two vertices and an edge joining them is isometric to the unit interval
(Figure 5.8).
• The geometric realisation of Cay(Z, {1}) is isometric to the real line R

with the standard metric (Exercise 5.E.11).
• The geometric realisation of Cay(Z2, {(1, 0), (0, 1)}) is isometric to the

square lattice R × Z ∪ Z × R ⊂ R2 with the metric induced from the
`1-metric on R2 (Exercise 5.E.11).
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0 1 0 1−1 (0, 0)

∣∣({0, 1}, {{0, 1}})∣∣ ∣∣Cay(Z, {1})
∣∣ ∣∣Cay(Z2, {(1, 0), (0, 1)})

∣∣
Figure 5.8.: Geometric realisations (Example 5.3.7)

Proposition 5.3.8 (Geometric realisation of graphs). Let X = (V,E) be a con-
nected graph.

1. Then the geometric realisation (|X|, d|X|) is a geodesic metric space.
2. There exists a canonical inclusion V ↪→ |X| and this map is an isomet-

ric embedding and a quasi-isometry.

Proof. This follows from straightforward calculations (Exercise 5.E.12).

More generally, every quasi-geodesic space can be approximated by a
geodesic space:

Proposition 5.3.9 (Approximation of quasi-geodesic spaces by geoedesic spaces).
Let X be a quasi-geodesic metric space. Then there exists a geodesic metric
space that is quasi-isometric to X.

Proof. Out of X we can define a graph Y as follows:

• The vertices of Y are the points of X,
• and two points ofX are joined by an edge in Y if they are “close enough”

together (this depends on the quasi-geodesity constants for X).

Then mapping points in X to the corresponding vertices of Y is a quasi-
isometry; on the other hand, Y ∼QI |Y | (Proposition 5.3.8). Hence, X and
|Y | are quasi-isometric. Moreover, |Y | is a geodesic metric space by Proposi-
tion 5.3.8. We leave the details as an exercise (Exercise 5.E.12).

However, it is not always desirable to replace the original space by a
geodesic space, because some control is lost during this replacement. Es-
pecially, in the context of graphs, one has to weigh up whether the rigidity
of the combinatorial model or the flexibility of the geometric realisation is
more useful for the situation at hand.
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5.4 The Švarc-Milnor lemma

Why should we be interested in understanding how finitely generated groups
look like up to quasi-isometry? A first answer to this question is given by the
Švarc-Milnor lemma, which is one of the key ingredients linking the geom-
etry of groups to the geometry of spaces arising naturally in geometry and
topology.

The Švarc-Milnor lemma roughly says that given a “nice” action of a group
on a “nice” metric space, we can conclude that the group in question is finitely
generated and that the group is quasi-isometric to the given metric space.

In practice, this result can be applied both ways: If we want to know more
about the geometry of a group or if we want to know that a given group
is finitely generated, it suffices to exhibit a nice action of this group on a
suitable space. Conversely, if we want to know more about a metric space,
it suffices to find a nice action of a suitable well-known group. Therefore,
the Švarc-Milnor lemma is also called the “fundamental lemma of geometric
group theory.”

We start with a metric formulation of the Švarc-Milnor lemma for quasi-
geodesic spaces; in a second step, we will deduce a more topological version,
the version commonly used in applications.

Proposition 5.4.1 (Švarc-Milnor lemma). Let G be a group, and let G act
on a (non-empty) metric space (X, d) by isometries. Suppose that there are
constants c, b ∈ R>0 such that X is (c, b)-quasi-geodesic and suppose that
there is a subset B ⊂ X with the following properties:
• The diameter of B is finite.
• The G-translates of B cover all of X, i.e.,

⋃
g∈G g ·B = X.

• The set S := {g ∈ G | g ·B′ ∩B′ 6= ∅} is finite, where

B′ := BX,d2·b (B) = {x ∈ X | ∃y∈B d(x, y) ≤ 2 · b}.

Then the following holds:
1. The group G is generated by S; in particular, G is finitely generated.
2. For all x ∈ X the associated map

G −→ X

g 7−→ g · x

is a quasi-isometry (with respect to the word metric dS on G).

Proof. The set S generates G: The argument follows the transitivity principle
used in the proof of Proposition 4.1.20. Let g ∈ G. We show that g ∈ 〈S〉G
by using a suitable quasi-geodesic and following translates of B along this
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B

gj−1 ·B′

gj−1 ·B

gj ·B

g ·B
γ

x g · xxj−1

xj

Figure 5.9.: Covering a quasi-geodesic by translates of B

quasi-geodesic (Figure 5.9): Let x ∈ B. As X is (c, b)-quasi-geodesic, there is
a (c, b)-quasi-geodesic γ : [0, L] −→ X starting in x and ending in g · x. We
now look at close enough points on this quasi-geodesic:

Let n := dL · c/be. For j ∈ {0, . . . , n− 1} we define

tj := j · b
c
,

and tn := L, as well as
xj := γ(tj);

notice that x0 = γ(0) = x and xn = γ(L) = g · x. Because the translates
of B cover all of X, there are group elements gj ∈ G with xj ∈ gj · B; in
particular, we can choose g0 := e and gn := g.

For all j ∈ {1, . . . , n}, the group element sj := g−1
j−1 · gj lies in S: As γ is

a (c, b)-quasi-geodesic, we obtain

d(xj−1, xj) ≤ c · |tj−1 − tj |+ b ≤ c · b
c

+ b ≤ 2 · b.

Therefore, xj ∈ BX,d2·b (gj−1 · B) = gj−1 · BX,d2·b (B) = gj−1 · B′ (in the second
to last equality we used that G acts on X by isometries). On the other hand,
xj ∈ gj ·B ⊂ gj ·B′ and thus

gj−1 ·B′ ∩ gj ·B′ 6= ∅;

so, by definition of S, it follows that sj = g−1
j−1 · gj ∈ S.

In particular,

g = gn = gn−1 · g−1
n−1 · gn = · · · = g0 · s1 · · · · · sn = s1 · · · · · sn

lies in the subgroup generated by S, as desired.
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x s · x

B

B′

s ·B

s ·B′

Figure 5.10.: If s ∈ S, then d(x, s · x) ≤ 2 · (diamB + 2 · b)

The group G is quasi-isometric to X: Let x ∈ X. We show that the map

ϕ : G −→ X

g 7−→ g · x

is a quasi-isometry by showing that it is a quasi-isometric embedding with
quasi-dense image. First notice that because G acts by isometries on X and
because theG-translates ofB cover all ofX, we may assume thatB contains x
(so that we are in the same situation as in the first part of the proof).

The map ϕ has quasi-dense image: If x′ ∈ X, then there is a g ∈ G
with x′ ∈ g ·B. Then g · x ∈ g ·B yields

d
(
x′, ϕ(g)

)
= d(x′, g · x) ≤ diam g ·B = diamB,

which is assumed to be finite. Thus, ϕ has quasi-dense image.

The map ϕ is a quasi-isometric embedding, because: Let g ∈ G. We
first give a uniform lower bound of d(ϕ(e), ϕ(g)) in terms of dS(e, g): Let
γ : [0, L] −→ X be as above a (c, b)-quasi-geodesic from x to g · x. Then the
argument from the first part of the proof (and the definition of n) shows that

d
(
ϕ(e), ϕ(g)

)
= d(x, g · x) = d

(
γ(0), γ(L)

)
≥ 1

c
· L− b

≥ 1

c
· b · (n− 1)

c
− b

=
b

c2
· n− b

c2
− b

≥ b

c2
· dS(e, g)− b

c2
− b.

Conversely, we obtain a uniform upper bound of d(ϕ(e), ϕ(g)) in terms
of the word length dS(e, g) as follows: Suppose dS(e, g) = n; so there
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are s1, . . . , sn ∈ S ∪ S−1 = S with g = s1 · · · · · sn. Hence, using the tri-
angle inequality, the fact that G acts isometrically on X, and the fact that
sj ·B′ ∩B′ 6= ∅ for all j ∈ {1, . . . , n− 1} (see Figure 5.10) we obtain

d
(
ϕ(e), ϕ(g)

)
= d(x, g · x)

≤ d(x, s1 · x) + d(s1 · x, s1 · s2 · x) + · · ·
+ d(s1 · · · · · sn−1 · x, s1 · · · · · sn · x)

= d(x, s1 · x) + d(x, s2 · x) + · · ·+ d(x, sn · x)

≤ n · 2 · (diamB + 2 · b)
= 2 · (diamB + 2 · b) · dS(e, g).

(Recall that diamB is assumed to be finite).

Because

d
(
ϕ(g), ϕ(h)

)
= d
(
ϕ(e), ϕ(g−1 · h)

)
and dS(g, h) = dS(e, g−1 · h)

holds for all g, h ∈ G, these bounds show that ϕ is a quasi-isometric embed-
ding.

The proof of the Švarc-Milnor lemma does only give a quasi-isometry,
not a bilipschitz equivalence. Indeed, the translation action of Z on R shows
that there is no obvious analogue of the Švarc-Milnor lemma for bilipschitz
equivalence. Therefore, quasi-isometry of finitely generated groups is in geo-
metric contexts considered to be the more appropriate notion than bilipschitz
equivalence.

In many cases, the following, topological, formulation of the Švarc-Milnor
lemma is used:

Corollary 5.4.2 (Švarc-Milnor lemma, topological formulation). Let G be a
group acting by isometries on a (non-empty) proper and geodesic metric
space (X, d). Furthermore, suppose that this action is proper and cocompact.
Then G is finitely generated, and for all x ∈ X the map

G −→ X

g 7−→ g · x

is a quasi-isometry.

Before deducing this version from the quasi-geometric version, we briefly
recall the topological notions occuring in the statement:

• A metric space X is proper if for all x ∈ X and all r ∈ R>0 the closed
ball {y ∈ X | d(x, y) ≤ r} is compact with respect to the topology
induced by the metric.
Hence, proper metric spaces are locally compact.
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• An actionG×X −→ X of a groupG on a topological spaceX (e.g., with
the topology coming from a metric on X) is proper if for all compact
sets B ⊂ X the set {g ∈ G | g ·B ∩B 6= ∅} is finite.

Example 5.4.3 (Proper actions).
– The translation action of Z on R is proper (with respect to the

standard topology on R).
– More generally, the action by deck transformations of the fun-

damental group of a locally compact path-connected topological
space (that admits a universal covering) on its universal covering
is proper [115, Chapter V].

– All stabiliser groups of a proper action are finite. The converse is
not necessarily true: For example, the action of Z on the circle S1

given by rotation around an irrational angle is free but not proper
(because Z is infinite and S1 is compact).

• An action G × X −→ X of a group G on a topological space X is
cocompact if the quotient space G \X is compact with respect to the
quotient topology.

Example 5.4.4 (Cocompact actions).
– The translation action of Z on R is cocompact (with respect to the

standard topology on R), because the quotient is homeomorphic
to the circle S1, which is compact.

– More generally, the action by deck transformations of the funda-
mental group of a compact path-connected topological space X
(that admits a universal covering) on its universal covering is
cocompact because the quotient is homeomorphic to X (Exam-
ple 4.1.13).

– The (horizontal) translation action of Z on R2 is not cocompact
(with respect to the standard topology on R2), because the quo-
tient is homeomorphic to the infinite cylinder S1×R, which is not
compact.

– The action of SL(2,Z) by Möbius transformations, i.e., via

SL(2,Z)×H −→ H((
a b
c d

)
, z

)
7−→ a · z + b

c · z + d
,

on the upper half plane H := {z ∈ C | Re z > 0} (Appendix A.3)
is not cocompact (Exercise 5.E.20).

Proof of Corollary 5.4.2. Under the given assumptions, the metric space X is
(1, b)-quasi-geodesic for every b ∈ R>0. In order to be able to apply the Švarc-
Milnor lemma (Proposition 5.4.1), we need to find a suitable subset B ⊂ X.

Because the projection π : X −→ G \ X associated with the action is
an open map and because G \ X is compact, one can easily find a closed
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subspace B ⊂ X of finite diameter with π(B) = G \X (e.g., a suitable union
of finitely many closed balls). In particular,

⋃
g∈G g ·B = X and

B′ := B2·b(B)

has finite diameter. Because X is proper, the subset B′ is compact; thus the
action of G on X being proper implies that the set {g ∈ G | g ·B′ ∩B′ 6= ∅}
is finite.

Hence, we can apply the Švarc-Milnor lemma (Proposition 5.4.1).

5.4.1 Application: (Weak) commensurability

The Švarc-Milnor lemma has numerous applications in geometry, topology
and group theory; we will give a few basic examples of this type, indicating
the potential of the Švarc-Milnor lemma:
• Finite index subgroups of finitely generated groups are finitely gener-

ated.
• (Weakly) commensurable groups are quasi-isometric.
• Certain groups arising in geometric topology are finitely generated (for

instance, certain fundamental groups).
• Fundamental groups of nice compact metric spaces are quasi-isometric

to the universal covering space.
As a first application of the Švarc-Milnor lemma, we give another proof of

the fact that finite index subgroups of finitely generated groups are finitely
generated:

Corollary 5.4.5. Finite index subgroups of finitely generated groups are finitely
generated and quasi-isometric to the ambient group (via the inclusion map).

Proof. Let G be a finitely generated group, and let H ⊂ G be a subgroup of
finite index. If S is a finite generating set of G, then the left translation action
of H on (G, dS) is an isometric action satisfying the conditions of the Švarc-
Milnor lemma (Proposition 5.4.1): The space (G, dS) is (1, 1)-quasi-geodesic.
Moreover, we let B ⊂ G be a finite set of representatives of H \G (hence, the

diameter of B is finite). Then H · B = G, the set B′ := BG,dS2 (B) is finite,
and so the set

T := {h ∈ H | h ·B′ ∩B′ 6= ∅}

is finite.
Therefore, H is finitely generated (by T ) and the inclusion H ↪→ G is a

quasi-isometry (with respect to any word metrics on H and G coming from
finite generating sets).

Pursuing this line of thought leads to the notion of (weak) commensura-
bility of groups:
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Definition 5.4.6 ((Weak) commensurability).
• Two groups G and H are commensurable if they contain finite index

subgroups G′ ⊂ G and H ′ ⊂ H with G′ ∼= H ′.
• More generally, two groups G and H are weakly commensurable if they

contain finite index subgroups G′ ⊂ G and H ′ ⊂ H satisfying the
following condition: There are finite normal subgroups N of G′ and M
of H ′ respectively such that the quotient groups G′/N and H ′/M are
isomorphic.

In fact, both commensurability and weak commensurability are equiva-
lence relations on the class of groups (Exercise 5.E.16).

Corollary 5.4.7 (Weak commensurability and quasi-isometry). Let G be a group.
1. Let G′ be a finite index subgroup of G. Then G′ is finitely generated if

and only if G is finitely generated. If these groups are finitely generated,
then G∼QI G

′.
2. Let N be a finite normal subgroup. Then G/N is finitely generated if

and only if G is finitely generated. If these groups are finitely generated,
then G∼QI G/N .

In particular, if G is finitely generated, then every group weakly commensu-
rable to G is finitely generated and quasi-isometric to G.

Proof. Ad 1. In view of Corollary 5.4.5, it suffices to show that G is finitely
generated if G′ is; but clearly combining a finite generating set of G′ with a
finite set of representatives of the G′-cosets in G yields a finite generating set
of G.

Ad 2. If G is finitely generated, then so is the quotient G/N ; conversely, if
G/N is finitely generated, then combining lifts with respect to the canonical
projection G −→ G/N of a finite generating set of G/N with the finite set N
gives a finite generating set of G.

Let G and G/N be finitely generated, and let S be a finite generating set
of G/N . Then the (pre-)composition of the left translation action of G/N
on (G/N, dS) with the canonical projection G −→ G/N gives an isometric
action of G on G/N that satisfies the conditions of the Švarc-Milnor lemma
(Proposition 5.4.1). Therefore, we obtain G∼QI G/N .

Example 5.4.8 (Commensurability).
• Let n ∈ N≥2. Then the free group of rank 2 contains a free group

of rank n as finite index subgroup (Exercise 4.E.12), and hence these
groups are commensurable; in particular, all free groups of finite rank
bigger than 1 are quasi-isometric.
• The subgroup of SL(2,Z) generated by the two matrices(

1 2
0 1

)
and

(
1 0
2 1

)
is free of rank 2 (Example 4.4.1) and has index 12 in SL(2,Z) (Proposi-
tion 4.4.2). Thus, SL(2,Z) is finitely generated and commensurable to
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a free group of rank 2, and therefore quasi-isometric to a free group of
rank 2 (and hence to all free groups of finite rank bigger than 1).
• Later we will find more examples of finitely generated groups that are

not quasi-isometric. Hence, all these examples cannot be weakly com-
mensurable (which might be rather difficult to check by hand).

Caveat 5.4.9. Not all quasi-isometric groups are commensurable [77, p. 105f]:
Let F3 be a free group of rank 3, and let F4 be a free group of rank 4. Then
the finitely generated groups (F3×F3) ∗F3 and (F3×F3) ∗F4 are bilipschitz
equivalent and hence quasi-isometric (Example 9.4.8).

On the other hand, the Euler characteristic χ (an invariant from alge-
braic topology) of the corresponding classifying spaces is multiplicative un-
der finite coverings [34]. Hence, commensurable groups G and G′ (that admit
sufficiently finite models of classifying spaces) satisfy

χ(G) = 0⇐⇒ χ(G′) = 0.

However, the inheritance properties of the Euler characteristic [34] yield

χ
(
(F3 × F3) ∗ F3

)
= χ(F3) · χ(F3) + χ(F3)− 1

= (1− 3) · (1− 3) + (1− 3)− 1

6= 0

= (1− 3) · (1− 3) + (1− 4)− 1

= χ(F3) · χ(F3) + χ(F4)− 1

= χ
(
(F3 × F3) ∗ F4

)
.

So, (F3×F3)∗F3 and (F3×F3)∗F4 are not commensurable; moreover, because
these groups are torsion-free, they also are not weakly commensurable.

Even more drastically, there also exist groups that are weakly commensu-
rable but not commensurable [77, III.18(xi)].

5.4.2 Application: Geometric structures on manifolds

As second example, we look at applications of the Švarc-Milnor lemma in alge-
braic topology and Riemannian geometry via fundamental groups; a concise
introduction to Riemannian geometry is given by Lee’s book [96].

Corollary 5.4.10 (Fundamental groups and quasi-isometry). Let M be a closed
(i.e., compact and without boundary) connected Riemannian manifold, and

let M̃ be its Riemannian universal covering manifold. Then the fundamental
group π1(M) is finitely generated and for every x ∈ M̃ , the map

π1(M) −→ M̃

g 7−→ g · x
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· · ·

sphere torus higher genus

Figure 5.11.: Oriented closed connected surfaces

given by the action of the fundamental group π1(M) on M̃ via deck transfor-

mations is a quasi-isometry. Here, M and M̃ are equipped with the metrics
induced from their Riemannian metrics.

Sketch of proof. Standard arguments from Riemannian geometry and topol-
ogy show that in this case M̃ is a proper geodesic metric space and that
the action of π1(M) on M̃ is isometric, proper, and cocompact (the quo-
tient being the compact space M). Applying the topological version of the
Švarc-Milnor lemma (Corollary 5.4.2) finishes the proof.

We give a sample application of this consequence of the Švarc-Milnor
lemma to Riemannian geometry:

Definition 5.4.11 (Flat manifold, hyperbolic manifold).
• A Riemannian manifold is called flat if its Riemannian universal cov-

ering is isometric to the Euclidean space of the same dimension.
• A Riemannian manifold is called hyperbolic if its Riemannian universal

covering is isometric to the hyperbolic space of the same dimension.

Being flat is the same as having vanishing sectional curvature and being
hyperbolic is the same as having constant sectional curvature −1 [96, Chap-
ter 11].

Example 5.4.12 (Surfaces). Oriented closed connected surfaces are deter-
mined up to homeomorphism/diffeomorphism by their genus (i.e., the number
of “handles”, see Figure 5.11) [115, Chapter I].
• The oriented surface of genus 0 is the sphere of dimension 2; it is sim-

ply connected, and so coincides with its universal covering space. In
particular, no Riemannian metric on S2 is flat or hyperbolic.
• The oriented surface of genus 1 is the torus of dimension 2, which has

fundamental group isomorphic to Z2. The torus admits a flat Rieman-
nian metric: The translation action of Z2 on R2 is isometric with respect
to the flat Riemannian metric on R2 and properly discontinuous; hence,
the quotient space (i.e., the torus S1 × S1) inherits a flat Riemannian
metric.
• Oriented surfaces of genus g ≥ 2 have fundamental group isomorphic

to
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〉
and one can show that these surfaces admit hyperbolic Riemannian
metrics [18, Chapter B.1, B.3][167].

Corollary 5.4.13 ((Non-)Existence of flat/hyperbolic structures).
1. If M is a closed connected Riemannian n-manifold that is flat, then

its fundamental group π1(M) is quasi-isometric to Euclidean space Rn,
and hence to Zn.

2. In other words: If the fundamental group of a closed connected smooth
n-manifold is not quasi-isometric to Rn (or Zn), then this manifold
does not admit a flat Riemannian metric.

3. If M is a closed connected Riemannian n-manifold that is hyperbolic,
then its fundamental group π1(M) is quasi-isometric to the hyperbolic
space Hn.

4. In other words: If the fundamental group of a closed connected smooth
n-manifold is not quasi-isometric to Hn, then this manifold does not
admit a hyperbolic Riemannian metric.

Proof. This is a direct consequence of Corollary 5.4.10.

Moreover, by the Bonnet-Myers theorem, closed connected Riemannian
manifolds of positive sectional curvature have finite fundamental group [96,
Theorem 11.7, Theorem 11.8].

So, classifying finitely generated groups up to quasi-isometry and study-
ing the quasi-geometry of finitely generated groups gives insights into the
geometry and topology of smooth/Riemannian manifolds.

5.5 The dynamic criterion for quasi-isometry

The Švarc-Milnor lemma translates an action of a group into a quasi-isometry
of the group in question to the metric space acted upon. Similarly, we can
also use certain actions to compare two groups with each other:

Definition 5.5.1 (Set-theoretic coupling). Let G and H be groups. A set-
theoretic coupling for G and H is a non-empty set X together with a left
action of G on X and a right action1 of H on X that commute with each
other (i.e., (g · x) · h = g · (x · h) holds for all x ∈ X and all g ∈ G, h ∈ H)
such that X contains a subset K with the following properties:

1. The G- and H-translates of K cover X, i.e. G ·K = X = K ·H.

1A right action of a group H on a set X is a map X ×H −→ X such that x · e = x and

(x · h) · h′ = x · (h · h′) holds for all x ∈ X and all h, h′ ∈ H. In other words, a right

action of H on X is the same as an antihomomorphism H −→ SX .
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2. The sets

FG := {g ∈ G | g ·K ∩K 6= ∅},
FH := {h ∈ H | K · h ∩K 6= ∅}

are finite.
3. For each g ∈ G there is a finite subset FH(g) ⊂ H with g·K ⊂ K ·FH(g),

and for each h ∈ H there is a finite FG(h) ⊂ G with K ·h ⊂ FG(h) ·K.

Example 5.5.2 (Set-theoretic coupling for finite index subgroups). Let X be a
group and let G ⊂ X and H ⊂ X be subgroups of finite index. Then the left
action

G×X −→ X

(g, x) 7−→ g · x

of G on X and the right action

X ×H −→ X

(x, h) 7−→ x · h

of H on X commute with each other (because multiplication in the group X is
associative). The set X together with these actions is a set-theoretic coupling
– a suitable subset K ⊂ X can for example be obtained by taking the union of
finite sets of representatives for G-cosets in X and H-cosets in X respectively.

Proposition 5.5.3 (Quasi-isometry and set-theoretic couplings). Let G and H
be two finitely generated groups that admit a set-theoretic coupling. Then

G∼QI H.

Proof. Let X be a set-theoretic coupling space for G and H with the corre-
sponding commuting actions by G and H; in the following, we will use the
notation from Definition 5.5.1. We prove G∼QI H by writing down a candi-
date for a quasi-isometry G −→ H and by then verifying (similar to the proof
of the Švarc-Milnor lemma) that this map indeed has quasi-dense image and
is a quasi-isometric embedding: Let x ∈ K ⊂ X. Using the axiom of choice,
we obtain a map f : G −→ H satisfying

g−1 · x ∈ K · f(g)−1

for all g ∈ G.
Moreover, we will use the following notation: Let S ⊂ G be a finite gen-

erating set of G, and let T ⊂ H be a finite generating set of H. For a
subset B ⊂ H, we define

DTB := sup
b∈B

dT (e, b),
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and similarly, we define DSA for subsets A of G.

The map f has quasi-dense image: Let h ∈ H. Using G · K = X we
find a g ∈ G with x · h ∈ g · K; because the actions of G and H commute
with each other, it follows that g−1 · x ∈ K · h−1. On the other hand, also
g−1 ·x ∈ K ·f(g)−1, by definition of f . In particular, K ·h−1∩K ·f(g)−1 6= ∅,
and so h−1 · f(g) ∈ FH . Therefore,

dT
(
h, f(g)

)
≤ DTFH ,

which is finite (the set FH is finite by assumption) and independent of h;
hence, f has quasi-dense image.

The map f is a quasi-isometric embedding: The sets

FH(S) :=
⋃

s∈S∪S−1

FH(s) and FG(T ) :=
⋃

t∈T∪T−1

FG(t)

are finite by assumption. Let g, g′ ∈ G.

• We first give an upper bound of dT (f(g), f(g′)) in terms of dS(g, g′):
More precisely, we will show that

dT
(
f(g), f(g′)

)
≤ DTFH(S) · dS(g, g′) +DTFH .

To this end let n := dS(g, g′). As first step we show that the intersection
K · f(g)−1 · f(g′) ∩K · FH(S)n is non-empty: On the one hand,

g−1 · x · f(g′) ∈ K · f(g)−1 · f(g′)

by construction of f . On the other hand, because dS(g, g′) = n we can
write g−1 · g′ = s1 · · · · · sn for certain s1, . . . , sn ∈ S ∪ S−1, and thus

g−1 · x · f(g′) = g−1 · g′ · g′−1 · x · f(g′)

∈ g−1 · g′ ·K · f(g′)−1 · f(g′)

= g−1 · g′ ·K
= s1 · · · · · sn−1 · sn ·K
⊂ s1 · · · · · sn−1 ·K · FH(S)

...

⊂ K · FH(S)n.

In particular, K · f(g)−1 · f(g′)∩K ·FH(S)n 6= ∅. In all these computa-
tions we used heavily that the actions of G and H on X commute with
each other.
Using the definition of FH , we see that

f(g)−1 · f(g′) ∈ FH · FH(S)n;
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in particular, we obtain (via the triangle inequality)

dT
(
f(g), f(g′)

)
= dT

(
e, f(g)−1 · f(g′)

)
≤ DT (FH · FH(S)n)

≤ n ·DTFH(S) +DTFH

= dS(g, g′) ·DTFH(S) +DTFH ,

as desired (the constants DTFH(S) and DTFH are finite because the
sets FH(S) and FH are finite by assumption).
• Moreover, there is a lower bound of dT (f(g), f(g′)) in terms of dS(g, g′):

Let m := dT (f(g), f(′g)). Using similar arguments as above, one sees
that

g−1 · x · f(g′) ∈ FG(T )m ·K ∩ g−1 · g′ ·K

and hence that this intersection is non-empty. Therefore, we can con-
clude that

dS(g, g′) ≤ DSFG(T ) · dT
(
f(g), f(g′)

)
+DSFG,

which gives the desired lower bound.

Outlook 5.5.4 (Cocycles). The construction of the map f in the proof above
is an instance of a more general principle associating interesting maps with
actions. Namely, suitable actions lead to cocycles (which are algebraic ob-
jects); considering cocycles up to an appropriate equivalence relation (“being
a coboundary”) then gives rise to cohomology groups (Appendix A.2). In this
way, aspects of group actions on a space can be translated into an algebraic
theory. In particular, the characterisation of quasi-isometry of finitely gener-
ated groups through couplings leads to quasi-isometry invariance of certain
(co)homological invariants [67, 161, 157, 98].

Moreover, we do not need to assume that both groups are finitely gener-
ated as being finitely generated is preserved by set-theoretic couplings (Ex-
ercise 5.E.18).

The converse of Proposition 5.5.3 also holds: whenever two finitely gener-
ated groups are quasi-isometric, then there exists a coupling (even a topolog-
ical coupling) between them:

Definition 5.5.5 (Topological coupling). Let G and H be groups. A topological
coupling for G and H is a non-empty locally compact space X together with
a proper cocompact left action of G on X by homeomorphisms and a proper
cocompact right action of H on X by homeomorphisms that commute with
each other.

A topological space X is called locally compact2 if for every x ∈ X and
every open neighbourhood U ⊂ X of x there exists a compact neighbour-

2There are several different notions of local compactness in the literature!
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hood K ⊂ X of x with K ⊂ U . For example, a metric space is locally
compact if and only if it is proper.

We can now formulate Gromov’s dynamic criterion for quasi-isometry:

Theorem 5.5.6 (Dynamic criterion for quasi-isometry). Let G and H be finitely
generated groups. Then the following are equivalent:

1. There is a topological coupling for G and H.
2. There is a set-theoretic coupling for G and H.
3. The groups G and H are quasi-isometric.

Proof. Ad “1 =⇒ 2”. Let G and H be finitely generated groups that admit
a topological coupling, i.e., there is a non-empty locally compact space X
together with a proper cocompact action from G on the left and from H on
the right such that these two actions commute with each other. We show that
such a topological coupling forms a set-theoretic coupling:

A standard argument from topology shows that in this situation there is
a compact subset K ⊂ X such that G ·K = X = K ·H. Because the actions
of G and H on X are proper, the sets

{g ∈ G | g ·K ∩K 6= ∅} and {h ∈ H | K · h ∩K 6= ∅}

are finite; moreover, compactness of the set K as well as the local compactness
of X also give us that for every g ∈ G there is a finite set FH(g) ⊂ H
satisfying g · K ⊂ K · FH(g), and similarly for elements of H. Hence, this
topological coupling is also a set-theoretic coupling for G and H.

Ad “2 =⇒ 3”. This was proved in Proposition 5.5.3.
Ad “3 =⇒ 1”. Suppose that the finitely generated groups G and H are

quasi-isometric. We now explain how this leads to a topological coupling of G
and H:

Let S ⊂ G and T ⊂ H be finite generating sets of G and H respectively.
As first step, we show that there is a finite group F and a constant C ∈ R>0

such that the set

X :=
{
f : G −→ H × F

∣∣∣ f has C-dense image in H × F , and

∀g,g′∈G
1

C
· dS(g, g′) ≤ dT×F

(
f(g), f(g′)

)
≤ C · dS(g, g′)

}
is non-empty: Let f : G −→ H be a quasi-isometry. Because f is a quasi-
isometry, there is a c ∈ R>0 such that f has c-dense image in H and

∀g,g′∈G
1

c
· dS(g, g′)− c ≤ dT

(
f(g), f(g′)

)
≤ c · dS(g, g′) + c.

In particular, if g, g′ ∈ G satisfy f(g) = f(g′), then dS(g, g′) ≤ c2. Let F
be a finite group that has more elements than the dS-ball of radius c2 in G
(around the neutral element). Then out of f we can construct an injective
quasi-isometry f : G −→ H × F . Let c ∈ R>0 be chosen in such a way
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that f is a (c, c)-quasi-isometric embedding with c-dense image. Because f is
injective, then f satisfies a max(2·c, c2+c)-bilipschitz estimate (this follows as
in Exercise 5.E.5 from the fact that different elements of a finitely generated
group have distance at least 1 with respect to every word metric). Hence, F
and C := max(2 · c, c2 + c) have the desired property that the corresponding
set X is non-empty.

We consider the following left G-action and right H-action on X:

G×X −→ X

(g, f) 7−→
(
x 7→ f(g−1 · x)

)
X ×H −→ X

(f, h) 7−→
(
x 7→ f(x) · (h, e)

)
By construction, these two actions commute with each other.

Furthermore, we equip X with the topology of pointwise convergence
(which coincides with the compact-open topology when viewing X as a sub-
space of all “continuous” functions G −→ H × F ). By the Arzelá-Ascoli
theorem [89, Chapter 7], the space X is locally compact with respect to this
topology; at this point it is crucial that the functions in X satisfy a uniform
(bi)lipschitz condition (instead of a quasi-isometry condition) so that X is
equicontinuous. A straightforward computation (also using the Arzelá-Ascoli
theorem) shows that the actions of G and H on X are indeed proper and
cocompact [156].

Outlook 5.5.7 (A dynamic criterion for bilipschitz equivalence). It is also pos-
sible to formulate and prove a dynamic criterion for bilipschitz equivalence,
using couplings of continuous actions on Cantor sets [118, Theorem 3.2][98].

5.5.1 Application: Comparing uniform lattices

A topological version of subgroups of finite index are uniform lattices; the
dynamic criterion shows that finitely generated uniform lattices in the same
ambient locally compact group are quasi-isometric (Corollary 5.5.9).

Definition 5.5.8 (Uniform lattice). Let G be a locally compact topological
group. A uniform (or cocompact) lattice in G is a discrete subgroup Γ of G
such that the left translation action (equivalently, the right translation action)
of Γ on G is cocompact.

Recall that a topological group is a group G that in addition is a topological
space such that the composition G×G −→ G in the group and the inversion
map G −→ G given by taking inverses are continuous (on G × G we take
the product topology). A subgroup Γ of a topological group G is discrete if
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there exists an open neighbourhood U of the neutral element e in G such
that U ∩ Γ = {e}.

Corollary 5.5.9 (Uniform lattices and quasi-isometry). Let G be a locally com-
pact topological group. Then all finitely generated uniform lattices in G are
quasi-isometric.

Proof. Let Γ and Λ be finitely generated uniform lattices in G. Then the left
action

Γ×G −→ G

(γ, g) 7−→ γ · g

of Γ on G and the right action

G× Λ −→ G

(g, λ) 7−→ g · λ

of Λ on G are continuous (because G is a topological group) and commute
with each other. Moreover, these actions are cocompact and proper. Hence,
the ambient group G serves a topological coupling for Γ and Λ. So, Γ and Λ
are quasi-isometric by the dynamic criterion (Theorem 5.5.6).

Therefore, quasi-isometry invariants can sometimes be used to prove that
a given finitely generated group is not a uniform lattice in a specific locally
compact topological group.

Example 5.5.10 (Uniform lattices).
• If G is a group, equipped with the discrete topology, then a subgroup

of G is a uniform lattice if and only if it has finite index in G.
• Let n ∈ N. Then Zn is a discrete subgroup of the locally compact

topological group Rn, and Zn \ Rn is compact (namely, the n-torus);
hence, Zn is a uniform lattice in Rn.
• The subgroup Q ⊂ R is not discrete in R.
• Because the quotient Z × {0} \ R2 is not compact, Z × {0} is not a

uniform lattice in R2. In particular, the above corollary would not hold
in general without requiring that the lattices are uniform: the group Z
is not quasi-isometric to R2 (Exercise 5.E.24).
• Let HR be the real Heisenberg group, and let H be the Heisenberg group,

i.e.,

HR :=


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ R

 , H :=


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ Z

 .

Then HR is a locally compact topological group (with respect to the
topology given by convergence of all matrix coefficients), and H is a
finitely generated uniform lattice in HR (Exercise 5.E.21).
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So, every finitely generated group that is not quasi-isometric to H can-
not be a uniform lattice in HR; for example, we will see in Chapter 6
that Z3 is not quasi-isometric to H, and that free groups of finite rank
are not quasi-isometric to H.
• The subgroup SL(2,Z) of the matrix group SL(2,R) is discrete and

the quotient SL(2,Z) \ SL(2,R) has finite invariant measure, but this
quotient is not compact (this is similar to the fact that the action
of SL(2,Z) on the upper halfplane is not cocompact, Exercise 5.E.20);
so SL(2,Z) is not a uniform lattice in SL(2,R).
• If M is a closed connected Riemannian manifold, then the isometry

group Isom(M̃) of the Riemannian universal covering of M is a lo-
cally compact topological group (with respect to the compact-open
topology). Because the fundamental group π1(M) acts by isometries

(via deck transformations) on M̃ , we can view π1(M) as a subgroup

of Isom(M̃). One can show that this subgroup is discrete and co-

compact, so that π1(M) is a uniform lattice in Isom(M̃) [156, The-
orem 2.35].

Outlook 5.5.11 (Measure equivalence). Another important aspect of the dy-
namic criterion for quasi-isometry is that it admits translations to other set-
tings. For example, the corresponding measure-theoretic notion is measure
equivalence of groups, which plays a central role in measurable group the-
ory [63].

5.6 Quasi-isometry invariants

The central classification problem of geometric group theory is to classify
finitely generated groups up to quasi-isometry. As we have seen in the pre-
vious sections, knowing that certain groups are not quasi-isometric leads to
interesting consequences in group theory, topology, and geometry.

5.6.1 Quasi-isometry invariants

While a complete classification of finitely generated groups up to quasi-
isometry is far out of reach, partial results can be obtained. A general princi-
ple to obtain partial classification results is to construct suitable invariants.
We start with the simplest case, namely set-valued quasi-isometry invariants:

Definition 5.6.1 (Quasi-isometry invariants). Let V be a set. A quasi-isometry
invariant with values in V is a map I from the class of all finitely generated
groups to V such that all finitely generated groups G, H with G∼QIH satisfy

I(G) = I(H).
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Proposition 5.6.2 (Using quasi-isometry invariants). Let V be a set, and let I
be a quasi-isometry invariant with values in V , and let G and H be finitely
generated groups with I(G) 6= I(H). Then G and H are not quasi-isometric.

Proof. Assume for a contradiction that G and H are quasi-isometric. Because
I is a quasi-isometry invariant, this implies I(G) = I(H), which contradicts
the assumption I(G) 6= I(H). Hence, G and H cannot be quasi-isometric.

So, the more quasi-isometry invariants we can find, the more finitely gen-
erated groups we can distinguish up to quasi-isometry.

Caveat 5.6.3. If I is a quasi-isometry invariant of finitely generated groups,
and G and H are finitely generated groups with I(G) = I(H), then in general
we cannot deduce that G and H are quasi-isometric, as the example of the
trivial invariant shows (see below).

Some basic examples of quasi-isometry invariants are the following:

Example 5.6.4 (Quasi-isometry invariants).
• The trivial invariant. Let V be a set containing exactly one element,

and let I be the map associating with every finitely generated group
this one element. Then clearly I is a quasi-isometry invariant – however,
I does not contain any interesting information.
• Finiteness. Let V := {0, 1}, and let I be the map that sends all finite

groups to 0 and all finitely generated infinite groups to 1. Then I is
a quasi-isometry invariant, because a finitely generated group is quasi-
isometric to a finite group if and only if it is finite (Example 5.2.11).
• Rank of free groups. Let V := N, and let I be the map from the class

of all finitely generated free groups to V that associates with a finitely
generated free group its rank. Then I is not a quasi-isometry invariant
on the class of all finitely generated free groups, because free groups of
rank 2 and rank 3 are quasi-isometric (Example 5.4.8).

In order to obtain interesting classification results we need further quasi-
isometry invariants. In the following chapters, we will, for instance, study

• the growth of groups (Chapter 6),
• hyperbolicity (Chapter 7),
• ends of groups (i.e., geometry at infinity) (Chapter 8),
• and amenability (Chapter 9).

Caveat 5.6.5. If a quasi-isometry invariant has only a countable range of pos-
sible values, then it will not be a complete invariant: There exist uncountably
many quasi-isometry classes of finitely generated groups. This fact is a quasi-
geometric version of Theorem 2.2.28 and it can, for example, be proved by
producing uncountably many different growth types of groups [69] or via
small cancellation theory and the geometry of loops in Cayley graphs [23].
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5.6.2 Geometric properties of groups and rigidity

In geometric group theory, it is common to use the following term:

Definition 5.6.6 (Geometric property of groups). Let P be a property of finitely
generated groups (i.e., every finitely generated group either has P or does
not have P ; more formally, P is a subclass of the class of finitely generated
groups). We say that P is a geometric property of groups, in case the following
holds for all finitely generated groups G and H: If G has P and H is quasi-
isometric to G, then also H has P (i.e., if “having property P” is a quasi-
isometry invariant).

Example 5.6.7 (Geometric properties).
• Being finite is a geometric property of groups (Example 5.2.11).
• Being Abelian is not a geometric property of groups: For example, the

trivial group and the symmetric group S3 are quasi-isometric (because
they are both finite), but the trivial group is Abelian and S3 is not
Abelian.

Surprisingly, there are many interesting (many of them purely algebraic!)
properties of groups that are geometric. We list only the most basic instances,
more complete lists can be found in the book of Druţu and Kapovich [53]:
• Being virtually3 infinite cyclic is a geometric property (Chapter 6.3).
• More generally, for every n ∈ N the property of being virtually Zn is

geometric (Chapter 6.3).
• Being finitely generated and virtually free is a geometric property [178,

53].
• Being finitely generated and virtually nilpotent is a geometric property

of groups (Chapter 6.3).
• Being finitely presented is a geometric property of groups [31, Propo-

sition I.8.24] (Exercise 6.E.35).
Proving that these properties are geometric is far from easy; some of the

techniques and invariants needed to prove such statements are explained in
later chapters.

That a certain algebraic property of groups turns out to be geometric is
an instance of a rigidity phenomenon; so, for example, the fact that being
virtually infinite cyclic is a geometric property can also be formulated as the
group Z being quasi-isometrically rigid.

Conversely, in the following chapters, we will also study geometrically de-
fined properties of finitely generated groups such as hyperbolicity (Chapter 7)
and amenability (Chapter 9) and we will investigate how the geometry of
these groups affects their algebraic structure.

3Let P be a property of groups. A group is virtually P if it contains a finite index subgroup

that has property P .



th
is

is
a

dra
ft

ve
rsi

on
!

5.6. Quasi-isometry invariants 151

5.6.3 Functorial quasi-isometry invariants

A refined setup for quasi-isometry invariants is the formalisation of quasi-
isometry invariants as functors between categories. Functors translate objects
and morphisms between categories:

Definition 5.6.8 (Functor). Let C and D be categories. A (covariant) func-
tor F : C −→ D consists of the following components:
• A map F : Ob(C) −→ Ob(D) between the classes of objects.
• For all objects X,Y ∈ Ob(C) a map

F : MorC(X,Y ) −→ MorD
(
F (X), F (Y )

)
.

These maps are required to be compatible in the following sense:
• For all objects X ∈ Ob(C) we have F (idX) = idF (X).
• For all X,Y, Z ∈ Ob(C), all f ∈ MorC(X,Y ), and all g ∈ MorC(Y,Z)

we have
F (g ◦ f) = F (g) ◦ F (f).

Functors, by definition, satisfy a fundamental invariance principle:

Proposition 5.6.9 (Functors preserve isomorphisms). Let C and D be cate-
gories, let F : C −→ D be a functor, and let X,Y ∈ Ob(C).

1. If f ∈ MorC(X,Y ) is an isomorphism in the category C, then the
morphism F (f) ∈ MorD(F (X), F (Y )) is an isomorphism in D.

2. If X ∼=C Y , then F (X) ∼=D F (Y ).
3. If F (X) 6∼=D F (Y ), then X 6∼=C Y .

Proof. This is an immediate consequence of the definition of functors and of
isomorphism in categories.

Functors are ubiquitous in modern mathematics. For example, the funda-
mental group (Appendix A.1) is a functor from the (homotopy) category of
pointed topological spaces to the category of groups; geometric realisation
can be viewed as a functor from the category of graphs to the category of
metric spaces; group (co)homology is a functor from the category of groups
to the category of graded modules (Appendix A.2).

Definition 5.6.10 (Functorial quasi-isometry invariant). Let C be a category.
A functorial quasi-isometry invariant with values in C is a functor from (a
subcategory of) QMet to C.

Functorial quasi-isometries refine ordinary quasi-isometry invariants: If
F : QMet −→ C is a functorial quasi-isometry invariant, then taking the
isomorphism classes of values yields a set-valued quasi-isometry invariant
(provided that the isomorphism classes of C form a set). However, the func-
tor F contains more information: We do not only get isomorphic values on
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quasi-isometric objects, but we also get relations between the values of F in
the presence of quasi-isometric embeddings (Example 6.2.9, Example 8.3.9).

Basic examples of functorial quasi-isometry invariants are the ends functor
from the subcategory of QMet generated by geodesic metric spaces to the
category of topological spaces and the Gromov boundary functor from the
subcategory of QMet generated by quasi-hyperbolic spaces to the category of
topological spaces (Chapter 8). Also growth types of finitely generated groups
can be viewed as functorial quasi-isometry invariants from the subcategory
of QMet generated by finitely generated groups to the (category assoicated
with the) partially ordered set of growth types (Chapter 6).

Moreover, there is a general principle turning functors from algebraic
topology into quasi-isometry invariants, based on the coarsening construc-
tion by Higson and Roe [83, 148, 132]; a more general and more conceptual
approach was recently developed by Bunke and Engel [36]. For simplicity,
we restrict ourselves to the domain category of uniformly discrete spaces of
bounded geometry.

Definition 5.6.11 (UDBG space). A metric space (X, d) is a UDBG space if
it is uniformly discrete and of bounded geometry , i.e., if

inf
{
d(x, x′)

∣∣ x, x′ ∈ X, x 6= x′
}
> 0

and if there exists for all r ∈ R>0 a constant Kr ∈ N such that

∀x∈X
∣∣BX,dr (x)

∣∣ ≤ Kr.

The full subcategory of QMet generated by all UDBG spaces is denoted
by UDBG.

For example, if G is a finitely generated group and S ⊂ G is a finite
generating set, then (G, dS) is a UDBG space.

The coarsening of a functor is the maximal quasi-isometry invariant con-
tained in the given functor:

Theorem 5.6.12 (Coarsening of functors). Let C be a category that is closed
under direct limits, and let F : Simplf

h −→ C be a functor. Then there exists a
functor QF : UDBG −→ C and a natural transformation cF : F ◦I =⇒ QF ◦V
with the following universal property: If G : UDBG −→ C is a functor and if
cG : F ◦ I =⇒ G ◦ V is a natural transformation, then there exists a unique
natural transformation c : QF =⇒ G with (Figure 5.12)

c ◦ cF = cG.

We call QF the coarsening of F and cF the comparison map for F .

Before sketching the proof, we briefly explain the terms in the theorem:
A natural transformation is a family of morphisms in the target category
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F ◦ I cG +3

cF
!)

G ◦ V

QF ◦ V

c

KS

Figure 5.12.: Coarsening of functors: universal property

relating two given functors [109]. Simplicial complexes are combinatorial ap-
proximations of topological spaces, generalising the concept of a graph to
higher dimensions [48, Chapter 8.1]; in the following, we will require some
basic familiarity with simplicial complexes. Let Simplf denote the category of
locally finite simplicial complexes and proper simplicial maps; let Simplf

h be
the homotopy category of Simplf with respect to proper simplicial homotopy
of proper simplicial maps.

We write Simpulf
QI for the subcategory of Simplf of uniformly locally finite

simplicial complexes and simplicial maps that are not only proper but also
quasi-isometric embeddings with respect to the metric on the vertices associ-
ated with the 1-skeleton of the simplicial complex in question; then the set of
vertices is a UDBG space with respect to this metric. Moreover, we consider
the corresponding canonical functors

I : Simpulf
QI −→ Simplf

h

V : Simpulf
QI −→ UDBG .

Sketch of proof of Theorem 5.6.12. As first step we indicate how the func-
tor QF : UDBG −→ C can be constructed: The basic idea is to “zoom out”
of the given space using Rips complexes: If X is a UDBG space and r ∈ R≥0,
then we define the Rips complex Rr(X) of X with radius r as the following
simplicial complex: For n ∈ N the n-simplices of Rr(X) are the set{

x ∈ Xn+1
∣∣ ∀j,k∈{0,...,n} d(xj , xk) ≤ r

}
.

Hence, the local structure of radius r is blurred in Rr(X), and only the large
scale structure beyond radius r is preserved (Figure 5.13).

• On objects: Let X be a UDBG space. Then the family of Rips com-
plexes (Rr(X))r∈R≥0

with increasing radius forms a directed system of
(uniformly) locally finite simplicial complexes with respect to the nat-
ural inclusions Rr(X) −→ Rs(X) for r, s ∈ R≥0 with r ≤ s. We then
define

QF (X) := lim−→
r→∞

F
(
Rr(X)

)
,

where the direct limit is taken by applying F to the above inclusions.
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X = R0(X) R1(X) R√2(X) R2(X)

Figure 5.13.: Toy example for Rips complexes of a discrete metric space X;
here, X has the metric induced from R2 and the large square
has sides of length 2.

• On morphisms: Let f : X −→ Y be a quasi-isometric embedding of
UDBG spaces. Then for every r ∈ R≥0 there exists s ∈ R≥0 such
that the quasi-isometric embedding f : X −→ Y induces a well-defined
proper simplicial map Rr,s(f) : Rr(X) −→ Rs(Y ). Taking the direct
limit of these maps yields a morphism

QF (f) : QF (X) −→ QF (Y ).

Using the proper homotopy invariance of F , it is not hard to check that
QF (f) = QF (f ′) if f and f ′ are finite distance apart.

A straightforward calculation shows that QF indeed is a functor.

We can construct a natural transformation cF : F ◦I =⇒ QF ◦V as follows:
If X ∈ Ob(Simpulf

QI ), then X is a subcomplex of R1(V (X)), and so we obtain
a natural morphism

F (X) −→ F
(
R1(V (X))

)
−→ lim−→

r→∞
F
(
Rr(X)

)
= QF (X).

by composing F applied to the inclusion with the structure morphism in the
direct limit.

Standard arguments show that QF and cF have the claimed universality
property: Let G : QMet −→ C be a functor. Then for all UDBG spaces X and
all r, s ∈ R≥0 with r ≤ s the canonical inclusion V (Rr(X)) −→ V (Rs(X)) is
a quasi-isometry, and so there is a canonical isomorphism

lim−→
r→∞

G
(
V (Rr(X))

) ∼= G
(
V (X)

)
.

Therefore, a natural transformation F ◦ I =⇒ G ◦ V gives rise to the desired
natural transformation QF =⇒ G. It might seem at first that this construc-
tion only gives a natural transformation between QF ◦ V and G ◦ V , but
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as every UDBG space is quasi-isometric to a space in the image of V , this
natural transformation can be extended to UDBG.

For example, functors from algebraic topology such as the fundamental
group, higher homotopy groups or singular/cellular/simplicial homology on
the geometric realisation of simplicial complexes have trivial coarsenings be-
cause every element can be represented on a subspace of finite diameter
(which will be killed at a later stage in the Rips construction). In contrast,
truly locally finite theories do have interesting coarsenings.

Outlook 5.6.13 (Uniformly finite homology). For example, the coarsening of
locally finite simplicial homology with uniformly bounded coefficients coin-
cides with uniformly finite homology. Uniformly finite homology also has a
concrete description in terms of combinatorial chains that satisfy geometric
finiteness conditions [19, 175, 132] (Exercise 5.E.31ff). Applications of uni-
formly finite homology include the following:
• Uniformly finite homology allows to characterise amenable groups [19]

(Chapter 9.2.4).
• Uniformly finite homology measures the difference between bilipschitz

equivalences and quasi-isometries of UDBG spaces [175, 56] (Theo-
rem 9.4.11).
• Uniformly finite homology can be used to show the existence of certain

aperiodic tilings [19, 112].
• Uniformly finite homology is a tool that allows to study certain large

scale notions of dimension [51].
• Uniformly finite homology has applications in the context of existence

of positive scalar curvature metrics on smooth manifolds [19, 58].
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5.E Exercises

Quasi-isometry and bilipschitz equivalence

Quick check 5.E.1 (Quasi-isometric embedding constants*). Let c, c′ ∈ R>0

and b, b′ ∈ R≥0.
1. Let c′ ≥ c and b′ ≥ b. Is then every (c, b)-quasi-isometric embedding

also a (c′, b′)-quasi-isometric embedding?
2. Let c′ ≤ c and b′ ≤ b. Is then every (c, b)-quasi-isometric embedding

also a (c′, b′)-quasi-isometric embedding?

Quick check 5.E.2 (Quasi-isometry of metric spaces*).
1. Are the metric spaces N and Z (with respect to the standard metric

induced from R) quasi-isometric?
2. Are the metric spaces Z and {n3 | n ∈ Z} (with respect to the standard

metric induced from R) quasi-isometric?

Exercise 5.E.3 (Maps close to quasi-isometric embeddings*).
1. Show that every map at finite distance of a quasi-isometric embedding

is a quasi-isometric embedding.
2. Show that every map at finite distance of a quasi-isometry is a quasi-

isometry.

Exercise 5.E.4 (Inheritance properties of quasi-isometric embeddings*). Let X,
Y , Z be metric spaces and let f, f ′ : X −→ Y be maps that have finite
distance from each other.

1. Show that for all maps g : Z −→ X the compositions f ◦ g and f ′ ◦ g
have finite distance from each other.

2. Show that if g : Y −→ Z is a quasi-isometric embedding, then also g ◦f
and g ◦ f ′ have finite distance from each other.

Conclude the following:
3. Compositions of quasi-isometric [bilipschitz] embeddings are quasi-

isometric [bilipschitz] embeddings.
4. Compositions of quasi-isometries [bilipschitz equivalences] are quasi-

isometries [bilipschitz equivalences].

Exercise 5.E.5 (Bijective quasi-isometries**).
1. Show that bijective quasi-isometries between finitely generated groups

(with respect to the word metric of certain finite generating sets) are
bilipschitz equivalences.

2. Does this also hold in general? I.e., are all bijective quasi-isometries
between general metric spaces necessarily bilipschitz equivalences?
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Exercise 5.E.6 (Quasi-isometry group**). Determine the quasi-isometry group
of {n3 | n ∈ Z} (with respect to the standard metric induced from R).

Exercise 5.E.7 (Counting preimages**). Let X and Y be UDBG spaces (Def-
inition 5.6.11) and let f : X −→ Y be a quasi-isometry. Show that there
are c, C ∈ R>0 with the following properties:
• The map f : X −→ Y is a (c, c)-quasi-isometric embedding with c-dense

image.
• For all finite sets F ⊂ Y we have∣∣f−1(BYc (F ))

∣∣ ≥ 1

C
· |F | and

∣∣f−1(F )
∣∣ ≤ C · |F |.

Quasi-geodesic spaces

Quick check 5.E.8 (Quasi-isometry invariance of being (quasi-)geodesic*). Let
X and Y be metric spaces and let f : X −→ Y be a quasi-isometry.

1. Let X be geodesic. Is then also Y geodesic?
2. Let X be quasi-geodesic. Is then also Y quasi-geodesic?

Exercise 5.E.9 (Swiss cheese*). We consider X := R2 \ {0} with the metric
induced from the standard metric on R2.

1. Show that the space X is path-connected but not geodesic.
2. Show that for every ε ∈ R>0 the space X is (1, ε)-quasi-geodesic.

Illustrate your arguments with suitable pictures!

Exercise 5.E.10 (The maximum metric**). We consider the maximum met-
ric d∞ on R2.

1. Show that the space (R2, d∞) is geodesic but not uniquely geodesic. (A
space is called uniquely geodesic if every pair of points can be joined by
a unique geodesic.)

2. Is the space (R2 \ {0}, d∞) geodesic?
Illustrate your arguments with suitable pictures!

Exercise 5.E.11 (Geometric realisation of Cayley graphs**).
1. Show that |Cay(Z, {1})| is isometric to the real line R.
2. Show that |Cay(Z2, {(1, 0), (0, 1)})| is isometric to R×Z∪Z×R ⊂ R2

with the metric induced from the `1-metric on R2.
3. Is the geometric realisation of the Cayley graph Cay(F, S) of a free

group F of rank 2 with respect to a free generating set S of F isometric
to a subset of R2 (with respect to the Euclidean metric)?

4. What is the relation between the geometric realisation of the Cayley
graph Cay(Z/2017, {[1]}) and the circle S1 ?

Exercise 5.E.12 (Quasi-geodesic  geodesic**).
1. Show that the geometric realisation of a connected graph is a geodesic

metric space.
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2. Let X = (V,E) be a connected graph. Show that the canonical
map V ↪→ |X| is an isometric embedding that is a quasi-isometry (where
we equip V with the metric induced from the graph structure on X).

3. Fill in the details of the proof of Proposition 5.3.9 to show that ev-
ery quasi-geodesic metric space is quasi-isometric to a geodesic metric
space.

Exercise 5.E.13 (Infinite geodesics in groups**). Let G be a finitely generated
group with finite generating set S. Show that G is infinite if and only if
|Cay(G,S)| contains an infinite geodesic.

Hints. Exercise 3.E.11 might help.

Group actions and quasi-isometry

Quick check 5.E.14 (Švarc-Milnor lemma*). For each of the following group
actions name one of the conditions of the Švarc-Milnor lemma that is satisfied,
and one that is not.

1. The action of SL(2,Z) on R2 given by matrix multiplication.
2. The action of Z on X := {(r3, s) | r, s ∈ Z} (with respect to the metric

induced from the Euclidean metric on R2) that is given by

Z×X −→ X(
n, (r3, s)

)
7−→ (r3, s+ n).

Exercise 5.E.15 (Švarc-Milnor lemma via quasi-isometric actions***). Formu-
late and prove a truly quasi-geometric version of the Švarc-Milnor lemma,
i.e., a version of the Švarc-Milnor lemma where the given group action is an
action by quasi-isometries instead of isometries.

Exercise 5.E.16 (Commensurability*).

1. Show that commensurability forms an equivalence relation on the class
of all groups.

2. Show that weak commensurability forms an equivalence relation on the
class of all groups.

Hints. Exercise 2.E.5 might help.

Quick check 5.E.17 (A set-theoretic coupling of Z with Z ?*). Let G := Z and
H := Z. We consider the left action of G on R2 given by

G× R2 −→ R2(
n, (x, y)

)
7−→ (n+ x, y)

and the right action of H on R2 given by
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R2 ×H −→ R2(
(x, y), n

)
7−→ (x, y + n).

Is R2 together with these actions of G and H a set-theoretic coupling of G
and H ?

Exercise 5.E.18 (Set-theoretic couplings and finite generation**). Let G and
H be groups that admit a set-theoretic coupling. Show that if G is finitely
generated, then so is H.

Exercise 5.E.19 (Measure equivalence***). Look up in the literature when
two groups are called measure equivalent, and compare this definition with
the dynamic criterion for quasi-isometry.

Exercise 5.E.20 (Möbius transformations***). The group SL(2,Z) acts on the
upper halfplane H :=

{
z ∈ C

∣∣ Re(z) > 0
}
⊂ C via Möbius transformations

by

SL(2,Z)×H −→ H((
a b
c d

)
, z

)
7−→ a · z + b

c · z + d
.

More details on this action can also be found in Appendix A.3.
1. Let D :=

{
z ∈ H

∣∣ |z| ≥ 1 and |Re z| ≤ 1/2
}

, see Figure 5.14. Show
that

SL(2,Z) ·D = H.

Illustrate your arguments by suitable pictures!
2. Prove that this action is not cocompact with respect to the standard

topology on H ⊂ C.

Figure 5.14.: The subset D in the upper halfplane and some geodesics
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Exercise 5.E.21 (The Heisenberg group as a lattice**). Let HR be the real
Heisenberg group and let H ⊂ HR be the Heisenberg group:

HR :=


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ R

 , H :=


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ Z

 .

We equipHR with the topology given by convergence of all matrix coefficients.
1. Show that HR is a locally compact topological group with respect to

this topology.
2. Show that the subgroup H is a cocompact lattice in HR.

Quasi-isometry of groups

Quick check 5.E.22 (Homomorphisms and quasi-isometry*). Characterise all
group homomorphisms between finitely generated groups that are quasi-
isometries.

Exercise 5.E.23 (Quasi-dense subgroups*). LetG be a finitely generated group
with finite generating set S ⊂ G and let H ⊂ G′ ⊂ G be subgroups. Moreover,
let H ⊂ G′ be quasi-dense with respect to dS , i.e., there exists a c ∈ R>0

with
∀g∈G′ ∃h∈H dS(g, h) ≤ c.

Prove that then H has finite index in G′.

Exercise 5.E.24 (Groups not quasi-isometric to Z **). Let n ∈ N≥2.
1. Show that every quasi-isometric embedding Z −→ Z is a quasi-isometry.
2. Show that there is no quasi-isometric embedding X −→ Z where the

cross X := (Z×{0})∪ ({0}×Z) is equipped with the `1-metric on R2.
3. Conclude that the groups Z and Zn are not quasi-isometric. In particu-

lar, R is not quasi-isometric to Rn with the Euclidean metric (because
these spaces are quasi-isometric to Z and Zn respectively).

4. Show that the group Z is not quasi-isometric to a free group of rank n.

Exercise 5.E.25 ((Free) products and bilipschitz equivalence*). Let G, G′

and H be finitely generated groups and suppose that G and G′ are bilip-
schitz equivalent.

1. Are then also G×H and G′ ×H bilipschitz equivalent?
2. Are then also G ∗H and G′ ∗H bilipschitz equivalent?

Exercise 5.E.26 ((Free) products and quasi-isometry**). Let G, G′ and H be
finitely generated groups and suppose that G and G′ are quasi-isometric.

1. Are then also G×H and G′ ×H quasi-isometric?
2. Are then also G ∗H and G′ ∗H quasi-isometric?
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Quick check 5.E.27 (Geometric properties*).
1. Is the property of being generated by 2017 elements a geometric prop-

erty of finitely generated groups?
2. Is the property of being isomorphic to a subgroup of Z2017 a geometric

property of finitely generated groups?
3. Is the property of being infinite and torsion-free a geometric property

of finitely generated groups?
4. Is the property of being a 2017-torsion group a geometric property of

finitely generated groups?
5. Is the property of being a free product of two non-trivial groups a

geometric property of finitely generated groups?

Quick check 5.E.28 (Quasi-isometries of groups*).
1. Let G and H be finitely generated groups and suppose that there is a

quasi-isometric embedding G −→ H. Does this imply that there is a
quasi-isometric embedding H −→ G ?

2. For which finitely generated groups G are G and Hom(G,Z/2) quasi-
isometric?

Exercise 5.E.29 (Diameters**). Let F be the set of all generating sets of the
symmetric group S3. Determine the maximal diameter of S3, i.e., determine
the quantity

max
S∈F

diam Cay(S3, S).

Exercise 5.E.30 (Coarse equivalence***).
1. Look up the terms coarse embedding and coarse equivalence in the lit-

erature.
2. Is every inclusion of a finitely generated subgroup of a finitely generated

group a coarse embedding?
3. Is every coarse embedding between finitely generated groups a quasi-

isometric embedding?
4. Show that finitely generated groups are coarsely equivalent if and only

if they are quasi-isometric.

Uniformly finite homology+

We will briefly describe the construction of uniformly finite homology via
explicit geometric chains:

Let R be a commutative normed ring with unit (e.g., R or Z), let (X, d)
be a UDBG space, and let n ∈ N. We then write Cuf

n (X;R) for the R-module
of all bounded functions c : Xn+1 −→ R satisfying the following property:
There is an r ∈ R>0 with

∀x∈Xn+1 max
{
d(xj , xk) | j, k ∈ {0, . . . , n}

}
≥ r =⇒ c(x) = 0.
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The elements of Cuf
n (X;R) are called uniformly finite chains in X with co-

efficients in R; usually, such functions c : Xn+1 −→ R are denoted as formal
sums of the form

∑
x∈Xn+1 c(x) · x.

Exercise 5.E.31 (Uniformly finite homology, boundary operator**). Let X be
a UDBG space, let n ∈ N>0 and let R be a normed ring. Show that

∂n : Cuf
n (X;R) −→ Cuf

n−1(X;R)∑
x∈Xn+1

cx · x 7−→
∑

x∈Xn+1

n∑
j=0

(−1)j · cx · (x0, . . . , xj−1, xj+1, . . . , xn)

describes a well-defined R-linear map that satisfies

∂n ◦ ∂n+1 = 0.

In addition, we define ∂0 := 0. Hence, Cuf
∗ (X;R) is a chain complex with

respect to ∂∗.

Exercise 5.E.32 (Uniformly finitely homology, induced chain map**). Let X
and Y be UDBG spaces, let R be a normed ring, and let f : X −→ Y be a
quasi-isometric embedding. Prove that for n ∈ N the expression

Cuf
n (f ;R) : Cuf

n (X;R) −→ Cuf
n (Y ;R)∑

x∈Xn+1

cx · x 7−→
∑

x∈Xn+1

cx ·
(
f(x0), . . . , f(xn)

)
describes a well-defined R-linear map that satisfies

∂n+1 ◦ Cuf
n+1(f ;R) = Cuf

n (f ;R) ◦ ∂n+1.

I.e., Cuf
∗ (f ;R) : Cuf

∗ (X;R) −→ Cuf
∗ (Y ;R) is a chain map.

Definition 5.E.1 (Uniformly finite homology). Let R be a normed ring and let
n ∈ N. If X and Y are UDBG spaces and f : X −→ Y is a quasi-isometric
embedding, we define uniformly finite homology of X by

Huf
n (X;R) :=

ker(∂n : Cuf
n (X;R)→ Cuf

n−1(X;R))

im(∂n+1 : Cuf
n+1(X;R)→ Cuf

n (X;R))

and the map induced by f by

Huf
n (f ;R) : Huf

n (X;R) −→ Huf
n (Y ;R)

[c] 7−→
[
Cuf
n (f ;R)(c)

]
.

Exercise 5.E.33 (Uniformly finite homology**). Let R be a normed ring and
let n ∈ N.
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1. Show that Huf
n ( · ;R) is well-defined (both on objects and on mor-

phisms).
2. Show that Huf

n ( · ;R) : UDBG −→ RMod is a well-defined functor.
3. Conclude that quasi-isometries between UDBG spaces induce isomor-

phisms in uniformly finite homology.

In particular, we can define uniformly finite homology Huf
∗ (G;R) for

finitely generated groups G (by choosing a finite generating set and taking
the associated word metric on G).

Exercise 5.E.34 (Uniformly finite homology of bounded spaces*). Determine
the uniformly finite homology of UDBG spaces of bounded diameter.

Alternative descriptions of uniformly finite homology can be obtained via
simplicial topology and group homology:

Exercise 5.E.35 (Uniformly finite homology via coarsening***). Show that uni-
formly finite homology is naturally isomorphic to the coarsening of locally
finite simplicial homology with uniformly bounded coefficients.
Hints. How does the Rips complex construction translate into metric con-
ditions on chains?

Exercise 5.E.36 (Uniformly finite homology of groups***). Let R be a normed
ring. Show that for finitely generated groups G, uniformly finite homol-
ogy Huf

∗ (G;R) with coefficients in R is naturally isomorphic to group ho-
mology H∗(G; `∞(G;R)) with `∞-coefficients.
Hints. A quick description of group homology as well as suitable references
for group homology are given in Appendix A.2.
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Geometry of groups
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Growth types of groups

The first quasi-isometry invariant we discuss in detail is the growth type.
Basically, we measure the “volume” of balls in a given finitely generated
group and study the asymptotic behaviour when the radius tends to infinity.

We will start by introducing growth functions for finitely generated groups
(with respect to finite generating sets); while these growth functions depend
on the chosen finite generating set, a straightforward calculation shows that
growth functions for different finite generating sets only differ by a small
amount, and more generally that growth functions of quasi-isometric groups
are asymptotically equivalent. This leads to the notion of growth type of a
finitely generated group.

The quasi-isometry invariance of the growth type allows us to show for
many groups that they are not quasi-isometric.

Surprisingly, having polynomial growth is a rather strong constraint for
finitely generated groups: By Gromov’s polynomial growth theorem, all
finitely generated groups of polynomial growth are virtually nilpotent! We
will discuss this theorem in Chapter 6.3. In contrast, in Chapter 6.4 we will
study some aspects of groups with exponential growth.

Overview of this chapter

6.1 Growth functions of finitely generated groups 168

6.2 Growth types of groups 170

6.3 Groups of polynomial growth 179

6.4 Groups of uniform exponential growth 188

6.E Exercises 194
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168 6. Growth types of groups

6.1 Growth functions of finitely generated groups

We start by introducing growth functions of groups with respect to finite
generating sets:

Definition 6.1.1 (Growth function). Let G be a finitely generated group and
let S ⊂ G be a finite generating set of G. Then

βG,S : N −→ N
r 7−→

∣∣BG,Sr (e)
∣∣

is the growth function of G with respect to S; here,

BG,Sr (e) := BG,dSr (e) = {g ∈ G | dS(g, e) ≤ r}

denotes the (closed) ball of radius r around e with respect to the word met-
ric dS on G.

This definition makes sense because balls for word metrics with respect to
finite generating sets are finite (Remark 5.2.10).

Example 6.1.2 (Growth functions of groups).

• The growth function of the additive group Z with respect to the gen-
erating set {1} clearly is given by

βZ,{1} : N −→ N
r 7−→ 2 · r + 1.

On the other hand, a straightforward induction shows that the growth
function of Z with respect to the generating set {2, 3} is given by

βZ,{2,3} : N −→ N

r 7−→


1 if r = 0

5 if r = 1

6 · r + 1 if r > 1.

So, in general, growth functions for different finite generating sets are
different.
• The growth function of Z2 with respect to the standard generating

set S := {(1, 0), (0, 1)} is quadratic (see Figure 6.1):



th
is

is
a

dra
ft

ve
rsi

on
!

6.1. Growth functions of finitely generated groups 169

(r, 0)

(1, r − 1)

Figure 6.1.: The r-ball in Cay
(
Z2, {(1, 0), (0, 1)}

)
around (0, 0)

βZ2,S : N −→ N

r −→ 1 + 4 ·
r∑
j=1

(r + 1− j) = 2 · r2 + 2 · r + 1.

• More generally, if n ∈ N, then the growth functions of Zn grow like a
polynomial of degree n (Exercise 6.E.2).

• The growth function of the Heisenberg group

H =


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ Z

 ∼= 〈x, y, z ∣∣ [x, z], [y, z], [x, y] = z
〉

with respect to the generating set {x, y, z} grows like a polynomial of
degree 4 (Exercise 6.E.6).

• The growth function of a free group F of finite rank n ≥ 2 with respect
to a free generating set S is exponential (see Figure 6.2):

βF,S : N −→ N

r 7−→ 1 + 2 · n ·
r−1∑
j=0

(2 · n− 1)j = 1 +
n

n− 1
·
(
(2 · n− 1)r − 1

)
.

Proposition 6.1.3 (Basic properties of growth functions). Let G be a finitely
generated group, and let S ⊂ G be a finite generating set.

1. Sub-multiplicativity. For all r, r′ ∈ N we have

βG,S(r + r′) ≤ βG,S(r) · βG,S(r′).

2. A general lower bound. Let G be infinite. Then βG,S is strictly increas-
ing; in particular, βG,S(r) ≥ r for all r ∈ N.
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e e

Figure 6.2.: The 3-ball in Cay
(
F ({a, b}), {a, b}

)
around e, drawn in two ways

3. A general upper bound. For all r ∈ N we have

βG,S(r) ≤ βF (S),S(r).

Proof. Ad 1./2. This follows easily from the definition of the word metric dS
on G (Exercise 6.E.5).

Ad 3. The homomorphism ϕ : F (S) −→ G characterised by ϕ|S = idS
is contracting with respect to the word metrics given by S on F (S) and G
respectively. Moreover, ϕ is surjective. Therefore, we obtain

βG,S(r) =
∣∣BG,Sr (e)

∣∣ =
∣∣ϕ(BF (S),S

r (e))
∣∣ ≤ ∣∣BF (S),S

r (e)
∣∣ = βF (S),S(r)

for all r ∈ N. The growth function βF (S),S is calculated in Example 6.1.2.

6.2 Growth types of groups

As we have seen, different finite generating sets can lead to different growth
functions; however, one might suspect already that growth functions com-
ing from different generating sets only differ by uniform multiplicative and
additive error terms.
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6.2.1 Growth types

We therefore introduce the following notion of equivalence for growth func-
tions:

Definition 6.2.1 (Quasi-equivalence of (generalised) growth functions).
• A generalised growth function is a function of type R≥0 −→ R≥0 that

is increasing.
• Let f , g : R≥0 −→ R≥0 be generalised growth functions. We say that g

quasi-dominates f , if there exist c, b ∈ R>0 such that

∀r∈R≥0
f(r) ≤ c · g(c · r + b) + b.

If g quasi-dominates f , then we write f ≺ g.
• Two generalised growth functions f , g : R≥0 −→ R≥0 are quasi-

equivalent if both f ≺ g and g ≺ f ; if f and g are quasi-equivalent,
then we write f ∼ g.

A straightforward computation shows that quasi-equivalence is an equiva-
lence relation on the set of all generalised growth functions. Quasi-domination
then induces a partial order on the set of equivalence classes; however, this
partial order is not total (Exercise 6.E.4).

Example 6.2.2 (Generalised growth functions).
• Monomials. If a ∈ R≥0, then

R≥0 −→ R≥0

x 7−→ xa

is a generalised growth function.
For all a, a′ ∈ R≥0 we have

(x 7→ xa) ≺ (x 7→ xa
′
)⇐⇒ a ≤ a′,

because: If a ≤ a′, then for all r ∈ R≥0

ra ≤ ra
′
+ 1,

and so (x 7→ xa) ≺ (x 7→ xa
′
).

Conversely, if a > a′, then for all c, b ∈ R>0 we have

lim
r→∞

ra

c · (c · r + b)a′ + b
=∞;

thus, for all c, b ∈ R>0 there is r ∈ R≥0 such that ra ≥ c ·(c ·r+b)a
′
+b,

and so (x 7→ xa) 6≺ (x 7→ xa
′
).

In particular, (x 7→ xa) ∼ (a 7→ xa
′
) if and only if a = a′.
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• Exponential functions. If a ∈ R>1, then

R≥0 −→ R≥0

x 7−→ ax

is a generalised growth function. A straightforward calculation shows
that

(x 7→ ax) ∼ (x 7→ a′x)

holds for all a, a′ ∈ R>1, as well as

(x 7→ ax) � (x 7→ xa
′
) and (x 7→ ax) 6≺ (x 7→ xa

′
)

for all a ∈ R>1 and all a′ ∈ R≥0 (Exercise 6.E.3). Moreover, there exist
generalised growth functions f such that

f ≺ (x 7→ ax) and f 6∼ (x 7→ ax), and

f � (x 7→ xa
′
) and f 6∼ (x 7→ xa

′
)

holds for all a ∈ R>1, a′ ∈ R≥0 (Exercise 6.E.3).

Example 6.2.3 (Growth functions yield generalised growth functions). Let G be
a finitely generated group and let S ⊂ G be a finite generating set. Then the
function

R≥0 −→ R≥0

r −→ βG,S(dre)

associated with the growth function βG,S : N −→ N indeed is a generalised
growth function (which is also sub-multiplicative).

If G and H are finitely generated groups with finite generating sets S and T
respectively, then we say that the growth function βG,S is quasi-dominated
by/quasi-equivalent to the growth function βH,T if the associated generalised
growth functions are quasi-dominated by/quasi-equivalent to each other.

More explicitly, βG,S is quasi-dominated by βH,T if and only if there ex-
ist c, b ∈ N such that

∀r∈N βG,S(r) ≤ c · βH,T (c · r + b) + b.

6.2.2 Growth types and quasi-isometry

We will now show that growth functions of different finite generating sets are
quasi-equivalent; more generally, we will show that the quasi-equivalence class
of growth functions of finite generating sets is a quasi-isometry invariant:
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Proposition 6.2.4 (Growth functions and quasi-isometries). Let G and H be
finitely generated groups, and let S ⊂ G and T ⊂ H be finite generating sets
of G and H respectively.

1. If there exists a quasi-isometric embedding (G, dS) −→ (H, dT ), then

βG,S ≺ βH,T .

2. In particular, if G and H are quasi-isometric, then the growth func-
tions βG,S and βH,T are quasi-equivalent.

Proof. The second part follows directly from the first one (and the definition
of quasi-isometry and quasi-equivalence of generalised growth functions).

For the first part, let f : G −→ H be a quasi-isometric embedding; hence,
there is a c ∈ R>0 such that

∀g,g′∈G
1

c
· dS(g, g′)− c ≤ dT

(
f(g), f(g′)

)
≤ c · dS(g, g′) + c.

We write e′ := f(e), and let r ∈ N. Using the estimates above we obtain the
following:
• If g ∈ BG,Sr (e), then dT (f(g), e′) ≤ c · dS(g, e) + c ≤ c · r + c, and thus

f
(
BG,Sr (e)

)
⊂ BH,Tc·r+c(e

′).

• For all g, g′ ∈ G with f(g) = f(g′), we have

dS(g, g′) ≤ c ·
(
dT (f(g), f(g′)) + c

)
= c2.

Because the metrics dS onG and dT onH are invariant under left translation,
it follows that

βG,S(r) ≤
∣∣BG,Sc2 (e)

∣∣ · ∣∣BH,Tc·r+c(e
′)
∣∣

=
∣∣BG,Sc2 (e)

∣∣ · ∣∣BH,Tc·r+c(e)
∣∣

= βG,S(c2) · βH,T (c · r + c),

which shows that βG,S ≺ βH,T (the term βG,S(c2) does not depend on the
radius r).

Proposition 6.2.4 shows in particular that quasi-equivalence classes of
growth functions yield a quasi-isometry invariant with values in the set of
quasi-equivalence classes of generalised growth functions. Moreover, this can
also be viewed as a functorial quasi-isometry invariant with values in the
category associated with the partially ordered set given by quasi-equivalence
classes of generalised growth functions with respect to quasi-domination.

In particular, we can define the growth type of finitely generated groups:

Definition 6.2.5 (Growth types of finitely generated groups). Let G be a finitely
generated group.
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• The growth type of G is the (common) quasi-equivalence class of all
growth functions of G with respect to finite generating sets of G.
• The group G is of exponential growth, if it has the growth type of the

exponential map (x 7→ ex).
• The group G has polynomial growth, if for one (and hence every) finite

generating set S of G there is an a ∈ R≥0 such that βG,S ≺ (x 7→ xa).
• The group G is of intermediate growth, if it is neither of exponential

nor of polynomial growth.

Recall that growth functions of finitely generated groups grow at most
exponentially (Proposition 6.1.3 and Example 6.1.2), and that polynomials
and exponential functions are not quasi-equivalent (Example 6.2.2); hence
the term “intermediate growth” does make sense and a group cannot have
exponential and polynomial growth at the same time.

We obtain from Proposition 6.2.4 and Example 6.2.2 that having expo-
nential growth/polynomial growth/intermediate growth respectively is a ge-
ometric property of groups. More generally:

Corollary 6.2.6 (Quasi-isometry invariance of the growth type). By Proposi-
tion 6.2.4, the growth type of finitely generated groups is a quasi-isometry in-
variant, i.e., quasi-isometric finitely generated groups have the same growth
type.

In other words: Finitely generated groups having different growth types
cannot be quasi-isometric.

Example 6.2.7 (Growth types). From Example 6.1.2 we obtain:
• If n ∈ N, then Zn has the growth type of (x 7→ xn) (Exercise 6.E.2).
• The Heisenberg group has the growth type of (x 7→ x4) (Exercise 6.E.6).
• Non-Abelian free groups of finite rank have the growth type of the

exponential function (x 7→ ex).

The groups Zn and the Heisenberg group hence have polynomial growth,
while non-Abelian free groups have exponential growth.

Example 6.2.8 (Quasi-isometry classification of Abelian groups). In analogy
with topological invariance of dimension, the following holds: We can recover
the rank of free Abelian groups from their quasi-isometry type, namely: For
all m, n ∈ N we have

Zm ∼QI Zn ⇐⇒ m = n;

this follows from Example 6.2.2, Example 6.2.7, and Corollary 6.2.6. Hence,
also for all m,n ∈ N:

Rm ∼QI Rn ⇐⇒ m = n.

More generally: If A is a finitely generated Abelian group, then by the
structure theorem of finitely generated Abelian groups, there is a unique
number r ∈ N and a finite Abelian group T (unique up to isomorphism) with

A ∼= Zr ⊕ T ;
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one then defines rkZA := r. Hence, combining the above observation with
Corollary 5.4.5, we obtain for all finitely generated Abelian groups A and A′

the equivalence
A∼QI A

′ ⇐⇒ rkZA = rkZA
′.

On the other hand, finitely generated Abelian groups admit equal growth
functions if and only if they have the same rank and if their torsion subgroups
have the same parity [103].

Example 6.2.9 (Distinguishing quasi-isometry types of basic groups).
• We obtain for the Heisenberg group H that H 6∼QI Z3 (Example 6.2.7),

which might be surprising because H fits into a short exact sequence

1 −→ Z −→ H −→ Z2 −→ 1

of groups! Even worse, H cannot quasi-isometrically embed into Z3.
• Let F be a non-Abelian free group of finite rank, and let n ∈ N. Be-

cause F grows exponentially, but Zn and H have polynomial growth,
we obtain

F 6∼QI Zn and F 6∼QI H.

Grigorchuk was the first to show that there indeed exist groups that have
intermediate growth [69][77, Chapter VIII]:

Theorem 6.2.10 (Existence of groups of intermediate growth). There exists a
finitely generated group of intermediate growth.

An example of such a group is the first Grigorchuk group (Definition 4.E.2),
which can be described via automorphisms of trees or as an automatic group.
A strategy to prove that this group has intermediate growth is outlined in
Exercise 6.E.13. Furthermore, this group also has several other interesting
properties [77, Chapter VIII]; for example, it is a finitely generated infinite
torsion group (Exercise 4.E.37), and it is commensurable to the direct product
with itself (Exercise 4.E.36).

Proposition 6.2.11 (Growth of subgroups). Let G be a finitely generated group
and let H be a finitely generated subgroup of G. If T is a finite generating set
of H, and S is a finite generating set of G, then

βH,T ≺ βG,S .

Proof. Let S′ := S ∪ T ; then S′ is a finite generating set of G. Let r ∈ N;
then for all h ∈ BH,Tr (e) we have

dS′(h, e) ≤ dT (h, e) ≤ r,

and so BH,Tr (e) ⊂ BG,S′r (e). In particular,

βH,T (r) ≤ βG,S′(r),
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and thus βH,T ≺ βG,S′ . Moreover, we know that (G, dS) and (G, dS′) are
quasi-isometric, and hence the growth functions βG,S′ and βG,S are quasi-
equivalent by Proposition 6.2.4. Therefore, we obtain βH,T ≺ βG,S .

Example 6.2.12 (Subgroups of exponential growth). Let G be a finitely gener-
ated group; ifG contains a non-Abelian free subgroup, thenG has exponential
growth. For instance, it follows that the Heisenberg group does not contain
a non-Abelian free subgroup. However, not every finitely generated group of
exponential growth contains a non-Abelian free subgroup (Exercise 6.E.18).

Caveat 6.2.13 (Distorted subgroups). The inclusion of a finitely generated
subgroup of a finitely generated group into this ambient group in general is
not a quasi-isometric embedding. For example the inclusion

Z −→
〈
x, y, z

∣∣ [x, z], [y, z], [x, y] = z
〉

given by mapping 1 to the generator z of the Heisenberg group (Exer-
cise 2.E.32) is not a quasi-isometric embedding: Let S := {x, y, z}. Then
for all n ∈ N we have

dS(e, zn
2

) = dS
(
e, [xn, yn]

)
≤ 4 · n;

hence, (n 7→ dS(e, zn)) does not grow linearly, and so the above inclusion
cannot be a quasi-isometric embedding.

6.2.3 Application: Volume growth of manifolds

Whenever we have a reasonable notion of volume on a metric space, we can
define corresponding growth functions; in particular, each choice of base point
in a Riemannian manifold leads to a growth function. Similarly to the Švarc-
Milnor lemma, nice isometric actions of groups give a connection between
the growth type of the group acting and the growth type of the metric space
acted upon. One instance of this type of results is the following [120]:

Proposition 6.2.14 (Švarc-Milnor lemma for growth types). Let M be a closed

connected Riemannian manifold, let M̃ be its Riemannian universal covering,
and let x ∈ M̃ . Then the Riemannian volume growth function

R≥0 −→ R≥0

r 7−→ volM̃ BM̃r (x)

of M̃ is quasi-equivalent to the growth functions (with respect to one (and
hence every) finite generating set) of the fundamental group π1(M) (which
is finitely generated by Corollary 5.4.10). Here BM̃r (x) denotes the closed

ball in M̃ of radius r around x with respect to the metric induced by the
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x

g · x

x

g · x

(a) (b)

Figure 6.3.: Packing balls into balls, and covering balls by balls

Riemannian metric on M̃ , and “volM̃” denotes the Riemannian volume with
respect to the Riemannian metric on M̃ .

Sketch of proof. By the Švarc-Milnor lemma (Corollary 5.4.10), the map

ϕ : π1(M) −→ M̃

g 7−→ g · x

given by the deck transformation action of π1(M) on M̃ is a quasi-isometry.
This allows to translate between radii for balls in π1(M) into radii for balls

in M̃ , and vice versa.
• The Riemannian volume growth function of M̃ at x quasi-dominates

the growth functions of π1(M): Because π1(M) acts freely, isomet-

rically, and properly discontinuously on M̃ there is an R ∈ R>0

with dM̃ (h · x, g · x) ≥ R for all g, h ∈ π1(M) with g 6= h. Hence,
the balls (BM̃R/3(g · x))g∈π1(M) are pairwise disjoint (Figure 6.3 (a)).
Packing balls and a straightforward computation – using that ϕ is a
quasi-isometric embedding – then proves this claim.
• The Riemannian volume growth function of M̃ at x is quasi-dominated

by the growth functions of π1(M): Because the image of ϕ is quasi-
dense, there is an R ∈ R>0 such that the balls (BM̃R (g · x))g∈π1(M)

cover M̃ (Figure 6.3 (b)). Covering balls and a straightforward compu-
tation – using that ϕ is a quasi-isometry – then proves this claim.

More details are given in de la Harpe’s book [77, Proposition VI.36].

In particular, we obtain the following obstruction for existence of maps of
non-zero degree:
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Corollary 6.2.15 (Maps of non-zero degree and growth). Let M and N be
oriented closed connected manifolds of the same dimension and suppose that
there exists a continuous map M −→ N of non-zero degree.

1. Then
βπ1(M),S � βπ1(N),T

holds for all finite generating sets S and T of π1(M) and π1(N), re-
spectively.

2. In particular: If M and N are smooth and carry Riemannian metrics,
then (

r 7→ volM̃ BM̃r (x)
)
�
(
r 7→ volÑ B

Ñ
r (y)

)
holds for all x ∈ M̃ and all y ∈ Ñ .

Associated with a continuous map between oriented closed connected man-
ifolds of the same dimension is an integer, the mapping degree. Roughly speak-
ing the mapping degree is the number of preimages (counted with multiplicity
and sign) under the given map of a generic point in the target; more precisely,
the mapping degree can be defined in terms of singular homology with in-
tegral coefficients and fundamental classes of the manifolds in question [50,
Chapter VIII.4].

Proof. In view of Proposition 6.2.14 it suffices to prove the first part.
Let us recall a standard (but essential) argument from algebraic topology:

If f : M −→ N has non-zero degree, then the image G of π1(M) in π1(N)
under the induced group homomorphism π1(f) : π1(M) −→ π1(N) has finite
index:

By covering theory, there is a connected covering p : N −→ N satisfy-
ing imπ1(p) = G [115, Theorem V.10.2 and V.4.2]; in particular, N also is
a connected manifold of dimension dimN without boundary. By covering
theory and construction of G, there exists a continuous map f : M −→ N
with p ◦ f = f [115, Theorem V.5.1]:

N

p

��

M

f

>>

f
// N

Looking at the induced diagram in singular homology with integral coeffi-
cients in top degree n := dimM = dimN = dimN shows Hn(N ;Z) 6∼= 0:

Hn(N ;Z)

Hn(p;Z)

��

Hn(M ;Z)

Hn(f ;Z)
88

Hn(f ;Z)
// Hn(N ;Z)
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Namely, Hn(M ;Z) ∼= Z ∼= Hn(N ;Z) and Hn(f ;Z) is multiplication by the
mapping degree deg f . In particular, N is compact [50, Corollary VIII.3.4].
On the other hand, |deg p| coincides with the number of sheets of the cover-
ing p [50, Proposition VIII.4.7], which in turn equals the index of imπ1(p)
in π1(N) [115, p. 133]. Hence,[

π1(N) : G
]

=
[
π1(N) : imπ1(p)

]
= |deg p| <∞,

as claimed.

In particular, G is quasi-isometric to π1(N) and π1(f) provides a surjective
homomorphism from π1(M) to G; so the growth functions of π1(N) are quasi-
dominated by those of π1(M).

Corollary 6.2.16 (Maps of non-zero degree to hyperbolic manifolds). If N is an
oriented closed connected hyperbolic manifold and if M is an oriented closed
connected Riemannian manifold of the same dimension whose Riemannian
universal covering has polynomial or intermediate volume growth, then there
is no continuous map M −→ N of non-zero degree.

Proof. This follows from the previous corollary by taking into account that
the volume of balls in hyperbolic space HdimN = Ñ grows exponentially with
the radius [146, Chapter 3.4] (Proposition A.3.28 for H2).

In Chapter 7, we will discuss a concept of negative curvature for finitely
generated groups, leading to generalisations of Corollary 6.2.16. Alternatively,
Corollary 6.2.16 can also be obtained via simplicial volume [100, 101].

6.3 Groups of polynomial growth

One of the milestones in geometric group theory is Gromov’s discovery that
groups of polynomial growth can be characterised algebraically as those
groups that are virtually nilpotent. The original proof by Gromov [72] was
subsequently simplified by van den Dries and Wilkie [52, 111]; alternative
proofs have been given by Kleiner [90], Shalom and Tao [162], Ozawa [141],
and Breuillard, Green, and Tao [26]. A complete proof is also given in the
textbook by Druţu and Kapovich [53].

Theorem 6.3.1 (Gromov’s polynomial growth theorem). Finitely generated
groups have polynomial growth if and only if they are virtually nilpotent.

In Chapter 6.3.1 and 6.3.2 we briefly discuss nilpotent groups and their
growth properties; in Chapter 6.3.3, we sketch Gromov’s argument why
groups of polynomial growth are virtually nilpotent. In the remaining sec-
tions, we give some applications of the polynomial growth theorem.
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6.3.1 Nilpotent groups

There are two natural ways to inductively take commutator subgroups of a
given group, leading to the notion of nilpotent and solvable groups respec-
tively:

Definition 6.3.2 ((Virtually) nilpotent group).
• Let G be a group. For n ∈ N we inductively define C(n)(G) by

C(0)(G) := G and ∀n∈N C(n+1)(G) :=
[
G,C(n)(G)

]
.

The sequence (C(n)(G))n∈N is the lower central series of G. The groupG
is nilpotent, if there is an n ∈ N such that C(n)(G) is the trivial group.
• A group is virtually nilpotent if it contains a nilpotent subgroup of finite

index.
Recall that if G is a group and A,B ⊂ G, then [A,B] denotes the subgroup
of G generated by the set {[a, b] | a ∈ A, b ∈ B} of commutators.

Definition 6.3.3 ((Virtually) solvable group).
• Let G be a group. For n ∈ N we inductively define G(n) by

G(0) := G and ∀n∈N G(n+1) := [G(n), G(n)].

The sequence (G(n))n∈N is the derived series of G. The group G is
solvable, if there is an n ∈ N such that G(n) is the trivial group.
• A group is virtually solvable if it contains a solvable subgroup of finite

index.

Solvable groups owe their name to the fact that a polynomial is solvable
by radicals if and only if the corresponding Galois group is solvable [94,
Chapter VI.7].

Clearly, the terms of the derived series of a group are subgroups of the
corresponding stages of the lower central series; hence, every nilpotent group
is solvable.

Example 6.3.4 (Nilpotent/solvable groups).
• All Abelian groups are nilpotent (and solvable) because their commu-

tator subgroup is trivial.
• The Heisenberg group H ∼= 〈x, y, z | [x, z], [y, z], [x, y] = z〉 is nilpotent:

We have
C(1)(H) = [H,H] ∼= 〈z〉H ,

and hence C(2)(H) = [H,C(1)(H)] ∼= [H, 〈z〉H ] = {e}.
• In general, virtually nilpotent groups need not be nilpotent or solvable:

For example, every finite group is virtually nilpotent, but not every
finite group is nilpotent. For instance, the alternating groups An are
simple and so not even solvable for n ∈ N≥5 [94, Theorem I.5.5].
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• There exist solvable groups that are not virtually nilpotent: For exam-
ple, the semi-direct product

Z2 oα Z,

where α : Z −→ Aut(Z2) is given by the action of the matrix(
1 1
1 2

)
on Z2 is such a group (Exercise 6.E.17).
• Free groups of rank at least 2 are not virtually solvable (Exercise 4.E.20).

Nilpotent groups and solvable groups are built up from Abelian groups in a
nice way – this corresponds to walking the first steps along the top boundary
of the universe of groups (Figure 1.2):

Proposition 6.3.5 (Disassembling nilpotent groups). Let G be a group and let
j ∈ N.

1. Then C(j+1)(G) ⊂ C(j)(G) and C(j+1)(G) is normal in C(j)(G).
2. Moreover, the quotient group C(j)(G)/C(j+1)(G) is Abelian; more pre-

cisely, C(j)(G)/C(j+1)(G) is a central subgroup of G/C(j+1)(G).

Proof. This follows via a straightforward induction from the definition of the
lower central series (Exercise 6.E.14).

Except for the last statement on centrality, the analogous statements also
hold for the derived series instead of the lower central series (Exercise 6.E.15).

6.3.2 Growth of nilpotent groups

The growth type of finitely generated nilpotent (and hence of virtually nilpo-
tent) groups can be expressed in terms of the lower central series:

Theorem 6.3.6 (Growth type of nilpotent groups). Let G be a finitely generated
nilpotent group, and let n ∈ N be minimal with the property that C(n)(G) is
the trivial group. Then G has polynomial growth of degree

n−1∑
j=0

(j + 1) · rkZ C(j)(G)/C(j+1)(G).

Why does the term rkZ C(j)(G)/C(j+1)(G) make sense? The quotient
group C(j)(G)/C(j+1)(G) is Abelian (Proposition 6.3.5). Moreover, it can
be shown that it is finitely generated (because G is finitely generated [179,
Lemma 3.7][110, Theorem 5.4]). Therefore, rkZ C(j)(G)/C(j+1)(G) is well-
defined.
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The proof of Theorem 6.3.6 proceeds by induction over the nilpotence
degree n and uses a suitable normal form of group elements in terms of
the lower central series [14, 53]; the arguments from the computation of the
growth rate of the Heisenberg group (Exercise 6.E.6) give a first impression
of how this inductive proof works. We will refrain from going into the details
for the general case.

Caveat 6.3.7 (Growth type of solvable groups). Even though solvable groups
are also built up inductively out of Abelian groups, in general they do not
have polynomial growth. This follows, for example, from the polynomial
growth theorem (Theorem 6.3.1) and the fact that there exist solvable groups
that are not virtually nilpotent (Example 6.3.4); moreover, it can also be
shown by elementary calculations that the group Z2oAZ given by the action
of the matrix

A =

(
1 1
1 2

)
on Z2 has exponential growth (Exercise 6.E.18).

Wolf [179] and Milnor [120] used algebraic means (similar to the calcula-
tions in Caveat 6.3.7) to prove the following predecessor of the polynomial
growth theorem:

Theorem 6.3.8 (Growth type of solvable groups). A finitely generated solvable
group has polynomial growth if and only if it is virtually nilpotent.

This theorem seems to be needed in all proofs of the polynomial growth
theorem known so far.

6.3.3 Polynomial growth implies virtual nilpotence

We will now sketch Gromov’s argument that finitely generated groups of
polynomial growth are virtually nilpotent, mainly following the exposition
by van den Dries and Wilkie [52]:

The basic idea behind the proof is to proceed by induction over the degree
of polynomial growth. In the following, let G be a finitely generated group of
polynomial growth, say of polynomial growth of degree at most d with d ∈ N.

In the case d = 0 the growth functions of G are bounded functions, and
so G must be finite. In particular, G is virtually trivial, and so virtually
nilpotent.

For the induction step we assume d > 0 and that we know already that all
finitely generated groups of polynomial growth of degree at most d − 1 are
virtually nilpotent. Moreover, we may assume without loss of generality that
G is infinite. The key to the inductive argument is the following theorem by
Gromov [72]:
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Theorem 6.3.9. If G is a finitely generated infinite group of polynomial
growth, then there exists a subgroup G′ of G of finite index that admits a
surjective homomorphism G′ −→ Z.

In fact, the proof of this theorem is the lion share of the proof of the
polynomial growth theorem. The alternative proofs of van den Dries and
Wilkie, Kleiner, Tao and Shalom, and Ozawa mainly give different proofs of
Theorem 6.3.9. We will now briefly sketch Gromov’s argument:

Sketch of proof of Theorem 6.3.9. Gromov’s cunning proof roughly works as
follows: Let S ⊂ G be a finite generating set. We then consider the sequence(

G,
1

n
· dS

)
n∈N

of metric spaces; this sequence models what happens when we move far away
from the group. If G has polynomial growth, then Gromov proves that this
sequence has a subsequence converging in an appropriate sense to a “nice”
metric space Y [72]. Using the solution of Hilbert’s fifth problem [125, 171],
one can show that the isometry group of Y is a Lie group, and so is closely
related to GL(n,C). Moreover, it can be shown that some finite index sub-
group G′ of G acts on Y in such a way that results on Lie groups (e.g.,
the Tits alternative for GL(n,C) (Chapter 4.4.3)) allow to construct a sur-
jective homomorphism from a finite index subgroup of G′ to Z (see also
Exercise 6.E.19).

A detailed proof is given in the paper by van den Dries and Wilkie [52].
Gromov’s considerations of the sequence (G, 1/n · dS)n∈N are a precursor of
asymptotic cones [54, 53].

In view of Theorem 6.3.9 we can assume without loss of generality that
our group G admits a surjective homomorphism π : G −→ Z. Using such a
homomorphism, we find a subgroup of G of lower growth rate inside of G:

Proposition 6.3.10 (Finding a subgroup of lower growth rate). Let d ∈ N and
let G be a finitely generated group of polynomial growth of degree at most d
that admits a surjective homomorphism π : G −→ Z. Let K := kerπ.

1. Then the subgroup K is finitely generated.
2. The subgroup K is of polynomial growth of degree at most d− 1.

Proof. Ad 1. This is proved in Exercise 6.E.20.
Ad 2. By the first part, we find a finite generating set S ⊂ G that contains

a finite generating set T ⊂ K of K and that contains an element g ∈ S with
π(g) = 1 ∈ Z. Let c ∈ R>0 with

∀r∈N βG,S(r) ≤ c · rd.

Now let r ∈ N, let N := βK,T (br/2c), and let k1, . . . , kN ∈ K be the N ele-

ments of the ball BK,Tbr/2c(e). Then the elements
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kj · gs with j ∈ {1, . . . , N} and s ∈ {−br/2c, . . . , br/2c}

of G are all distinct, and have S-length at most r. Hence,

βK,T (br/2c) ≤ βG,S(r)

r
≤ c · rd−1,

and therefore, βK,T ≺ (r 7→ rd−1).

By Proposition 6.3.10, the subgroup K := kerπ of G has polynomial
growth of degree at most d−1. Hence, by induction, we can assume that K is
virtually nilpotent. Now an algebraic argument shows that the extension G
of Z by K is a virtually solvable group [52, Lemma 2.1]:

Lemma 6.3.11. Let

1 // K // G
π // Z // 1

be an extension of groups, where G is finitely generated and K is virtually
solvable. Then also G is virtually solvable.

Proof. Let H ⊂ K be a solvable subgroup of K of finite index m. The in-
tersection H ′ of all subgroups of index m in K is a solvable group (as sub-
group of H) of finite index in K (Exercise 2.E.5) and all ϕ ∈ Aut(K) satisfy
ϕ(H ′) ⊂ H ′ (because automorphisms map subgroups of indexm to subgroups
of index m). Let g ∈ G with π(g) = 1 ∈ Z and let

G′ := 〈H ′ ∪ {g}〉G ⊂ G.

We now prove that G′ is a solvable subgroup of G of finite index: The sub-
group H ′ is normal in G′ (because conjugation by g is an automorphism
of K) and it follows that

G′ ∩H = H ′.

Therefore, G′ fits into an extension 1 −→ H ′ −→ G′ −→ Z −→ 1 and
solvability of H ′ implies that G′ is solvable. Moreover, a straightforward
calculation shows that [G : G′] = [K : H ′], which is finite.

Let us continue with our previous considerations: Because G has polyno-
mial growth, Theorem 6.3.8 lets us deduce that G indeed is virtually nilpo-
tent, as desired. This finishes the sketch proof of Gromov’s polynomial growth
theorem.

6.3.4 Application: Virtual nilpotence is geometric

As a first application we show that being virtually nilpotent is a geometric
property of finitely generated groups in the sense of Definition 5.6.6. In con-
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trast, from the algebraic definition of virtually nilpotent groups it is not clear
at all that this property is preserved under quasi-isometries.

Corollary 6.3.12. Being virtually nilpotent is a geometric property of finitely
generated groups.

Proof. In view of Gromov’s polynomial growth theorem (Theorem 6.3.1), for
finitely generated groups being virtually nilpotent and having polynomial
growth are equivalent. On the other hand, having polynomial growth is a
geometric property (Corollary 6.2.6).

6.3.5 More on polynomial growth

A priori it is not clear that a finitely generated group having polynomial
growth has the growth type of (r 7→ rd), where the exponent d is a natural
number.

Corollary 6.3.13 (Integrality of polynomial growth). Let G be a finitely gener-
ated group of polynomial growth. Then there is a d ∈ N such that

βG,S ∼ (r 7→ rd)

holds for all finite generating sets S of G.

Proof. By the polynomial growth theorem (Theorem 6.3.1), the group G is
virtually nilpotent. Therefore, G has polynomial growth of degree

d :=

n−1∑
j=0

(j + 1) · rkZ C(j)(G)/C(j+1)(G)

by Theorem 6.3.6 (where n denotes the degree of nilpotency of G). In partic-
ular, βG,S ∼ (r 7→ rd) for all finite generating sets S of G.

Corollary 6.3.14 (Integrality of polynomial growth of manifolds). Let M be a
closed connected Riemannian manifold whose Riemannian universal cover-
ing M̃ has polynomial volume growth. Then there is a d ∈ N such that for
all x ∈ M̃ we have (

r 7→ vol
M̃
BM̃r (x)

)
∼ (n 7→ nd).

Proof. The volume growth of M̃ coincides with the growth type of the funda-
mental group π1(M) (Proposition 6.2.14). Therefore, the previous corollary
implies integrality of the growth exponent.
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6.3.6 Quasi-isometry rigidity of free Abelian groups

Gromov’s polynomial growth theorem can be used to show that finitely gen-
erated free Abelian groups are quasi-isometrically rigid in the following sense:

Corollary 6.3.15 (Quasi-isometry rigidity of Z). Let G be a finitely generated
group quasi-isometric to Z. Then G is virtually infinite cyclic.

Proof. Because G is quasi-isometric to Z, the group G has linear growth.
In particular, G is virtually nilpotent by the polynomial growth theorem
(Theorem 6.3.1). Let H ⊂ G be a nilpotent subgroup of finite index; so H
has linear growth as well. By Bass’s theorem on the growth rate of nilpotent
groups (Theorem 6.3.6) it follows that

1 =

n−1∑
j=0

(j + 1) · rkZ C(j)(H)/C(j+1)(H),

where n is the degree of nilpotency of H. Because rkZ takes values in N, it
follows that

1 = rkZ C(0)(H)/C(1)(H) and ∀j∈N≥1
0 = rkZ C(j)(H)/C(j+1)(H).

The classification of finitely generated Abelian groups shows that finitely
generated Abelian groups of rank 0 are finite and that finitely generated
Abelian groups of rank 1 are virtually Z. So C(1)(H) is finite, and the quo-
tient C(0)(H)/C(1)(H) is Abelian and virtually Z. Then also H = C(0)(H) is
virtually Z. In particular, G is virtually Z.

We will see more elementary proofs of the quasi-isometry rigidity of Z in
Chapter 7 (Corollary 7.5.8) and Chapter 8 (Exercise 8.E.11).

More generally, a similar argument yields quasi-isometry rigidity of higher-
dimensional Abelian groups [32, Theorem 5.8]:

Corollary 6.3.16 (Quasi-isometry rigidity of Zn). Let n ∈ N. Then every finitely
generated group quasi-isometric to Zn is virtually Zn.

Sketch of proof. The proof is similar to the proof of quasi-isometry rigidity
of Z above, but it needs in addition a description of the growth rate of
virtually nilpotent groups in terms of their Hirsch rank [31, p. 149f].

It turns out that it is also possible to prove quasi-isometry rigidity of Zn
without referring to the polynomial growth theorem [161, 44]. On the other
hand, a full quasi-isometry classification of virtually nilpotent groups is out
of reach.
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6.3.7 Application: Expanding maps of manifolds

We conclude the discussion of polynomial growth with Gromov’s geomet-
ric application [72, Geometric corollary on p. 55] of the polynomial growth
theorem (Theorem 6.3.1) to infra-nil-endomorphisms:

Corollary 6.3.17. Every expanding self-map of a compact Riemannian man-
ifold is topologically conjugate to an infra-nil-endomorphism.

Before sketching the proof of this strong geometric rigidity result, we
briefly explain the geometric terms:

A map f : X −→ Y between metric spaces (X, dX) and (Y, dY ) is globally
expanding if

∀x,x′∈X x 6= x′ =⇒ dY
(
f(x), f(x′)

)
> dX(x, x′).

A map f : X −→ Y is expanding if every point of X has a neighbourhood U
such that the restriction f |U : U −→ Y is expanding. As Riemannian mani-
folds can be viewed as metric spaces, we obtain a notion of expanding maps
of Riemannian manifolds.

As a simple example, let us consider the n-dimensional torus Zn \ Rn.
A straightforward calculation shows that a linear map f : Rn −→ Rn with
f(Zn) ⊂ Zn induces a self-map Zn \ Rn −→ Zn \ Rn and that this self-map
is expanding if and only if all complex eigenvalues of f have absolute value
bigger than 1.

A nil-manifold is a compact Riemannian manifold that can be obtained
as a quotient Γ \ N , where N is a simply connected nilpotent Lie group
and Γ ⊂ N is a cocompact lattice. More generally, an infra-nil-manifold is
a compact Riemannian manifold that can be obtained as a quotient Γ \ N ,
where N is a simply connected nilpotent Lie group and Γ is a subgroup of
the group of all isometries of N generated by left translations of N and all
automorphisms of N . Clearly, all nil-manifolds are also infra-nil-manifolds,
and it can be shown that every infra-nil-manifold is finitely covered by a
nil-manifold.

Let Γ \ N be such an infra-nil-manifold. An expanding infra-nil-endo-
morphism is an expanding map Γ \ N −→ Γ \ N that is induced by an
expanding automorphism N −→ N of the Lie group N .

For example, all tori and the quotient H \HR of the Heisenberg group HR
with real coefficients by the Heisenberg group H are nil-manifolds (and so
also infra-nil-manifolds). The expanding maps on tori mentioned above are
examples of expanding infra-nil-endomorphisms.

Two self-maps f : X −→ X and g : Y −→ Y between topological spaces
are topologically conjugate if there exists a homeomorphism h : X −→ Y
with h ◦ f = g ◦ h, i.e., which fits into a commutative diagram:
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X
f
//

h

��

X

h

��

Y
g
// Y

Sketch of proof of Corollary 6.3.17. By a theorem of Franks [61], if a com-
pact Riemannian manifold M admits an expanding self-map, then the Rie-
mannian universal covering M̃ has polynomial volume growth; hence, by the
Švarc-Milnor lemma (Proposition 6.2.14), the fundamental group π1(M) is
finitely generated and has polynomial growth as well.

In view of the polynomial growth theorem (Theorem 6.3.1), we obtain that
π1(M) is virtually nilpotent.

By a result of Shub [163, 61], this implies that every expanding self-map
of M is topologically conjugate to an infra-nil-endomorphism.

6.4 Groups of uniform exponential growth

In contrast to Chapter 6.3, we will now focus on groups of exponential
growth. We will first introduce a stronger version of exponential growth
(Chapter 6.4.1). We will then discuss the interesting relation between ex-
ponential growth and number theory (Chapter 6.4.2–6.4.4), as discovered by
Breuillard [25, 27].

6.4.1 Uniform exponential growth

The rate of exponential growth can be measured as follows.

Proposition 6.4.1 (Exponential growth rate). Let G be a finitely generated
group and let S ⊂ G be a finite generating set of G.

1. Then the sequence
(
(βG,S(n))1/n

)
n∈N is convergent. The limit

%G,S := lim
n→∞

(
βG,S(n)

)1/n
= inf
n∈N>1

(
βG,S(n)

)1/n
is the exponential growth rate of G with respect to S.

2. Then %G,S > 1 if and only if G has exponential growth.

Proof. The proof consists of a standard argument for sub-multiplicative se-

quences: We abbreviate (an)n∈N := (βG,S(n))n∈N and a := infn∈N>0
a

1/n
n .

Ad 1. The growth function βG,S is submultiplicative (Proposition 6.1.3).
Therefore, inductively we obtain
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aN ·m+r ≤ aNm · a1
r

for all N,m, r ∈ N>0. Let N ∈ N>0. Every n ∈ N>0 can be written in the
form

n = N ·mn + rn

with mn ∈ N and rn ∈ {1, . . . , N}. Therefore, we have

a ≤ an
1
n ≤ aN

mn
n · a1

rn
n

= (aN
1
N )

N·mn
n · a1

rn
n .

Because of limn→∞ rn/n = 0 and a1 6= 0 the second factor converges to 1
for n→∞; moreover,

N ·mn

n
=
n− rn
n

converges to 1 for n → ∞. Therefore, lim supn→∞ an ≤ a
1/N
N . Taking the

infimum over all N ∈ N>0 proves

a ≤ lim inf
n→∞

an
1/n ≤ lim sup

n→∞
an

1/n ≤ a.

In particular, (an
1/n)n∈N is convergent with limit a = infn∈N>0

an
1/n.

Ad 2. Clearly, infn∈N>0
an

1/n > 1 if and only if (an)n∈N has the growth
type of (x 7→ ex). In view of the first part we hence obtain %G,S > 1 if and
only if G has exponential growth.

Example 6.4.2 (Exponential growth rates of free groups). Let n ∈ N≥1 and
let S ⊂ Fn be a free generating set. Then the calculation of the growth
function βFn,S in Example 6.1.2 shows that %Fn,S = 2 · n− 1.

In general, the exact value of the exponential growth rate does depend on
the finite generating set (Exercise 6.E.27).

Definition 6.4.3 (Uniform exponential growth). A finitely generated group G
has uniform exponential growth if

inf
{
%G,S

∣∣ S ⊂ G is a finite generating set
}
> 1.

Example 6.4.4 (Uniform exponential growth of free groups). The free group F2

of rank 2 has uniform exponential growth: Let S ⊂ F2 be a generating set. In
particular, |S| ≥ 2 and using the Nielsen-Schreier theorem (Corollary 4.2.8)
it is not hard to see that there exists a subset T ⊂ S with |T | = 2 that
generates a free subgroup F of rank 2. Therefore, we obtain

%F2,S ≥ %F,T = 3,

where the last equality follows from Example 6.4.2.
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It seems to be an open problem to decide whether having uniform expo-
nential growth is a quasi-isometry invariant or not [78].

It is known that finitely generated solvable groups [137] and finitely gener-
ated linear groups [60] have uniform exponential growth whenever they have
exponential growth. However, there also exist finitely generated groups of
exponential growth that do not have uniform exponential growth [176].

6.4.2 Uniform uniform exponential growth

In the case of linear groups, one can ask for another level of uniformity,
namely uniformity in the base field:

Conjecture 6.4.5 (Breuillard’s growth conjecture [25]). For every d ∈ N there
exists ε(d) ∈ R>0 with the following property: For every field K and every
finite set S ⊂ GL(d,K)
• either %〈S〉GL(d,K),S = 1 and 〈S〉GL(d,K) is virtually nilpotent
• or %〈S〉GL(d,K),S > 1 + ε(d).

Remark 6.4.6 (Uniformity in dimension?). In the growth conjecture of Breuil-
lard, uniformity of the growth gap in the dimension is impossible: Grigorchuk
and de la Harpe [70] constructed out of the Grigorchuk group of intermediate
growth a sequence (Gn)n∈N of groups with the following properties:
• For every n ∈ N, there exists a dn ∈ N such that Gn is isomorphic to

a subgroup of GL(dn,Z) that is generated by a set Sn ⊂ Gn of four
elements. In this example, limn→∞ dn =∞.
• For every n ∈ N the group Gn has exponential growth and

lim
n→∞

%Gn,Sn = 1.

While the growth conjecture is open in general, partial results are known:

Theorem 6.4.7 (Growth gap [25]). For every d ∈ N there exists ε(d) ∈ R>0

with the following property: For every field K and every finite subset S
of GL(d,K) that generates a subgroup of GL(d,K) that is not virtually solv-
able, we have

%〈S〉GL(d,K),S > 1 + ε(d).

The growth gap theorem is a consequence of the uniform Tits alternative
(Theorem 6.4.8 below).

6.4.3 The uniform Tits alternative

By the Tits alternative (Theorem 4.4.7), finitely generated linear groups are
either virtually solvable or they contain a free subgroup of rank 2. The uni-



th
is

is
a

dra
ft

ve
rsi

on
!

6.4. Groups of uniform exponential growth 191

form Tits alternative by Breuillard adds control on “how quickly” one can
find in the latter case a free subgroup of rank 2:

Theorem 6.4.8 (Uniform Tits alternative [25]). For every d ∈ N there ex-
ists N(d) ∈ N with the following property: For every field K and every finite
subset S ⊂ GL(d,K) with S−1 = S and e ∈ S we have

• either 〈S〉GL(d,K) is virtually solvable

• or the set SN(d) contains two elements that generate a free subgroup
of GL(d,K) of rank 2.

Breuillard’s proof of the uniform Tits alternative follows the blueprint of
the original proof of the Tits alternative (Chapter 4.4.3). We will briefly indi-
cate some of the main steps for d = 2 in the characteristic 0 case: Arguments
from model theory show that in order to prove the uniform Tits alternative
for all fields of characteristic 0 it is sufficient to prove the uniform Tits alter-
native for the algebraic closure Q of Q. Let S ⊂ SL(2,Q) be a finite subset
with S−1 = S and e ∈ S such that the subgroup G := 〈S〉SL(2,Q) is not
virtually solvable. For the classical Tits alternative, one proceeds as follows:

• Find a diagonalisable matrix a ∈ G with an eigenvalue of (some) norm
greater than 1.
• Find a matrix b ∈ G such that the eigenspaces of a and b are not related.
• Take ` ∈ N large enough (this will ensure that the eigenvalues of a` and
b · a` · b−1 are large).
• Apply the ping-pong lemma to a` and b · a` · b−1 acting on Q2 (or the

projective line over Q) to conclude that

〈a`, b · a` · b−1〉SL(2,Q)

is free of rank 2.

In order to promote this to a proof of the uniform Tits alternative for SL(2,Q),
one needs to control the S-word length of a and b, the size of the eigenvalues
of a, and the “distance” between eigenobjects of a and b; then a quantita-
tive version of the ping-pong lemma allows to control `. In this context, the
control of matrices, eigenvalues, and eigenobjects of matrices is formulated
in terms of heights, a measurement of complexity of algebraic numbers, i.e.,
of elements of Q; a crucial ingredient for control of eigenvalues and eigenob-
jects in the non-virtually solvable case is Breuillard’s height gap theorem [25],
which builds on results from diophantine geometry.

From the uniform Tits alternative, the growth gap theorem can be derived
by elementary means:

Proof of Theorem 6.4.7. Let d ∈ N and let N(d) ∈ N be as provided by the
uniform Tits alternative (Theorem 6.4.8). We set

ε(d) :=
1

2
· (31/N(d) − 1) > 0.
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If K is a field and S ⊂ GL(d,K) is finite (with S−1 = S and e ∈ S) and
G := 〈S〉GL(d,K) is not virtually solvable, then by the uniform Tits alternative

the set SN(d) contains two elements a, b that generate a free subgroup F ⊂ G
of rank 2. Therefore, we obtain (in combination with Example 6.4.4)

%G,S = %G,SN(d)
1/N(d)

≥ %F,{a,b}1/N(d) ≥ 31/N(d)

> 1 + ε(d),

as desired.

In addition to the growth gap theorem, the uniform Tits alternative also
has various other applications in group theory, such as uniform girth estimates
for linear groups (i.e., improvements of Theorem 4.4.6), uniform escape from
torsion in linear groups, uniform non-amenability of (non-amenable) linear
groups, uniform diameter estimates for finite groups, and applications to the
structure theory of approximate groups [25].

6.4.4 Application: The Lehmer conjecture

We will now digress briefly to number theory and a beautiful relation between
growth of linear groups and heights in number theory.

Let Q be the algebraic closure of Q (for concreteness, we may assume that

Q ⊂ C). Let α ∈ Q× and let f ∈ Z[X] be its (integral) minimal polynomial;
i.e., f(α) = 0, the polynomial f is not constant, and the coefficients of f are
coprime. Over C we can factor f as

f = ad · (X − α1) · · · · · (X − αd),

where d := deg f and ad ∈ Z is the leading coefficient of f , and α1, . . . , αd ∈ C
are the roots of f ; in particular, α ∈ {α1, . . . , αd}. Then the Mahler measure
of α is defined by

M(α) := |ad| ·
d∏
j=1

max
(
1, |αj |

)
,

where | · | denotes the ordinary absolute value on C. The Mahler measure
has several alternative descriptions, e.g., in terms of the height of algebraic
numbers and as a certain integral over f [21].

Numerical experiments support the following gap phenomenon:

Conjecture 6.4.9 (Lehmer conjecture). There exists an ε ∈ R>0 such that: If

α ∈ Q×, then
• either α is a root of unity
• or M(α) > 1 + ε.
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Breuillard discovered that this open problem in number theory is strongly
linked to growth of linear groups [25, 27].

Theorem 6.4.10 (Growth conjecture ⇐⇒ Lehmer conjecture).
1. If the growth conjecture holds for GL(2,Q), then the Lehmer conjecture

is true.
2. If the Lehmer conjecture holds, then for each d ∈ N the growth conjec-

ture holds for GL(d,Q).

The link between growth and Mahler measure is provided by the following
linear groups:

Example 6.4.11. Let α ∈ Q. We then set

A(α) :=

(
α 0
0 1

)
, B :=

(
1 1
0 1

)
and

S(α) :=
{
e,A(α), A(α)−1, B,B−1

}
⊂ GL(2,Q).

If α is not a root of unity, then the subgroup 〈S(α)〉GL(2,Q) is not virtually

nilpotent (Exercise 6.E.28). Moreover, one can show that

%〈S(α)〉GL(2,Q),S(α) ≤M(α).

In particular, these groups show that validity of the growth conjecture
for GL(2,Q) would imply the Lehmer conjecture. It should be noted that the
groups 〈S(α)〉GL(2,Q) are virtually solvable (Exercise 6.E.28). Hence, despite

of the growth gap theorem (Theorem 6.4.7) the Lehmer conjecture remains
open.

The converse implication that the Lehmer conjecture implies the growth
conjecture over the field Q requires careful entropy estimates [27], which are
far beyond the scope of this book.
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6.E Exercises

Growth functions

Quick check 6.E.1 (Balls in Abelian groups*).
1. Is there a finite generating set S ⊂ Z2 satisfying

βZ2,S(42) = 2016 ?

Hints. Parity!
2. Let n ∈ N. Is there a finite generating set S ⊂ Zn such that for all r ∈ N

we have
βZn,S(r) = {−r, . . . , r}n ?

Exercise 6.E.2 (Growth of Zn *). Let n ∈ N. Show that Zn has the growth
type of (x 7→ xn).
Hints. Pick nice generating sets!

Exercise 6.E.3 (Exponential generalised growth functions*).
1. Show that (x 7→ ax) ∼ (x 7→ a′x) holds for all a, a′ ∈ R>1.
2. Let a ∈ R>1 and a′ ∈ R>0. Show that (x 7→ ax) � (x 7→ xa

′
).

3. Let a ∈ R>1 and a′ ∈ R>0. Show that (x 7→ ax) 6≺ (x 7→ xa
′
).

4. Find a generalised growth function f : R≥0 −→ R≥0 with f ≺ (x 7→ ex),
f 6∼ (x 7→ ex), and (x 7→ xa) ≺ f for all a ∈ R>0.

Exercise 6.E.4 (Quasi-dominance*). Show that the the quasi-dominance re-
lation “≺” is not a total order on the set of generalised growth functions.

Exercise 6.E.5 (Basic properties of growth functions*). Let G be a finitely
generated group and let S ⊂ G be a finite generating set.

1. Show that the growth function βG,S is sub-multiplicative:

∀r,r′∈N βG,S(r + r′) ≤ βG,S(r) · βG,S(r′).

2. Prove that βG,S is strictly increasing if G is infinite.
Hints. Look at paths that realise the distance . . .

Growth types of groups

Exercise 6.E.6 (Growth type of the Heisenberg group**). Let H be the Heisen-
berg group (Exercise 2.E.32). We consider the presentation

H ∼=
〈
x, y, z

∣∣ [x, z], [y, z], [x, y] = z
〉
.
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We write S := {x, y, z} and view S as a subset of H. Let m, n, k ∈ Z.

1. Show that dS(xm · yn · zk, e) ≤ |m|+ |n|+ 6 ·
√
|k|.

2. Show that |m|+ |n| ≤ dS(xm · yn · zk, e) and |k| ≤ dS(xm · yn · zk, e)2.
3. Show that 1/2 · (|m|+ |n|+

√
|k|) ≤ dS(xm · yn · zk, e).

4. Conclude that the growth function βH,S is quasi-equivalent to a poly-
nomial of degree 4.

Exercise 6.E.7 (Growth of surface groups**). Find as many proofs as possible
that the surface group (Exercise 2.E.23)〈

a1, a2, b1, b2
∣∣ [a1, b1] · [a2, b2]

〉
has exponential growth.

Exercise 6.E.8 (Semi-ping-pong** [77, Proposition VII.2]). Let G be a finitely
generated group that acts on a set X. Moreover, let a, b ∈ G and let A,B ⊂ X
be non-empty subsets with the following properties:

A ∩B = ∅, a · (A ∪B) ⊂ B, b · (A ∪B) ⊂ A.

Show that then G has exponential growth.

Hints. Show by induction that the canonical map {a, b}∗ −→ G is injective.

Exercise 6.E.9 (A matrix group** [77, Example VII.3]). We consider the ma-
trices

a :=

(
2 0
0 1

)
and b :=

(
1 1
0 1

)
in GL(2,Q) and the subgroup G := 〈a, b〉GL(2,Q) of GL(2,Q). Show that G
has exponential growth.

Hints. Apply the semi-ping-pong (Exercise 6.E.8) to (large powers of) a−1

and (large powers of) a−1 · b and the action of G on R given by(
A B
0 1

)
· x := A · x+B

for all A,B ∈ Q, x ∈ R. Good candidates for the ping-pong table are small
neighbourhoods of 0 and 1, respectively.

Exercise 6.E.10 (Growth of BS(1, 2) **).

1. Show that the Baumslag-Solitar group BS(1, 2) has exponential growth.
Hints. Exercise 6.E.9 and the matrices from Exercise 2.E.21 will help.

2. Why doesn’t this result contradict the normal form developed in Exer-
cise 2.E.22 ?!
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Groups of intermediate growth

Exercise 6.E.11 (Groups of intermediate growth**). Let G be a finitely gen-
erated group with the following properties:
• The group G is not of exponential growth,
• and G is quasi-isometric to G×G.

Show that this implies that G is of intermediate growth.

Exercise 6.E.12 (A criterion for subexponential growth**). Let G be a finitely
generated group with finite generating set S and suppose that there exists a
finite index subgroup L ⊂ G as well as n ∈ N≥2, c ∈ (0, 1), b ∈ R≥0 and an
injective group homomorphism ψ : L −→ Gn satisfying

∀g∈L
n∑
j=1

dS
(
ψ(g)j , e

)
≤ c · dS(g) + b.

Show that G does not have exponential growth.

Exercise 6.E.13 (Intermediate growth of the Grigorchuk group***). We use the
notation from Definition 4.E.2 ff. Show that the group homomorphism

L3 −→
∏

w∈{0,1}3
Gri

g 7−→
(
ϕj1 ◦ ϕj2 ◦ ϕj3(g)

)
j1j1j3∈{0,1}3

satisfies the hypotheses of Exercise 6.E.12. Use Exercise 4.E.36 and 6.E.11 to
conclude that the Grigorchuk group Gri is a group of intermediate growth.

Growth and nilpotence/solvability

Exercise 6.E.14 (Quotients of the lower central series*). Let G be a group and
let j ∈ N.

1. Show that C(j+1)(G) ⊂ C(j)(G).
2. Show that C(j+1)(G) is a normal subgroup of C(j)(G) and of G.
3. Show that C(j)(G)/C(j+1)(G) is a central subgroup of G/C(j+1)(G).

Hints. A subgroup C of a group H is central if for all g ∈ C and
all h ∈ H we have g · h = h · g.

4. Conclude that the quotient group C(j)(G)/C(j+1)(G) is Abelian.

Exercise 6.E.15 (Quotients of the derived series*). Let G be a group and let
j ∈ N.

1. Show that G(j+1) ⊂ G(j).
2. Show that G(j+1) is a normal subgroup of G(j), and that the quotient

group G(j)/G(j+1) is Abelian.
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Definition 6.E.1. Let n ∈ N>1. For a matrix A ∈ GL(n,Z) we consider the
semi-direct product

GA := Zn oA Z

with respect to the homomorphism Z −→ AutZn given by the action of the
powers of A on Zn by matrix multiplication.

Exercise 6.E.16 (Solvable semi-direct products*). Let n ∈ N>1, A ∈ GL(n,Z).
Show that then the group GA (Definition 6.E.1) is solvable.

Exercise 6.E.17 ((Non-)ilpotent semi-direct products**). We consider the
groups constructed in Definition 6.E.1.

1. Prove without using the polynomial growth theorem: For

A =

(
1 1
1 2

)
the group GA is solvable but not nilpotent. A little bit more challenging:
Show that in this case GA is not virtually nilpotent.

2. Show that GA is virtually nilpotent for

A =

(
0 −1
−1 0

)
.

Exercise 6.E.18 (Solvable groups of exponential growth**). Let n ∈ N>1

and let A ∈ GL(n,Z) be a matrix that over C has an eigenvalue λ ∈ C
with |λ| ≥ 2. We consider the associated semi-direct product GA = Zn oA Z
(Definition 6.E.1).

1. Show that there is an x ∈ Zn with the following property: If k ∈ N,
then the 2k+1 elements

∑k
j=0 εj · Aj · x of Zn with ε0, . . . , εk ∈ {0, 1}

are all different.
2. Conclude that GA has exponential growth.
3. Show that GA does not contain a free group of rank 2.

Hints. Exercise 4.E.20 will help.

Exercise 6.E.19 (Linear groups and projections on Z ***). Let G be a finitely
generated group with subexponential growth.

1. Suppose that there exists an n ∈ N such that there is a homomor-
phism G −→ GL(n,C) with infinite image. Show that G contains a
finite index subgroup that admits a surjective homomorphism to Z.
Hints. The Tits alternative (Theorem 4.4.7) implies that the image is
virtually solvable.

2. Suppose that there exists an n ∈ N such that for every N ∈ N there is
a homomorphism ϕN : G −→ GL(n,C) with N ≤ |imϕN | < ∞. Prove
that then G contains a finite index subgroup that admits a surjective
homomorphism to Z.
Hints. Use Jordan’s theorem on finite subgroups of GL(n,C) and then
apply a counting/diagonalisation argument.
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Exercise 6.E.20 (Finite generation and projections on Z **). Let G be a finitely
generated group with subexponential growth that admits a surjective ho-
momorphism π : G −→ Z. Show that then also the kernel of π is finitely
generated.
Hints. Choose an element g ∈ G with π(g) = 1. Show that there is a finite
subset S ⊂ kerϕ such that {g} ∪ S generates G. For s ∈ S and n ∈ N let

gn,s := gn · s · g−n ∈ kerϕ.

Prove that there is an N ∈ N such that kerϕ is generated by the (finite!)
set {gn,s | s ∈ S, n ∈ {−N, . . . , N}}.

Exercise 6.E.21 (Die Hilbertschen Probleme**). On August 8, 1900, David
Hilbert gave his famous speech Mathematische Probleme (Mathematical
Problems) at the International Congress of Mathematicians in Paris. These
problems are now known as Hilbert’s problems.

1. Take a random number n between 1 and 23. Describe Hilbert’s n-th
problem and the status of its solution.

2. Which of Hilbert’s problems is your favourite? Why?

Exercise 6.E.22 (Growth of torsion groups***). Show that finitely generated
torsion groups are either finite or do not have polynomial growth.

Growth series+

A paradigm of combinatorics is to organise counting invariants by means
of the corresponding power series. In our context, this leads to growth series
and (the slightly more convenient) spherical growth series of finitely generated
groups:

Definition 6.E.2 (Growth series). Let G be a finitely generated group with
finite generating set S.
• The growth series of G with respect to S is the formal power series

BG,S :=

∞∑
n=0

βG,S(n) ·Xn ∈ ZJXK

• The spherical growth series of G with respect to S is the formal power
series (where we set βG,S(−1) := 0)

ΣG,S :=

∞∑
n=0

(
βG,S(n)− βG,S(n− 1)

)
·Xn ∈ ZJXK.

Quick check 6.E.23 (Radius of convergence*). Let G be a finitely generated
group and let S ⊂ G be a finite generating set. How are the radius of con-
vergence of the growth series and the exponential growth rate %G,S related?
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Exercise 6.E.24 (Growth series of Z *).
1. Determine the spherical growth series ΣZ,{1}. Can you express this also

as a rational function?
2. Determine the spherical growth series ΣZ,{2,3}. Can you express this

also as a rational function?

Exercise 6.E.25 (Growth series of (free) products*). Let G and H be finitely
generated groups with free generating sets S and T , respectively.

1. Show that ΣG×H,S×{e}∪{e}×T = ΣG,S ·ΣH,T (Cauchy product of formal
power series). How are the (non-spherical) growth series related?

2. Show that

ΣG∗H,StT ·
(
1− (ΣG,S − 1) · (ΣH,T − 1)

)
= ΣG,S · ΣH,T .

How can one reformulate this relation more concisely (using inverses)?

Use these properties to determine spherical growth series of Zn and of the
free group of rank n with respect to suitable generating sets. Can you express
these series also as rational functions?

Uniform exponential growth

Quick check 6.E.26 (Uniform exponential growth*). Let G and H be finitely
generated groups and let G be of uniform exponential growth.

1. Does then also G×H have uniform exponential growth?
2. Does then also G ∗H have uniform exponential growth?

Exercise 6.E.27 (Exponential growth rates for different generating sets*). Let
F be a free group of rank 2, freely generated by {a, b}, and let

S := {a, b, a · b · a−1, a2} ⊂ F.

Show that
%F,{a,b} 6= %F,S .

Exercise 6.E.28 (Linear groups for number theory**). Let α ∈ Q. We then set

A(α) :=

(
α 0
0 1

)
, B :=

(
1 1
0 1

)
and

S(α) :=
{
A(α), B

}
⊂ GL(2,Q),

as well as G(α) := 〈S(α)〉GL(2,Q).

1. Show that G(α) is virtually solvable.
2. Show that G(α) is virtually nilpotent if and only if α is a root of unity.
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Exercise 6.E.29 (Uniform exponential growth and quasi-isometries?!∞*). Let
G and H be finitely generated quasi-isometric groups, where G has uniformly
exponential growth. Does then also H have uniformly exponential growth?!
Hints. This is an open problem!

Dehn functions and isoperimetric inequalities+

In the language of Cayley graphs, generators correspond to edges. In con-
trast, relations have a distinct two-dimensional flair, as seen in presentation
complexes (Outlook 3.2.5). Therefore, it is natural to associate a notion of
area with relations. Algebraically, this can be formalised in the following way:

Definition 6.E.3 (Area of a relation). Let 〈S |R〉 be a finite presentation of a
group G and let w ∈ Fred(S) be a reduced word that represents the trivial
element in G. The area of w (with respect to 〈S |R〉) is defined as

Area〈S |R〉(w) := min
{
n ∈ N

∣∣∃a1,...,an∈F (S) ∃r1,...,rn∈R∪R−1

w = a1 · r1 · a−1
1 · · · · · an · rn · a−1

n in F (S)
}
.

The Dehn function encodes the maximal area that can be “surrounded”
by a given length:

Definition 6.E.4 (Dehn function). Let 〈S |R〉 be a finite presentation of a
group G and let π : Fred(S) −→ G be the canonical projection. Then the
Dehn function of G with respect to the presentation 〈S |R〉 is given by

Dehn〈S |R〉 : N 7−→ N
n 7−→ max

{
Area(s1 · · · sk)

∣∣ k ∈ {0, . . . , n}, s1 . . . sk ∈ Fred(S),

π(s1 . . . sk) = e in G
}
.

Exercise 6.E.30 (Simple Dehn functions*).
1. Determine the Dehn function of 〈 | 〉.
2. Determine the Dehn function of 〈x | 〉.
3. Determine the Dehn function of 〈x, y | 〉.
4. Determine the Dehn function of 〈x |x〉.
5. Determine the Dehn function of 〈x, y | y〉 (approximately).

Definition 6.E.5 (Dehn equivalence). Let f, g : N −→ R≥0 be increasing func-
tions.
• The function f is Dehn dominated by g if there exists a c ∈ N with

∀n∈N f(n) ≤ c · g(c · n+ c) + c · n+ c.

We then write f ≺D g.
• The function f is Dehn equivalent to g if f ≺D g and g ≺D f . If this is

the case, we write f ∼D g.
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Exercise 6.E.31 (Dehn equivalence*).
1. Prove that Dehn domination is a partial order on the set of increasing

functions of type N −→ R≥0.
2. Prove that Dehn equivalence is an equivalence relation on the set of

increasing functions of type N −→ R≥0.
3. Prove that (n 7→ n) is not Dehn equivalent to (n 7→ n2).
4. Prove that (n 7→ n2) is not Dehn equivalent to (n 7→ 2n).
5. Are Dehn equivalent functions always quasi-equivalent?

Exercise 6.E.32 (Dehn functions of Abelian groups**).
1. Show that the Dehn function of

〈
x, y

∣∣ [x, y]
〉

is Dehn equivalent to the
function (n 7→ n2).

2. Show that the Dehn function of
〈
x, y, z

∣∣ [x, y], [y, z], [x, z]
〉

is Dehn
equivalent to the function (n 7→ n2) (!).

Exercise 6.E.33 (Dehn functions and change of presentation*). Let G be a
finitely presented group and let 〈S |R〉 and 〈S′ |R′〉 be finite presentations
of G. Show that

Dehn〈S |R〉 ∼D Dehn〈S′ |R′〉 .

Hints. Rewrite S′ and R′ in terms of S and R, and vice versa.

Exercise 6.E.34 (Dehn functions and quasi-isometry***). Let G, G′ be finitely
presented groups with finite presentations 〈S |R〉 and 〈S′ |R′〉, respectively.
Show that Dehn〈S |R〉 and Dehn〈S′ |R′〉 are Dehn equivalent if G and G′ are
quasi-isometric.
Hints. It is convenient, to think about words that represent trivial elements
as “cycles” (they are not necessarily actual cycles, because they might revisit
vertices and edges . . . ) in Cayley graphs.

Let f : G −→ G′ and f ′ : G′ −→ G′ be mutually quasi-inverse quasi-
isometries. Let w ∈ Fred(S) be a reduced word that represents the trivial
element of G. Then f∗(w) is a word over S′ ∪ S′−1 (but not necessarily
reduced; this needs some attention). Connecting subsequent vertices in the
“cycle” f∗(w) through quasi-geodesic paths in Cay(G′, S′) leads to a “cy-
cle” w′ in Cay(G′, S′). One then considers an R′-filling of w′ with minimal
area.

This can be pushed back to G via f ′∗. Because f and f ′ are quasi-inverse,
f ′∗(w′) will almost be w. Let w′′ be the “cycle” obtained from f ′∗(w′) through
quasi-geodesic path connection of subsequent vertices. The difference be-
tween w′′ and w can be R-filled efficiently (in terms of the length of w).

One now needs to figure out how to interpret fillings geometrically and
how to translate the f ′∗-image of the chosen R′-filling of w′ into an R-filling
of w′′ . . .

Exercise 6.E.35 (Quasi-isometry invariance of finite presentability***). Prove
that finite presentability is a geometric property of groups.
Hints. The same method as in Exercise 6.E.34 can be used.
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Definition 6.E.6 (Isoperimetric inequalities of groups). Let G be a finitely pre-
sented group and let f : N −→ R≥0 be an increasing function. We say that
G satisfies an f -isoperimetric inequality if for one (hence every) finite pre-
sentation 〈S |R〉 of G we have Dehn〈S |R〉 ≺D f. We say that G satisfies a
linear, quadratic, . . . isoperimetric inequality if f can be taken to be linear,
quadratic, . . . , respectively.

Exercise 6.E.36 (Isoperimetric inequalities for Abelian groups*).
1. Show that all virtually cyclic groups satisfy a linear isoperimetric in-

equality.
2. Show that Z2 and Z3 satisfy quadratic isoperimetric inequalities, but

not a linear isoperimetric inequality.

Exercise 6.E.37 (Isoperimetric inequality for BS(1, 2) ***). We consider the
standard presentation 〈S |R〉 := 〈a, b | bab−1 = a2〉 of BS(1, 2).

1. Warm-up: For n ∈ N let wn := [a, bnab−n]. Show that wn represents
the trivial element in G and that Area〈S |R〉(wn) ≤ 2n (Figure 6.4).

2. Show that Dehn〈S |R〉 ≺D (n 7→ 2n).
Hints. This can be shown by a careful analysis of the proof for the
normal form in Exercise 2.E.22.

3. Show that Dehn〈S |R〉 �D (n 7→ 2n).
Hints. The basic idea is to look at wn from the first part and, in wn,
to look at the last b−1 in b−n. The proof then requires a careful case-
by-case analysis. It helps to organise relations etc. in a graphical way.
Happy puzzling!
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Figure 6.4.: A relation puzzle in BS(1, 2)
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Hyperbolic groups

In the universe of groups (Figure 1.2), on the side opposite to Abelian, nilpo-
tent, solvable, and amenable groups, we find free groups, and then further
out negatively curved groups. This chapter is devoted to negatively curved
groups.

The definition of negatively curved groups requires a notion of negative
curvature that applies to Cayley graphs and that is invariant under change of
finite generating sets, or more generally, under quasi-isometries. We will start
with a quick reminder of classical curvature of plane curves and of surfaces
(Chapter 7.1). We will then introduce Gromov’s extension of the notion of
negative curvature to large scale geometry via slim triangles (Chapter 7.2).
In particular, this leads to a notion of negatively curved finitely generated
groups: hyperbolic groups (Chapter 7.3).

The hyperbolicity condition for groups has far-reaching algebraic conse-
quences: The word problem is solvable for hyperbolic groups (Chapter 7.4)
and elements of infinite order in hyperbolic groups are well-behaved (Chap-
ter 7.5). Chapter 7.6 contains a brief outlook on non-positively curved groups.

Overview of this chapter

7.1 Classical curvature, intuitively 204

7.2 (Quasi-)Hyperbolic spaces 208

7.3 Hyperbolic groups 220

7.4 The word problem in hyperbolic groups 224

7.5 Elements of infinite order in hyperbolic groups 229

7.6 Non-positively curved groups 246

7.E Exercises 250



th
is

is
a

dra
ft

ve
rsi

on
!

204 7. Hyperbolic groups

7.1 Classical curvature, intuitively

Key invariants in Riemannian geometry are curvature invariants. Classically,
curvatures in Riemannian geometry are defined in terms of local data; how-
ever, some types of curvature constraints also influence the global shape. A
particularly striking example of such a situation is the condition of having
everywhere negative sectional curvature.

What is curvature? Roughly speaking, curvature measures how much a
space “bends” at a given point, i.e., how far away it is from being a “flat”
Euclidean space. There are several ways of measuring such effects (using
curves, triangles, angles, volumes, . . . ).

In the following, we will give a brief introduction into curvature in Rie-
mannian geometry; however, instead of going into the details of bundles, con-
nections, curvature tensors and related machinery, we will rely on a graphic
and intuitive description based on curves. Readers interested in concise and
mathematically precise definitions of the various types of curvature are re-
ferred to the literature on Riemannian geometry, for instance to the pleasant
book Riemannian manifolds. An introduction to curvature by Lee [96].

7.1.1 Curvature of plane curves

As a first step, we briefly describe curvature of curves in the Euclidean
plane R2. Let γ : [0, L] −→ R2 be a smooth curve, parametrised by arc-length,
and let t ∈ (0, L). Geometrically, the curvature κγ(t) of γ at t can be described
as follows (see also Figure 7.1): We consider the set of all (parametrised
in mathematically positive orientation) circles in R2 that are tangent to γ
at γ(t). It can be shown that this set contains exactly one circle that at the
point γ(t) has the same acceleration vector as γ; this circle is the osculating
circle of γ at t. Then the curvature of γ at t is defined as

κγ(t) :=
1

R(t)
,

where R(t) is the radius of the osculating circle of γ at t. I.e., the smaller the
curvature, the bigger is the osculating circle, and so the curve is rather close
to being a straight line at this point; conversely, the bigger the curvature, the
more the curve bends at this point.

More technically, if γ is parametrised by arc-length, then for all t ∈ (0, L)
the curvature of γ at t can be expressed as

κγ(t) =
∥∥γ̈(t)

∥∥
2
.
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γ

small curvature

γ(t) R(t)

big curvature

γ

ν

negative sign

positive sign

Figure 7.1.: Curvature of a plane curve

By introducing a reference normal vector field along the curve γ, we can
also add a sign to the curvature, describing in which direction the curve
bends relative to the chosen normal vector field (see also Figure 7.1). Let
ν : [0, L] −→ R2 be a non-vanishing normal vector field along γ, i.e., ν is a
smooth map satisfying

ν(t)⊥γ̇(t) and ν(t) 6= 0

for all t ∈ (0, L). The signed curvature κ̃γ,ν(t) of γ at t with respect to ν is
• defined to be +κγ(t) if the normal vector ν(t) points from γ(t) in the

direction of the centre of the osculating circle of γ at t, and it is
• defined to be −κγ(t) if the normal vector ν(t) points from γ(t) away

from the centre of the osculating circle of γ at t.

7.1.2 Curvature of surfaces in R3

As second step, we consider the curvature of surfaces embedded in the Eu-
clidean space R3. Let S ⊂ R3 be a smooth surface embedded into R3, and
let x ∈ S be a point on S. Then the curvature of S at x is defined as follows
(see also Figure 7.2):

1. We choose a non-vanishing normal vector field ν on S in a neighbour-
hood U of x in S.

2. For every affine plane V ⊂ R3 containing x that is spanned by ν(x)
and a tangent vector at x, let γV be the component of “the” curve in S
given by the intersection U ∩ V that passes through x, and let ν|γV be
the induced normal vector field on γV in V .

3. The principal curvatures of S at x with respect to ν are given by

κ+
S,ν(x) := sup

V
κ̃γV ,ν|γV (x) and κ−S,ν(x) := inf

V
κ̃γV ,ν|γV (x).
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V

γV

x

S

Figure 7.2.: Gaussian curvature of a surface via curves

4. The (Gaussian) curvature of S at x is defined as

κS(x) := κ+
S,ν(x) · κ−S,ν(x);

notice that κS(x) does not depend on the choice of the normal vector
field ν.

It can be shown that while the principal curvatures are not intrinsic invariants
of a surface (i.e., they are in general not invariant under isometries) [96, p. 6],
the Gaussian curvatures of a surface are intrinsic (Theorema Egregium [96,
Chapter 8]). More precisely, Gaussian curvature can be quantified as the
dependence of parallel transport of tangent vectors along different curves.

Example 7.1.1. The following examples are illustrated in Figure 7.3.
• The sphere S2 ⊂ R3 has everywhere positive Gaussian curvature be-

cause the principal curvatures at every point are non-zero and have the
same sign.

• The plane R2 ⊂ R3 has everywhere vanishing Gaussian curvature (i.e.,
it is “flat”) because all principal curvatures are 0.
The cylinder S1×R ⊂ R3 has everywhere vanishing Gaussian curvature
because at every point one of the principal curvatures is 0.

• Saddle-shapes in R3 have points with negative Gaussian curvature be-
cause at certain points the principal curvatures are non-zero and have
opposite signs.

• An influential example for the history of geometry is the hyperbolic
plane; an elementary introduction into the geometry of the hyperbolic
plane is given in Appendix A.3.
For example, one can calculate via the Theorema Egregium that the
hyperbolic plane has everywhere negative Gaussian curvature (Theo-
rem A.3.29).
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positive flat negative

Figure 7.3.: Examples of Gaussian curvatures of surfaces

Outlook 7.1.2 (Curvature of Riemannian manifolds). How can one define cur-
vature of higher dimensional Riemannian manifolds? Let M be a Riemannian
manifold, and let x ∈M . For every plane V tangent to M at x we can define
a curvature: Taking all geodesics in M starting in x and tangent to V defines
a surface SV in M that inherits a Riemannian metric from the Riemannian
metric on M ; then the sectional curvature of M at x with respect to V is the
Gaussian curvature of the surface SV at x. Sectional curvature in fact is an
intrinsic invariant of Riemannian manifolds and can be described analytically
in terms of tensors on M .

Taking suitable averages of sectional curvatures leads to the weaker curva-
ture notions of Ricci curvature and scalar curvature, respectively. For more
details we refer to the book of Lee [96].

By construction, the Gaussian curvatures are defined in terms of the local
structure of a surface, and so are not suited for a notion of curvature in
large scale geometry. However, surprisingly, negatively curved surfaces share
certain global properties, and so it is conceivable that it is possible to define
a notion of negative curvature that makes sense in large scale geometry. In
order to see how this can be done, we look at geodesic triangles in surfaces
in R3 (Figure 7.4), i.e., at triangles in surfaces whose sides are geodesics in
the surface in question.

In positively curved spaces, geodesic triangles are “fatter” than in Eu-
clidean space, while in negatively curved spaces, geodesic triangles are “slim-
mer” than in Euclidean space. For example, all geodesic triangles in the
hyperbolic plane are uniformly slim (Theorem A.3.27).
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positive flat negative

Figure 7.4.: Geodesic triangles in surfaces

7.2 (Quasi-)Hyperbolic spaces

Gromov and Rips realised that the global geometry of negatively curved
spaces can be captured by the property that all geodesic triangles are
slim [74]. Taking slim triangles as the defining property leads to the notion
of (Gromov) hyperbolic spaces.

We first explain the notion of hyperbolicity for geodesic spaces (Chap-
ter 7.2.1). As next step, we translate this notion to quasi-geometry (Chap-
ter 7.2.2). Finally, in Chapter 7.2.3, we establish the quasi-isometry invariance
of hyperbolicity.

7.2.1 Hyperbolic spaces

Taking slim geodesic triangles as defining property for negative curvature
leads to the notion of (Gromov) hyperbolic spaces:

Definition 7.2.1 (δ-Slim geodesic triangle). Let (X, d) be a metric space.

• A geodesic triangle in X is a triple (γ0, γ1, γ2) consisting of geodesics
γj : [0, Lj ] −→ X in X such that

γ0(L0) = γ1(0), γ1(L1) = γ2(0), γ2(L2) = γ0(0).

• A geodesic triangle (γ0, γ1, γ2) is δ-slim if (Figure 7.5)

im γ0 ⊂ BX,dδ

(
im γ1 ∪ im γ2

)
,

im γ1 ⊂ BX,dδ

(
im γ0 ∪ im γ2

)
,

im γ2 ⊂ BX,dδ

(
im γ0 ∪ im γ1

)
.
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γ0

γ1γ2

BX,dδ (im γ2) BX,dδ (im γ1)

Figure 7.5.: A δ-slim triangle

Here, for γ : [0, L] −→ X we use the abbreviation im γ := γ([0, L]), and

for A ⊂ X we write BX,dδ (A) :=
{
x ∈ X

∣∣ ∃a∈A d(x, a) ≤ δ
}
.

Definition 7.2.2 (δ-Hyperbolic space). Let X be a metric space.
• Let δ ∈ R≥0. We say that X is δ-hyperbolic if X is geodesic and if all

geodesic triangles in X are δ-slim.
• The space X is hyperbolic if there exists a δ ∈ R≥0 such that X is
δ-hyperbolic.

Example 7.2.3 (Hyperbolic spaces).
• Every geodesic metric spaceX of finite diameter is diam(X)-hyperbolic.
• The real line R is 0-hyperbolic because every geodesic triangle in R is

degenerate.
• The Euclidean plane R2 is not hyperbolic because for δ ∈ R≥0, the

Euclidean triangle with vertices (0, 0), (0, 3 · δ), and (3 · δ, 0) (with
isometrically parametrised sides) is not δ-slim (Figure 7.6).
• The hyperbolic plane H2 is a hyperbolic metric space in the sense of

Definition 7.2.2 (Theorem A.3.27). More generally, if M is a closed
connected Riemannian manifold of negative sectional curvature (e.g., a
hyperbolic manifold), then the Riemannian universal covering of M is
hyperbolic in the sense of Definition 7.2.2 [31, Chapter II.1.A, Propo-
sition III.H.1.2].
• If T is a tree, then the geometric realisation |T | of T (Chapter 5.3.2)

is 0-hyperbolic because all geodesic triangles in |T | are degenerate
tripods (Exercise 7.E.3, see also Proposition 7.2.17 below); in a sense,
hyperbolic spaces can be viewed as thickenings of metric trees (Exer-
cise 7.E.9).

Caveat 7.2.4 (Quasi-isometry invariance of hyperbolicity). From the definition
it is not clear that hyperbolicity is a quasi-isometry invariant (among geodesic
spaces), because the composition of a geodesic triangle with a quasi-isometry
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(0, 0) (3 · δ, 0)

(0, 3 · δ)

?

Figure 7.6.: The Euclidean plane R2 is not hyperbolic

in general is only a quasi-geodesic triangle and not a geodesic triangle. How-
ever, we will see in Corollary 7.2.13 below that hyperbolicity indeed is a
quasi-isometry invariant among geodesic spaces.

7.2.2 Quasi-hyperbolic spaces

We now translate the definition of hyperbolicity to quasi-geometry; so instead
of geodesics we consider quasi-geodesics. This results in a notion of quasi-
hyperbolicity for quasi-geodesic spaces. On the one hand, it will be imme-
diate from the definition that quasi-hyperbolicity indeed is a quasi-isometry
invariant (Proposition 7.2.9); on the other hand, we will relate hyperbolicity
of geodesic spaces to quasi-hyperbolicity (Theorem 7.2.10), which shows that
also hyperbolicity is a quasi-isometry invariant in the class of geodesic spaces
(Corollary 7.2.13).

Definition 7.2.5 (δ-Slim quasi-geodesic triangle). Let (X, d) be a metric space,
and let c, b ∈ R>0, δ ∈ R≥0.
• A (c, b)-quasi-geodesic triangle in X is a triple (γ0, γ1, γ2) consisting of

(c, b)-quasi-geodesics γj : [0, Lj ] −→ X in X such that

γ0(L0) = γ1(0), γ1(L1) = γ2(0), γ2(L2) = γ0(0).

• A (c, b)-quasi-geodesic triangle (γ0, γ1, γ2) is δ-slim if (Figure 7.7)

im γ0 ⊂ BX,dδ

(
im γ1 ∪ im γ2

)
,

im γ1 ⊂ BX,dδ

(
im γ0 ∪ im γ2

)
,

im γ2 ⊂ BX,dδ

(
im γ0 ∪ im γ1

)
.

Definition 7.2.6 (Quasi-hyperbolic space). Let X be a metric space.
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γ0

γ1γ2

BX,dδ (im γ2) BX,dδ (im γ1)

Figure 7.7.: A quasi-slim quasi-geodesic triangle

• Let c, b ∈ R>0, δ ∈ R≥0. We say that X is (c, b, δ)-quasi-hyperbolic if
X is (c, b)-quasi-geodesic and all (c, b)-quasi-geodesic triangles in X are
δ-slim.
• Let c, b ∈ R>0. The space X is called (c, b)-quasi-hyperbolic if for

all c′, b′ ∈ R≥0 with c′ ≥ c and b′ ≥ b there exists a δ ∈ R≥0 such
that X is (c′, b′, δ)-quasi-hyperbolic.
• The space X is quasi-hyperbolic if there exist c, b ∈ R>0 such that X

is (c, b)-quasi-hyperbolic.

Example 7.2.7. All metric spaces of finite diameter are quasi-hyperbolic.

Caveat 7.2.8. In general, it is rather difficult to prove that a space is quasi-
hyperbolic by showing that all quasi-geodesic triangles in question are slim
enough, because there are too many quasi-geodesics. Using Corollary 7.2.13
below simplifies this task considerably in case we know that the space in
question is quasi-isometric to an accessible geodesic space. This will give rise
to a large number of interesting quasi-hyperbolic spaces.

Proposition 7.2.9 (Quasi-isometry invariance of quasi-hyperbolicity). Let X
and Y be metric spaces.

1. If Y is quasi-geodesic and if X and Y are quasi-isometric, then also X
is quasi-geodesic.

2. If Y is quasi-hyperbolic and X is quasi-geodesic and if there exists a
quasi-isometric embedding X −→ Y , then also X is quasi-hyperbolic.

3. In particular: If X and Y are quasi-isometric, then X is quasi-hyperbolic
if and only if Y is quasi-hyperbolic.

Proof. The proof consists of pulling back and pushing forward quasi-geodesics
along quasi-isometric embeddings. We write dX and dY for the metrics on X
and Y , respectively.

We start by proving the first part. Let Y be quasi-geodesic and suppose
that f : X −→ Y is a quasi-isometric embedding; let c ∈ R≥0 be so large that
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γ0

γ1γ2

BX,dc·δ+c·b(im γ2) BX,dc·δ+c·b(im γ1)

f

f ◦ γ0

f ◦ γ1f ◦ γ2

BX,dδ (im f ◦ γ2) BX,dδ (im f ◦ γ1)

Figure 7.8.: Using a quasi-isometric embedding to translate quasi-geodesic
triangles and neighbourhoods back and forth

Y is (c, c)-quasi-geodesic and such that f is a (c, c)-quasi-isometric embedding
with c-dense image. Furthermore, let x, x′ ∈ X. Then there is a (c, c)-quasi-
geodesic γ : [0, L] −→ Y joining f(x) and f(x′). Using the axiom of choice
and the fact that f has c-dense image, we can find a map

γ̃ : [0, L] −→ X

such that γ̃(0) = x, γ̃(L) = x′, and

dY
(
f ◦ γ̃(t), γ(t)

)
≤ c

for all t ∈ [0, L]. The same arguments as in the proof of Proposition 5.1.10 (or
the quantitative version of Exercise 5.E.4) show that γ̃ is a (c,max(3 · c2, 3))-
quasi-geodesic joining x and x′. Hence, X is (c,max(3 · c2, 3))-quasi-geodesic.

As for the second part, suppose that Y is quasi-hyperbolic, that X is
quasi-geodesic, and that f : X −→ Y is a quasi-isometric embedding. Hence,
there are c, b ∈ R>0 such that Y is (c, b)-quasi-hyperbolic, such that X is
(c, b)-quasi-geodesic, and such that f is a (c, b)-quasi-isometric embedding;
we are allowed to choose common constants because of the built-in freedom
of constants in the definition of quasi-hyperbolicity. We will show now that X
is (c, b)-quasi-hyperbolic (see Figure 7.8 for an illustration of the notation).

Let c′, b′ ∈ R>0 with c′ ≥ c and b′ ≥ b, and let (γ0, γ1, γ2) be a (c′, b′)-quasi-
geodesic triangle in X. As f : X −→ Y is a (c, b)-quasi-isometric embedding,
(f ◦γ0, f ◦γ1, f ◦γ2) is a (c′′, b′′)-quasi-geodesic triangle in Y , where c′′ ∈ R≥c
and b′′ ∈ R≥b are constants that depend only on c′, b′ and the quasi-isometry
embedding constants c and b of f ; without loss of generality, we may assume
that c′′ ≥ c and b′′ ≥ b.
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Because Y is (c, b)-quasi-hyperbolic, there is a δ ∈ R≥0 such that Y
is (c′′, b′′, δ)-quasi-hyperbolic. In particular, the (c′′, b′′)-quasi-geodesic tri-
angle (f ◦ γ0, f ◦ γ1, f ◦ γ2) is δ-slim. Because f is a (c, b)-quasi-isometric
embedding, a straightforward computation shows that

im γ0 ⊂ BX,dXc·δ+c·b(im γ1 ∪ im γ2)

im γ1 ⊂ BX,dXc·δ+c·b(im γ0 ∪ im γ2)

im γ2 ⊂ BX,dXc·δ+c·b(im γ0 ∪ im γ1).

Therefore, X is (c′, b′, c · δ + c · b)-quasi-hyperbolic, as was to be shown.
Clearly, the third part is a direct consequence of the first two parts.

7.2.3 Quasi-geodesics in hyperbolic spaces

Our next goal is to show that hyperbolicity is a quasi-isometry invariant in
the class of geodesic spaces (Corollary 7.2.13). To this end we first compare
hyperbolicity and quasi-hyperbolicity on geodesic spaces (Theorem 7.2.10);
then we apply quasi-isometry invariance of quasi-hyperbolicity.

Theorem 7.2.10 (Hyperbolicity vs. quasi-hyperbolicity). Let X be a geodesic
metric space. Then X is hyperbolic if and only if X is quasi-hyperbolic.

In order to show that hyperbolic spaces indeed are quasi-hyperbolic, we
need to understand how quasi-geodesics (and hence quasi-geodesic triangles)
in hyperbolic spaces can be approximated by geodesics (and hence geodesic
triangles).

Theorem 7.2.11 (Stability of quasi-geodesics in hyperbolic spaces). Let δ, c,
b ∈ R≥0. Then there exists a ∆ ∈ R≥0 with the following property: If X is
a δ-hyperbolic metric space, if1 γ : [0, L] −→ X is a (c, b)-quasi-geodesic and
γ′ : [0, L′] −→ X is a geodesic with γ′(0) = γ(0) and γ′(L′) = γ(L), then

im γ′ ⊂ BX,d∆ (im γ) and im γ ⊂ BX,d∆ (im γ′).

Caveat 7.2.12. In general, the stability theorem for quasi-geodesics does
not hold in non-hyperbolic spaces: For example, the logarithmic spiral (Fig-
ure 7.9)

R≥0 −→ R2

t 7−→ t ·
(
sin(ln(1 + t)), cos(ln(1 + t))

)
is a quasi-isometric embedding with respect to the standard metrics on R
and R2 (Exercise 7.E.2), but this quasi-geodesic ray does not have bounded

1More precisely: if L ∈ R≥0 and if γ : [0, L] −→ X is a (c, b)-quasi-geodesic, etc.
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Figure 7.9.: The logarithmic spiral

distance from any geodesic ray. So, quasi-geodesics in R2 cannot be uniformly
approximated by geodesics.

We defer the proof of the stability theorem and first show how we can
apply it to prove quasi-isometry invariance of hyperbolicity in the class of
geodesic spaces:

Proof of Theoren 7.2.10. Clearly, if X is quasi-hyperbolic, then X is also
hyperbolic (because every geodesic triangle is a quasi-geodesic triangle and
so is slim enough by quasi-hyperbolicity).

Conversely, suppose that X is hyperbolic, say δ-hyperbolic for a suit-
able δ ∈ R≥0. Moreover, let c, b ∈ R≥0, and let ∆ ∈ R≥0 be as provided
by the stability theorem (Theorem 7.2.11) for the constants c, b, δ. We show
now that X is (c, b, 2 ·∆ + δ)-quasi-hyperbolic:

To this end let (γ0, γ1, γ2) be a (c, b)-quasi-geodesic triangle in X. Because
X is geodesic, we find geodesics γ′0, γ′1, γ′2 in X that have the same start and
end points as the corresponding quasi-geodesics γ0, γ1, and γ2, respectively
(Figure 7.10). In particular, (γ′0, γ

′
1, γ
′
2) is a geodesic triangle in X, and

im γ′j ⊂ B
X,d
∆ (im γj) and im γj ⊂ BX,d∆ (im γ′j)

for all j ∈ {0, 1, 2}. Because X is δ-hyperbolic, it follows that

im γ′0 ⊂ B
X,d
δ (im γ′1 ∪ im γ′2)

im γ′1 ⊂ B
X,d
δ (im γ′0 ∪ im γ′2)

im γ′2 ⊂ B
X,d
δ (im γ′0 ∪ im γ′1),

and so

im γ0 ⊂ BX,d∆+δ+∆(im γ1 ∪ im γ2)

im γ1 ⊂ BX,d∆+δ+∆(im γ0 ∪ im γ2)

im γ2 ⊂ BX,d∆+δ+∆(im γ0 ∪ im γ1).

Therefore, X is (c, b, 2 ·∆ + δ)-quasi-hyperbolic.
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γ0

γ1

γ2

γ′0

γ′1
γ′2

Figure 7.10.: Approximating quasi-geodesic triangles by geodesic triangles

Corollary 7.2.13 (Quasi-isometry invariance of hyperbolicity). Let X and Y be
metric spaces.

1. If Y is hyperbolic and X is quasi-geodesic and there is a quasi-isometric
embedding X −→ Y , then X is quasi-hyperbolic.

2. If Y is geodesic and X is quasi-isometric to Y , then X is quasi-
hyperbolic if and only if Y is hyperbolic.

3. If X and Y are geodesic and quasi-isometric, then X is hyperbolic if
and only if Y is hyperbolic.

Proof. Ad 1. In this case, by Theorem 7.2.10, the space Y is also quasi-
hyperbolic. Therefore, X is quasi-hyperbolic as well (Proposition 7.2.9).

Ad 2. If Y is hyperbolic, then X is quasi-hyperbolic by the first part.
Conversely, if X is quasi-hyperbolic, then Y is quasi-hyperbolic by Proposi-
tion 7.2.9. In particular, Y is hyperbolic.

Ad 3. This follows easily from the previous parts and Theorem 7.2.10.

It remains to prove the stability theorem (Theorem 7.2.11). In order to do
so, we need two facts about approximating curves by geodesics:

Lemma 7.2.14 (Christmas tree lemma: Distance from geodesics to curves in
hyperbolic spaces). Let δ ∈ R≥0 and let (X, d) be a δ-hyperbolic space. If
γ : [0, L] −→ X is a continuous curve and if γ′ : [0, L′] −→ X is a geodesic
with γ′(0) = γ(0) and γ′(L′) = γ(L), then

d
(
γ′(t), im γ

)
≤ δ ·

∣∣log2(LX(γ))
∣∣+ 1

for all t ∈ [0, L′]. Here, LX(γ) denotes the length of γ:

LX(γ) := sup

{k−1∑
j=0

d
(
γ(tj), γ(tj+1)

) ∣∣∣∣ k ∈ N, t0, . . . , tk ∈ [0, L],

t0 ≤ t1 ≤ · · · ≤ tk
}
∈ R≥0 ∪ {∞}.
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x1

x2

xN

x

γ(0) = γ′(0) γ(1) = γ′(L′)
γ′(t) γ′

γ

Figure 7.11.: Distance from geodesics to curves in hyperbolic spaces

Proof. Without loss of generality, we may assume that LX(γ) > 1, that
LX(γ) <∞, and that γ : [0, 1] −→ X is parametrised by arc length; the lat-
ter is possible, because γ is continuous. These assumptions are notationally
convenient, when filling in the details for the following arguments (Exer-
cise 7.E.5). Let N ∈ N with

LX(γ)

2N+1
< 1 ≤ LX(γ)

2N
.

Let t ∈ [0, L′]. Using the fact that X is δ-hyperbolic, we inductively construct
a sequence x1, . . . , xN ∈ X of points and geodesic triangles such that

d
(
γ′(t), x1

)
≤ δ, d(x1, x2) ≤ δ, d(x2, x3) ≤ δ, . . .

and such that xN lies on a geodesic of length at most LX(γ)/2N whose
endpoints lie on im γ (see Figure 7.11). In particular, there is an x ∈ im γ
with

d
(
γ′(t), x

)
≤ d
(
γ′(t), xN ) + d(xN , x) ≤ δ ·N +

LX(γ)

2N+1

≤ δ ·
∣∣log2(LX(γ))

∣∣+ 1.

Lemma 7.2.15 (Taming quasi-geodesics in geodesic spaces). Let c, b ∈ R>0.
Then there exist c′, b′ ∈ R≥0 with the following property: If (X, d) is a geodesic
metric space and γ : [0, L] −→ X is a (c, b)-quasi-geodesic, then there exists
a continuous (c′, b′)-quasi-geodesic γ′ : [0, L] −→ X with γ′(0) = γ(0) and
γ′(L) = γ(L) that satisfies the following properties:

1. For all s, t ∈ [0, L] with s ≤ t we have

LX(γ′|[s,t]) ≤ c′ · d
(
γ′(s), γ′(t)

)
+ b′.

2. Moreover,

im γ′ ⊂ BX,dc+b(im γ) and im γ ⊂ BX,dc+b(im γ′).
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γ′(r′) γ′(s′)γ′(t′)

γ(r)
γ(s)

γ(0) = γ′(0) γ(L) = γ′(L′)

γ′

γ γ′′

Figure 7.12.: In hyperbolic spaces, geodesics are close to quasi-geodesics

Proof. Let I :=
(
[0, L) ∩ Z

)
∪ {L}. As first step, we set γ′|I := γ|I . We

then extend the definition of γ′ to all of [0, L] by inserting (appropriately
reparametrised) geodesic segments between the images of successive points
in I. Then γ′ is continuous, and a straightforward calculation shows that the
conditions in the lemma are satisfied.

Proof of Theorem 7.2.11. Let γ be a quasi-geodesic and let γ′ be a geodesic
as in the statement of the stability theorem (Theorem 7.2.11). In view of
Lemma 7.2.15, by replacing c, b if necessary with larger constants (depending
only on c and b) we can assume without loss of generality that γ is a con-
tinuous (c, b)-quasi-geodesic satisfying the length condition of said lemma,
i.e.,

LX(γ|[r,s]) ≤ c · d
(
γ(r), γ(s)

)
+ b

for all r, s ∈ [0, L] with r ≤ s.
As first step, we give an upper estimate for supt∈[0,L] d(γ′(t), im γ) in terms

of c, b, δ, i.e., we show that the geodesic γ′ is close to the quasi-geodesic γ:
Let

∆ := sup
{
d(γ′(t′), im γ)

∣∣ t′ ∈ [0, L′]
}

;

as γ is continuous, a topological argument shows that there is a t′ ∈ [0, L] at
which this supremum is attained. We now deduce an upper bound for ∆ (see
Figure 7.12 for an illustration of the notation):

Let

r′ := max(0, t′ − 2 ·∆) ≤ ∆ and s′ := min(L′, t′ + 2 ·∆) ≥ L′ −∆;

by construction of ∆, there exist r, s ∈ [0, L] with

d
(
γ(r), γ′(r′)

)
≤ ∆ and d

(
γ(s), γ′(s′)

)
≤ ∆.

We consider the curve γ′′ in X given by starting in γ′(r′), then following a
geodesic to γ(r), then following γ until γ(s), and finally following a geodesic
to γ′(s′). From Lemma 7.2.14 and the construction of γ′′ we obtain that
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γ′(t′)

γ(r′)
γ(s′)

γ(r) γ(s)

γ(0) = γ′(0) γ(L) = γ′(L′)

γ′

BX,d∆ (im γ′)

BX,d∆ (im γ)γ

Figure 7.13.: In hyperbolic spaces, quasi-geodesics are close to geodesics

∆ ≤ d
(
γ′(t′), im γ′′

)
≤ δ ·

∣∣log2 LX(γ′′)
∣∣+ 1;

moreover, because γ satisfies the length estimate from Lemma 7.2.15 as de-
scribed above, we have

LX(γ′′) ≤ LX(γ|[r,s]) + 2 ·∆
≤ c · d

(
γ(r), γ(s)

)
+b+ 2 ·∆

≤ c · (∆ + 2 ·∆ + 2 ·∆ + ∆) + b+ 2 ·∆.

Hence,
∆ ≤ δ ·

∣∣log2((6 · c+ 2) ·∆ + b)
∣∣+ 1.

Because the logarithm function log2 grows slower than linearly, this gives an
upper bound for ∆ in terms of c, b, and δ.

As second step, we give an upper estimate for supt∈[0,L] d(γ(t), im γ′)
in terms of c, b, δ, i.e., we show that the quasi-geodesic γ is close to the
geodesic γ′:

Let ∆ := sup{d(γ′(t′), im γ) | t′ ∈ [0, L′]}, as above. The idea is to show

that “not much” of the quasi-geodesic γ lies outside BX,d∆ (im γ′). To this end,
let r, s ∈ [0, L] be such that [r, s] is a (with respect to inclusion) maximal
interval with

γ((r, s)) ⊂ X \BX,d∆ (im γ′).

If there is no such non-trivial interval, then there remains nothing to prove;
hence, we assume r 6= s. By construction of ∆, we know im γ′ ⊂ BX,d∆ (im γ),

and so im γ′ ⊂ BX,d∆ (im γ|[0,r] ∪ im γ|[s,L]). Because γ is continuous and the
interval [0, L′] is connected there is a t′ ∈ [0, L′] such that there are r′ ∈ [0, r]
and s′ ∈ [s, L] with

d
(
γ′(t′), γ(r′)

)
≤ ∆ and d

(
γ′(t′), γ(s′)

)
≤ ∆
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γ0

γ1

γ2

Figure 7.14.: Geodesic triangles (red) in trees are tripods

(see also Figure 7.13). Hence, we obtain

LX(γ|[r,s]) ≤ LX(γ|[r′,s′]) ≤ c · d
(
γ(r′), γ(s′)

)
+ b

≤ 2 · c ·∆ + b,

and thus
γ([r, s]) ⊂ BX,dc·∆+b/2+∆(im γ′).

Applying the same reasoning to all components of γ lying outside of the
neighbourhood BX,d∆ (im γ′), we can conclude that

im γ ⊂ BX,dc·∆+b/2+∆(im γ′).

Using the first part of the proof, we can bound ∆ from above in terms of c, b, δ.
Hence, this gives the desired estimate.

7.2.4 Hyperbolic graphs

How can one check whether a graph is hyperbolic or not? Graphs, viewed as
metric spaces, are not geodesic (unless they have at most one vertex). There-
fore, one can either work with quasi-hyperbolicity or pass to the geometric
realisation; the geometric realisation has the advantage that we can work with
actual geodesics rather with potentially wild quasi-geodesics. Therefore, in
the context of hyperbolicity, it is more common to use geometric realisations
of graphs instead of graphs.

Corollary 7.2.16 (Hyperbolicity of graphs). Let X be a connected graph. Then
X is quasi-hyperbolic if and only if the geometric realisation |X| is hyperbolic.

Proof. This is an immediate consequence of Corollary 7.2.13, the fact that
connected graphs are (1, 1)-quasi-geodesic, and that the canonical inclusion
of the vertices induces a quasi-isometry X ∼QI |X| (Proposition 5.3.8).

Proposition 7.2.17 (Hyperbolicity of trees). If T is a tree, then the geometric
realisation |T | of T is 0-hyperbolic. Hence, T is quasi-hyperbolic.
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Proof. Because the graph T does not contain any graph-theoretic cycles, one
can show that every geodesic triangle in |T | looks like a tripod, as depicted
in Figure 7.14 (Exercise 7.E.3), which implies 0-hyperbolicity.

7.3 Hyperbolic groups

Because (quasi-)hyperbolicity is a quasi-isometry invariant notion and be-
cause different finite generating sets of finitely generated groups give rise to
canonically quasi-isometric word metrics/Cayley graphs, we obtain a sensible
notion of hyperbolic groups [74]:

Definition 7.3.1 (Hyperbolic group). A finitely generated group G is hyper-
bolic if for some (and hence every) finite generating set S of G the Cayley
graph Cay(G,S) is quasi-hyperbolic.

In view of Corollary 7.2.16, we can check hyperbolicity of a finitely gener-
ated group also by checking that the geometric realisations of Cayley graphs
are hyperbolic (which might be a more accessible problem).

Clearly, hyperbolicity of finitely generated groups is a geometric property:

Proposition 7.3.2 (Hyperbolicity is quasi-isometry invariant). Let G and H be
finitely generated groups.

1. If H is hyperbolic and if there exist finite generating sets S and T
of G and H respectively such that there is a quasi-isometric embed-
ding (G, dS) −→ (H, dT ), then G is hyperbolic as well.

2. In particular: If G and H are quasi-isometric, then G is hyperbolic if
and only if H is hyperbolic.

Proof. This follows directly from the corresponding properties of quasi-
hyperbolic spaces (Proposition 7.2.9) and the fact that Cayley graphs of
groups are quasi-geodesic.

Example 7.3.3 (Hyperbolic groups).
• All finite groups are hyperbolic because the associated metric spaces

have finite diameter.
• The group Z is hyperbolic, because it is quasi-isometric to the hyper-

bolic metric space R.
• Finitely generated free groups are hyperbolic, because the Cayley

graphs of free groups with respect to free generating sets are trees and
hence hyperbolic by Proposition 7.2.17.
• In particular, SL(2,Z) is hyperbolic, because SL(2,Z) is quasi-isometric

to a free group of rank 2 (Example 5.4.8).
• Let M be a compact Riemannian manifold of negative sectional cur-

vature (e.g., a hyperbolic manifold in the sense of Definition 5.4.11).
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Then the fundamental group π1(M) is hyperbolic, because by the Švarc-
Milnor lemma (Corollary 5.4.10) π1(M) is quasi-isometric to the Rie-
mannian universal covering of M , which is hyperbolic (Example 7.2.3).
In particular, the fundamental groups of oriented closed connected sur-
faces of genus at least 2 are hyperbolic (Example 5.4.12).
• The group Z2 is not hyperbolic, because it is quasi-isometric to the Eu-

clidean plane R2, which is a geodesic metric space that is not hyperbolic
(Example 7.2.3).
• We will see that the Heisenberg group is not hyperbolic (Exam-

ple 7.5.16) and that BS(1, 2) is not hyperbolic (Exercise 7.E.24).

Caveat 7.3.4 (Non-compact hyperbolic manifolds). If M is a connected com-
plete hyperbolic Riemannian manifold of finite volume, then, in general, the
fundamental group π1(M) is not hyperbolic. The geometric group theoretic
notion capturing such fundamental groups (and their relation with the sub-
groups given by the fundamental groups of the cusps) are relatively hyperbolic
groups [138].

Even though SL(2,Z) is hyperbolic in the sense of geometric group theory
and has a very close relation to the isometry group of the hyperbolic plane,
there is no direct connection between these two properties:

Caveat 7.3.5. Let z ∈ H2. The isometric action of SL(2,Z) on the hyperbolic
plane H2 by Möbius transformations (Proposition A.3.11, Proposition A.3.14)
induces a map

SL(2,Z) −→ H2

A 7−→ A · z

with finite kernel (the kernel consists of E2 and −E2). This map is contracting
with respect to the word metrics on SL(2,Z) and the hyperbolic metric on H2;
however, this map is not a quasi-isometric embedding: We consider the matrix

A :=

(
1 1
0 1

)
∈ SL(2,Z).

Then the word length of An (with respect to some finite generating set
of SL(2,Z)) grows linearly in n ∈ N (as can be seen by looking at the free
subgroup of SL(2,Z) freely generated by A2 and (A2)T ), while the hyperbolic
distance from the point An ·z to z grows like O(lnn), as can be easily verified
in the halfplane model (Appendix A.3): For all n ∈ Z we have

An · z =

(
1 n
0 1

)
· z =

1 · z + n

0 · z + 1
= z + n

and hence (Remark A.3.16)
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Figure 7.15.: A regular tiling of the hyperbolic plane (in the Poincaré disk
model) by regular heptagons, where in each vertex exactly three
heptagons meet

dH(z,An · z) = dH2(z, z + n) = arcosh
(

1 +
n2

2 · (Im z)2

)
∈ O

(
arcosh(n2)

)
= O

(
ln(n2 +

√
n2 − 1)

)
= O(lnn).

Geometrically, the points {An · z | n ∈ Z} lie all on a common horocycle,
and the distance of consecutive points of this sequence is constant.

Similar arguments show that the standard embedding of a regular tree of
degree 4 into H2 (given by viewing the free group of rank 2 as a subgroup of
finite index in SL(2,Z)) is not a quasi-isometric embedding. Nevertheless, in
many situations, one can think of the geometry of the free group of rank 2
as an analogue of the hyperbolic plane in group theory.

Example 7.3.6 (Baking cookies via reflection groups). When baking Aus-
stecherle, it is desirable to have cookie cutters that tile the dough in such
a way that no left-overs of the dough remain (which would require recursive
rolling out etc.). However, when baking in a Euclidean kitchen, there is only
a very limited set of regular polygons that tile the plane (squares, regular
triangles, regular hexagons).

Hyperbolic kitchens offer more flexibility: For example, it is possible to
tile the hyperbolic plane H2 with isometric regular heptagons, where in each
vertex exactly three heptagons meet (Figure 7.15). More generally, elemen-
tary hyperbolic geometry shows that the hyperbolic plane H2 admits regular
tilings by isometric regular k-gons, where in each vertex exactly d of these
k-gons meet, if and only if k, d ∈ N≥3 satisfy
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r1

r2

r3

Figure 7.16.: Fundamental triangle of a regular hyperbolic heptagon and its
reflections

1

k
+

1

d
<

1

2
.

The symmetry group of the heptagonal tiling above is the set of all isome-
tries of H2 that preserve the tiling. It can be shown that the symmetry group
of this tiling has the presentation

G :=
〈
r1, r2, r3

∣∣ r2
1, r

2
2, r

2
3, (r1r2)7, (r1r3)2, (r2r3)3

〉
;

geometrically, the generators r1, r2, r3 correspond to the reflections at the
geodesic lines bounding a fundamental triangle of this tiling (Figure 7.16).
Using the Švarc-Milnor lemma (Corollary 5.4.2) one can show that G is quasi-
isometric to H2; hence, G is a hyperbolic group. Beautiful tilings of H2 based
on quasi-regular tilings of H2 can be found in the work of Escher [59].

The group G is an example of a reflection group. More abstractly, reflec-
tion groups are special cases of Coxeter groups [35, 45] (Exercise 2.E.24).
Coxeter groups play an important role in various areas of mathematics. For
example, the reflection group trick by Davis and Januszkiewicz [45] in alge-
braic and geometric topology allows to construct aspherical manifolds with
exotic properties.

By definition, the geometric property of being hyperbolic is modelled on
the behaviour of (fundamental groups of) manifolds of negative sectional
curvature in Riemannian geometry. On the other hand, hyperbolicity also
has non-trivial algebraic consequences for groups (Chapter 7.4 and 7.5).
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7.4 The word problem in hyperbolic groups

As first algebraic consequence, we show that the geometric condition of being
hyperbolic implies solvability of the word problem.

Definition 7.4.1 (Word problem). Let 〈S |R〉 be a finite presentation of a
group. The word problem is solvable for the presentation 〈S |R〉, if there is
an algorithm terminating on every input from (S ∪ S−1)∗ that decides for
every word w in (S ∪ S−1)∗ whether w represents the trivial element of the
group 〈S |R〉 or not.

More precisely: The word problem is solvable for the presentation 〈S |R〉,
if the sets

{w ∈ (S ∪ S−1)∗ | w represents the neutral element of 〈S |R〉},
{w ∈ (S ∪ S−1)∗ | w does not represent the neutral element of 〈S |R〉}

are recursively enumerable subsets of (S∪S−1)∗. As usual, in such situations,
we view S−1 as the set of formal inverses of S.

The notion of being recursively enumerable or being algorithmically solv-
able can be formalised in several, equivalent, ways, e.g., using Turing ma-
chines, using µ-recursive functions, or using lambda calculus [28, 22, 12].

For example, it is not difficult to see that 〈x, y | 〉 and 〈x, y | [x, y]〉 have
solvable word problem. However, not all finite presentations have solvable
word problem [150, Chapter 12]:

Theorem 7.4.2. There exist finitely presented groups such that no finite pre-
sentation has solvable word problem.

How can one prove such a theorem? The basic underlying arguments are
self-referentiality and diagonalisation: One of the most prominent problems
that cannot be solved algorithmically is the halting problem for Turing ma-
chines: Roughly speaking, every Turing machine can be encoded by an in-
teger (self-referentiality). Using a diagonalisation argument, one can show
that there cannot exist a Turing machine that given two integers decides
whether the Turing machine given by the first integer stops when applied to
the second integer as input. It is possible to encode the halting problem into
group theory, thereby producing a finite presentation with unsolvable word
problem.

The existence of finite presentations with unsolvable word problem has
consequences in many other fields in mathematics; for example, reducing
classification problems for manifolds to group theoretic questions shows that
many classification problems in topology are unsolvable (Caveat 2.2.24).
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7.4.1 Application: “Solving” the word problem

Gromov observed that hyperbolic groups have solvable word problem [74],
thereby generalising and unifying previous work in combinatorial group the-
ory and on fundamental groups of negatively curved manifolds:

Theorem 7.4.3 (Hyperbolic groups have solvable word problem). Let G be a
hyperbolic group, and let S be a finite generating set of G. Then there exists
a finite set R ⊂ (S ∪ S−1)∗ such that G ∼= 〈S |R〉 (in particular, G is finitely
presented) and such that 〈S |R〉 has solvable word problem.

Before proving this theorem, let us put this result in perspective: Gro-
mov [75, 133] and Ol’shanskii [135] established the following:

Theorem 7.4.4 (Generic groups are hyperbolic). In a well-defined statistical
sense, almost all finite presentations of groups represent hyperbolic groups.

So, statistically, the word problem for almost all finitely presented groups
is solvable; however, one should keep in mind that there are interesting classes
of groups that are not hyperbolic and so do not necessarily have solvable word
problem.

The proof of Theorem 7.4.3 relies on a basic idea due to Dehn:

Definition 7.4.5 (Dehn presentation). A finite presentation 〈S |R〉 is a Dehn
presentation if there is an n ∈ N>0 and words u1, . . . , un, v1, . . . , vn such that
• we have R = {u1v

−1
1 , . . . , unv

−1
n },

• for all j ∈ {1, . . . , n} the word vj is shorter than uj ,
• and for all w ∈ (S ∪ S−1)∗ \ {ε} that represent the neutral element of

the group 〈S |R〉 there exists a j ∈ {1, . . . , n} such that uj is a subword
of w.

Example 7.4.6. Looking at the characterisation of free groups in terms of
reduced words shows that

〈
x, y

∣∣ xx−1ε, yy−1ε, x−1xε, y−1yε
〉

is a Dehn

presentation of the free group of rank 2. On the other hand,
〈
x, y

∣∣ [x, y]
〉

is
not a Dehn presentation for Z2.

The key property of Dehn presentations is the third one, as it allows to
replace words by shorter words that represent the same group element:

Proposition 7.4.7 (Dehn’s algorithm). If 〈S |R〉 is a Dehn presentation, then
the word problem for 〈S |R〉 is solvable.

Proof. We write R = {u1v
−1
1 , . . . , unv

−1
n }, as in the definition of Dehn pre-

sentations. Given a word w ∈ (S ∪ S−1)∗ we proceed as follows:
• If w = ε, then w represents the trivial element of the group 〈S |R〉.
• If w 6= ε, then:

– If none of the words u1, . . . , un is a subword of w, then w does
not represent the trivial element of the group 〈S |R〉 (by the third
property of Dehn presentations).
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γ(t)

γ(t′)

γ(0) = γ(n)

γ

Figure 7.17.: Short-cuts in hyperbolic groups

– If there is a j ∈ {1, . . . , n} such that uj is a subword of w, then
we can write w = w′ujw

′′ for certain words w′, w′′ ∈ (S ∪ S−1)∗.
Because ujv

−1
j ∈ R, the words w and w′vjw

′′ represent the same
group element in 〈S |R〉; hence, w represents the trivial element of
the group 〈S |R〉 if and only if the shorter word w′vjw

′′ represents
the trivial element of the group 〈S |R〉 (which we can check by
applying this algorithm recursively to w′vjw

′′).
Clearly, this algorithm terminates on all inputs from (S∪S−1)∗ and decides

whether the given word represents the trivial element in 〈S |R〉 or not. Hence,
the word problem for 〈S |R〉 is solvable.

In the setting of hyperbolic groups, short-cuts as required in the definition
of Dehn presentations are enforced by negative curvature (see Lemma 7.4.9
below).

Theorem 7.4.8 (Dehn presentations and hyperbolic groups). Let G be a hyper-
bolic group and let S be a finite generating set of G. Then there exists a finite
set R ⊂ (S ∪S−1)∗ such that 〈S |R〉 is a Dehn presentation and G ∼= 〈S |R〉.

The proof of this theorem relies on the existence of short-cuts in cycles in
hyperbolic groups (Figure 7.17), which then give rise to a nice set of relations:

Lemma 7.4.9 (Short-cuts in cycles in hyperbolic groups). Let G be a hyperbolic
group, let S be a finite generating set of G, and let |Cay(G,S)| be δ-hy-
perbolic with δ > 0. If γ : [0, n] −→ |Cay(G,S)| is the geometric (piecewise
linear) realisation of a graph-theoretic cycle in the Cayley graph Cay(G,S)
of length n > 0, then there exist t, t′ ∈ [0, n] such that

L|Cay(G,S)|(γ|[t,t′]) ≤ 8 · δ

and such that the restriction γ|[t,t′] is not geodesic.

A proof of this lemma will be given below.

Proof of Theorem 7.4.8. Because G is hyperbolic, there is a δ ∈ R>0 such
that |Cay(G,S)| is δ-hyperbolic. Let D := d8 · δe+ 2, and let π : F (S) −→ G
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v u

e

Figure 7.18.: Short-cuts in hyperbolic groups and Dehn presentations

be the canonical homomorphism. Modelling the short-cut lemma above in
terms of group theory, leads to the (finite) set

R :=
{
uv−1

∣∣ u, v ∈ (S ∪ S−1)∗, |u| ≤ D, |u| > dS(e, π(u)),

π(v) = π(u), |v| = dS(e, π(u))
}

;

here, | · | denotes the length of words in (S ∪ S−1)∗. In particular,

R′ :=
{
stε
∣∣ s, t ∈ S ∪ S−1 with π(st) = e

}
is contained in R. Clearly, the canonical homomorphism 〈S |R〉 −→ G is
surjective (because S generates G).

This homomorphism is also injective and 〈S |R〉 is a Dehn presentation
for G: Let w ∈ (S ∪ S−1)∗ be a word such that π(w) = e. We prove that
w ∈ 〈R〉/F (S) and the existence of a subword as required by the definition of
Dehn presentations by induction over the length of the word w.

If w has length zero, then w = ε.

We now assume that w has non-zero length and that the claim holds for
all words in (S ∪ S−1)∗ that are shorter than w.

• If w contains a subword of the form st with s, t ∈ S∪S−1 and π(st) = e,
then stε is contained in R′ ⊂ R and st is the desired Dehn word. Re-
moving st from w results in a word w′ that is in 〈R〉/F (S) (by induction).

Multiplying w′ by a suitable conjugate of st shows that w ∈ 〈R〉/F (S).

• If w contains no subword st with s, t ∈ S∪S−1 and π(st) = e, then the
word w (or a non-empty subword of w) translates into a graph-theoretic
cycle in Cay(G,S) (see Definition 3.1.6). Applying the short-cut lemma
(Lemma 7.4.9) to the geometric realisation of this cycle in |Cay(G,S)|
shows that in (S ∪ S−1)∗ we can decompose

w = w′uw′′

into subwords w′, u, w′′ such that

dS
(
e, π(u)

)
< |u| ≤ D.
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Let v ∈ (S ∪ S−1)∗ be chosen in such a way that π(v) = π(u) and
|v| = dS(e, π(u)) < |u| (Figure 7.18). Hence, u is the desired Dehn
subword of w. By construction of R, we find that

e = π(w) = π(w′) · π(u) · π(w′′) = π(w′) · π(v) · π(w′′) = π(w′vw′′).

Because the word w′vw′′ is shorter than w′uw′′ = w, by induction,
we obtain w′vw′′ ∈ 〈R〉/F (S). Therefore, we also have w ∈ 〈R〉/F (S) (by

multiplying w′vw′′ with the w′-conjugate of uv−1).

Corollary 7.4.10. Every hyperbolic group admits a finite presentation.

Proof. By Theorem 7.4.8, every hyperbolic group possesses a finite Dehn
presentation, whence a finite presentation.

In particular, we can now prove Theorem 7.4.3:

Proof of Theorem 7.4.3. In view of Theorem 7.4.8, every finite generating
set S of a hyperbolic group can be extended to a Dehn presentation 〈S |R〉
of the group in question. By Proposition 7.4.7, the word problem for 〈S |R〉
is solvable.

It remains to prove the short-cut lemma: A key step in the proof uses that
local geodesics in hyperbolic spaces stay close to actual geodesics:

Lemma 7.4.11 (Local geodesics in hyperbolic spaces). Let δ ∈ R≥0, let (X, d)
be a δ-hyperbolic space, and let c ∈ R>8·δ. Let γ : [0, L] −→ X be a c-local
geodesic, i.e., for all t, t′ ∈ [0, L] with |t− t′| ≤ c we have

d
(
γ(t), γ(t′)

)
= |t− t′|.

If γ′ : [0, L′] −→ X is a geodesic with γ′(0) = γ(0) and γ′(L′) = γ(L), then

im γ ⊂ BX,d2·δ (im γ′).

Proof. This is Exercise 7.E.7.

Proof of Lemma 7.4.9. We first show that there is no c ∈ R>8·δ such that γ
is a c-local geodesic: Assume for a contradiction that there is a c ∈ R>8·δ
such that γ is a c-local geodesic in |Cay(G,S)|. Because of γ(0) = γ(n) and
c > 8 · δ, it is clear that n > 8 · δ.

By Lemma 7.4.11, γ is 2 · δ-close to every geodesic starting in γ(0) and
ending in γ(n) = γ(0); because the constant map at γ(0) is such a geodesic,

it follows that im γ ⊂ B|Cay(G,S)|,dS
2·δ

(
γ(0)

)
. Therefore, we obtain

4 · δ ≥ diamB
|Cay(G,S)|,dS
2·δ

(
γ(0)

)
≥ dS

(
γ(0), γ(5 · δ)

)
= 5 · δ,

which is a contradiction. So γ is not a c-local geodesic for c ∈ R>8·δ.
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e

g

g · h
ConeS(g)

Figure 7.19.: Cone type, schematically; the drawing shows the intuitive visu-
alisation g · ConeS(g) of the cone type instead of ConeS(g).

Hence, there exist t, t′ ∈ [0, n] with |t−t′| ≤ 8·δ and d
(
γ(t), γ(t′)

)
6= |t−t′|;

in particular γ|[t,t′] is not a geodesic. Moreover, because γ is the geometric
realisation of a cycle in Cay(G,S), it follows that

L|Cay(G,S)|(γ|[t,t′]) = |t− t′| ≤ 8 · δ.

7.5 Elements of infinite order in hyperbolic groups

In the following, we study elements of infinite order in hyperbolic groups; in
particular, we show that every infinite hyperbolic group contains an element
of infinite order (Chapter 7.5.1) and that centralisers of elements of infinite
order in hyperbolic groups are “small” (Chapter 7.5.2). Consequently, hy-
perbolic groups cannot contain Z2 as a subgroup. We will mostly follow the
arguments by Bridson and Haefliger [31].

7.5.1 Existence

In general, an infinite finitely generated group does not necessarily contain
an element of infinite order; for example, the Grigorchuk group is of this type
(Exercise 4.E.35, Exercise 4.E.37). However, in the case of hyperbolic groups,
the geometry forces the existence of elements of infinite order:

Theorem 7.5.1. Every infinite hyperbolic group contains an element of infi-
nite order.

For the proof, we introduce the notion of cone types of group elements:

Definition 7.5.2 (Cone type). Let G be a finitely generated group, let S ⊂ G
be a finite generating set, and let g ∈ G. The cone type of g with respect to S
is the set (Figure 7.19)

ConeS(g) :=
{
h ∈ G

∣∣ dS(e, g · h) ≥ dS(e, g) + dS(e, h)
}
.
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e

Figure 7.20.: Cone types of Z2

Example 7.5.3 (Cone types).

• Let F be a finitely generated free group of rank n ∈ N, and let S be a
free generating set of F . Then F has exactly 2 · n+ 1 cone types with
respect to S, namely ConeS(e) = F , and

ConeS(s) = {w | w is a reduced word over S ∪ S−1

that does not start with s−1}

for all s ∈ S ∪ S−1.
• The group Z2 has only finitely many (nine) different cone types with

respect to the generating set {(1, 0), (0, 1)} (Figure 7.20).

Theorem 7.5.1 is proved by verifying that hyperbolic groups have only
finitely many cone types (Proposition 7.5.4) and that infinite groups that
have only finitely many cone types must contain an element of infinite order
(Proposition 7.5.6).

Proposition 7.5.4 (Cone types of hyperbolic groups). Let G be a hyperbolic
group, and let S be a finite generating set of G. Then G has only finitely
many cone types with respect to S.

Proof. The idea of the proof is to show that the cone type of a given element
depends only on the set of group elements close to g. More precisely, for g ∈ G
and r ∈ R≥0 we call

PSr (g) :=
{
h ∈ BG,Sr (e)

∣∣ dS(e, g · h) ≤ dS(e, g)
}

the r-past of g with respect to S (Figure 7.21). Because G is hyperbolic there
is a δ ∈ R≥0 such that |Cay(G,S)| is δ-hyperbolic. Let

r := 2 · δ + 2.
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PSr (g)

BG,Sr (g)

ConeS(g)

e

g

Figure 7.21.: The past of an element, schematically

We will prove now that the r-past of an element determines its cone type,
i.e.: for all g, g′ ∈ G with PSr (g) = PSr (g′) we have ConeS(g) = ConeS(g′).

Let g, g′ ∈ G with PSr (g) = PSr (g′), and let h ∈ ConeS(g). We prove the
assertion h ∈ ConeS(g′) by induction over dS(e, h):

If dS(e, h) = 0, then h = e, and so the claim trivially holds.

If dS(e, h) = 1, then h ∈ ConeS(g) implies that h 6∈ PSr (g) = PSr (g′) (by
definition of the cone type and the past); hence, in this case h ∈ ConeS(g′).

Now suppose that
h = h′ · s

with s ∈ S ∪ S−1 and dS(e, h′) = dS(e, h)− 1 > 0, and that the claim holds

for all group elements in BG,SdS(e,h)−1(e). Notice that h ∈ ConeS(g) implies

that h′ ∈ ConeS(g) as well; therefore, by induction, h′ ∈ ConeS(g′). Assume
for a contradiction that h 6∈ ConeS(g′). Then

dS(e, g′ · h) < dS(e, g′) + dS(e, h);

without loss of generality we may assume that dS(e, g′ · h) ≥ dS(e, g′). Thus,
we can write

g′ · h = k1 · k2

for certain group elements k1, k2 ∈ G that in addition satisfy

dS(e, g′ · h) = dS(e, k1) + dS(e, k2),

dS(e, k1) = dS(e, g′),

dS(e, k2) ≤ dS(e, h)− 1

(such a decomposition of g′ · h can, for instance, be obtained by looking at
a shortest path in Cay(G,S) from e to g′ · h; see also Figure 7.22). We now
consider the element

h′′ := g′−1 · k1.

The element h′′ lies in the past PSr (g′) of g′: On the one hand, we have (by
choice of k1)
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PSr (g′)

BG,Sr (g′)

ConeS(g′)

e

g′
g′ · h′

g′ · h′ · s = g′ · h = k1 · k2

k1 = g′ · h′′

Figure 7.22.: The past of an element determines its cone type

dS(e, g′ · h′′) = dS(e, k1) ≤ dS(e, g′).

On the other hand,

dS(e, h′′) = dS(e, g′−1 · k1)

= dS(g′, k1)

≤ 2 · δ + 2

≤ r.

For the penultimate inequality, we used that g′ and k1 lie at the same time
parameter (namely, dS(e, g′) = dS(e, k1)) on two geodesics in the δ-hyperbolic
space |Cay(G,S)| that both start in e, and that end distance 1 apart (namely
in g′ ·h′ and g′ ·h respectively) (see Lemma 7.5.5 below); such geodesics indeed
exist because h′ ∈ ConeS(g′) shows that dS(e, g′ · h′) ≥ dS(e, g′) + dS(e, h′),
and by the choice of k1 and k2 we have dS(e, g′ · h) = dS(e, k1) + dS(e, k2).
So h′′ ∈ PSr (g′) = PSr (g).

Using the fact that h ∈ ConeS(g), the choice of k1 and k2, as well as the
fact that h′′ ∈ PSr (g), we obtain

dS(e, g) + dS(e, h) ≤ dS(e, g · h)

= dS(e, g · g′−1 · g′ · h)

= dS(e, g · g′−1 · k1 · k2)

≤ dS(e, g · h′′) + dS(e, k2)

≤ dS(e, g) + dS(e, h)− 1,

which is a contradiction. Therefore, h ∈ ConeS(g′), completing the induction.

Hence, the cone type of a group element g of G is determined by the
r-past PSr (g). By definition, PSr (g) ⊂ BG,Sr (e), which is a finite set. In partic-
ular, there are only finitely many possible different r-pasts with respect to S.
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≤ D
γ(t)

γ′(t)

γ(0) = γ′(0)

γ(L)

γ′(L′)

Figure 7.23.: Geodesics in hyperbolic spaces starting at the same point with
close endpoints are uniformly close

Therefore, there are only finitely many cone types with respect to S in G, as
claimed.

Lemma 7.5.5 (Geodesics in hyperbolic spaces starting at the same point). Let
δ,D ∈ R≥0 and let (X, d) be a δ-hyperbolic space. Let γ : [0, L] −→ X and
γ′ : [0, L′] −→ X be geodesics in X with

γ(0) = γ′(0) and d
(
γ(L), γ′(L′)

)
≤ D.

Then γ and γ′ are uniformly (2 · δ +D)-close, i.e.,

∀t∈[0,min(L,L′)] d
(
γ(t), γ′(t)

)
≤ 2 · δ +D and |L− L′| ≤ D.

Proof. This follows from a suitable application of the slim triangles condition
(Exercise 7.E.6), see also Figure 7.23.

Proposition 7.5.6 (Cone types and elements of infinite order). Let G be a
finitely generated infinite group that has only finitely many cone types with
respect to some finite generating set. Then G contains an element of infinite
order.

In particular, finitely generated infinite groups all of whose elements have
finite order have infinitely many cone types.

Proof. Let S ⊂ G be a finite generating set of G and suppose that G has
only finitely many cone types with respect to S, say

k :=
∣∣{ConeS(g)

∣∣ g ∈ G}∣∣ ∈ N.

Because G is infinite and Cay(G,S) is a proper metric space with respect to
the word metric dS , there exists a g ∈ G with dS(e, g) > k. In particular,
choosing a shortest path from e to g in Cay(G,S) and applying the pigeon-
hole principle to the group elements on this path shows that we can write

g = g′ · h · g′′
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such that the following conditions hold:

• h 6= e,
• dS(e, g) = dS(e, g′) + dS(e, h) + dS(e, g′′), and
• ConeS(g′) = ConeS(g′ · h).

in particular, we have dS(e, g′ ·h) = dS(e, g′)+dS(e, h) and so h ∈ ConeS(g′).

Then the element h has infinite order: We will show by induction over the
exponent n ∈ N>0 that

dS(e, g′ · hn) ≥ dS(e, g′) + n · dS(e, h).

In the case n = 1, this claim follows from the choice of g′, h, and g′′ above.
Let now n ∈ N>0, and suppose that

dS(e, g′ · hn) ≥ dS(e, g′) + n · dS(e, h);

in particular, dS(e, hn) = n · dS(e, h). By definition of the cone type of g′, it
follows that hn ∈ ConeS(g′) = ConeS(g′ · h). Hence,

dS(e, g′ · hn+1) = dS(e, g′ · h · hn)

≥ dS(e, g′ · h) + dS(e, hn)

= dS(e, g′) + dS(e, h) + n · dS(e, h)

= dS(e, g′) + (n+ 1) · dS(e, h),

which completes the induction step.

In particular, for all n ∈ N>0 the elements g′ ·hn and g′ must be different.
Thus, h has infinite order.

Proof of Theorem 7.5.1. LetG be an infinite hyperbolic group, and let S ⊂ G
be a finite generating set of G. Then G has only finitely many cone types
(Proposition 7.5.4), and so contains an element of infinite order (Proposi-
tion 7.5.6).

As a first application of the existence of elements of infinite order, we
give another proof of the fact that Z is quasi-isometrically rigid; we split the
argument into two parts:

Corollary 7.5.7. Every finitely generated group quasi-isometric to Z contains
an element of infinite order.

Proof. Let G be a finitely generated group quasi-isometric to Z. Then G is
infinite and hyperbolic, because Z is infinite and hyperbolic. In particular, G
contains an element of infinite order (by Theorem 7.5.1).

Corollary 7.5.8 (Quasi-isometry rigidity of Z). Every finitely generated group
quasi-isometric to Z contains a finite index subgroup isomorphic to Z.
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Proof. Let G be a finitely generated group quasi-isometric to Z. By Corol-
lary 7.5.7, the group G contains an element g of infinite order. One then
shows (Exercise 7.E.28):
• The subgroup 〈g〉G generated by g is quasi-dense in G because G and
Z are quasi-isometric.
• Hence, 〈g〉G has finite index in G.

7.5.2 Centralisers

Because (quasi-)isometrically embedded (geodesic) subspaces of hyperbolic
spaces are hyperbolic (Proposition 7.2.9), no hyperbolic space can contain the
flat Euclidean plane R2 as a (quasi-)isometrically embedded subspace. The
geometric group theoretic analogue is that Z2 cannot be quasi-isometrically
embedded into a hyperbolic group.

In the following, we will show that also the, stronger, algebraic analogue
holds: A hyperbolic group cannot contain Z2 as a subgroup (Corollary 7.5.15).

How can we prove such a statement? If a group contains Z2 as a subgroup,
then it contains an element of infinite order whose centraliser contains a
subgroup isomorphic to Z2; in particular, there are elements of infinite order
with “large” centralisers. We will show that this is impossible in hyperbolic
groups.

The key insight for this and many other results on hyperbolic groups is
that elements of infinite order give rise to quasi-geodesic lines; one also says
that these elements are undistorted or loxodromic:

Theorem 7.5.9 (Homogeneous quasi-geodesic lines in hyperbolic groups). Let
G be a hyperbolic group and let g ∈ G be an element of infinite order. Then
the map

Z −→ G

n 7−→ gn

is a quasi-isometric embedding.

The proof of this theorem will be given in Chapter 7.5.3 below. Using these
(quasi-)geodesic lines, we can prove that the hyperbolic geometry indeed
forces centralisers of elements of infinite order to be small:

Theorem 7.5.10 (Centralisers in hyperbolic groups). Let G be a hyperbolic
group and let g ∈ G be an element of infinite order. Then the subgroup 〈g〉G
has finite index in the centraliser CG(g) of g in G; in particular, CG(g) is
virtually Z.

For the sake of completeness, we recall the notion of centraliser:
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Definition 7.5.11 (Centraliser). Let G be a group, and let g ∈ G. The cen-
traliser of g in G is the set of all group elements commuting with g, i.e.,

CG(g) := {h ∈ G | h · g = g · h}.

The centraliser of a group element always is a subgroup of the group in
question.

Example 7.5.12 (Centralisers).
• If G is Abelian, then CG(g) = G for all g ∈ G.
• If F is a free group and g ∈ F \ {e}, then CF (g) = 〈g〉F ∼= Z.
• If G and H are groups, then

G× 〈h〉H ⊂ CG×H(e, h)

for all h ∈ H.
• If S is a generating set of a group G, then⋂

s∈S
CG(s) =

⋂
g∈G

CG(g) = {h ∈ G | ∀g∈G h · g = g · h}

is the centre of G.

Caveat 7.5.13. If G is a finitely generated group with finite generating set S,
and if g ∈ G is an element of infinite order, then the map

Z −→ G

n −→ gn

is not necessarily a quasi-isometric embedding with respect to the standard
metric on Z and the word metric dS on G. For example, this happens in the
Heisenberg group (Caveat 6.2.13).

We now prove Theorem 7.5.10, using Theorem 7.5.9. This is a geometric
argument involving invariant geodesics, inspired by Preissmann’s theorem
(and its proof) in Riemannian geometry [57, Theorem 10.2.2]:

In view of Theorem 7.5.9, there is a “geodesic line” in G that is left invari-
ant under translation by g, namely n 7→ gn. If h ∈ CG(g), then translation
by g also leaves the “geodesic line” in G given by n 7→ h ·gn = gn ·h invariant.
Using the hypothesis that gn · h = h · gn for all n ∈ Z, one can show that
these two “geodesic lines” span a flat strip in G (Figure 7.24). However, as
G is hyperbolic, this flat strip cannot be too wide; in particular, h has to be
close to 〈g〉G. So CG(g) is virtually cyclic.

In fact, we will first prove the following, slightly more general, statement
about elements that quasi-commute with the given element g (which will
also be valuable in exhibiting free subgroups of hyperbolic groups in Chap-
ter 8.3.4):
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g g

g g

h g · h g2 · h

e g g2

h h h

Figure 7.24.: Elements in the centraliser CG(g) lead to flat strips

Lemma 7.5.14 (Close conjugates). Let G be a hyperbolic group, let g ∈ G be
of infinite order, and let S ⊂ G be a finite generating set of G. Then there
is a constant ∆ ∈ R>0 with the following property: If k ∈ G and ε ∈ {−1, 1}
satisfy

sup
n∈Z

dS(k · gn · k−1, gε·n) <∞,

then
dS
(
k, 〈g〉G

)
≤ ∆.

Proof. We first need to make some of the constants explicit: By Theo-
rem 7.5.9, there exists a constant c ∈ R≥1 such that the map

Z −→ G

n 7−→ gn

is a (c, c)-quasi-isometric embedding. Because G is hyperbolic, there exists
a δ ∈ R>0 such that G is (c, c, δ)-hyperbolic with respect to dS (Exer-
cise 7.E.13). We set

∆ := 2 · δ

(however, one should note that c, whence δ, depends on g).

We now start with the actual proof: Let k ∈ G and let ε ∈ {−1, 1} with

C := sup
n∈Z

dS(k · gn · k−1, gε·n) <∞.

By Theorem 7.5.9, we can choose n ∈ N so big that

dS(e, gn) > C + 2 + 2 · δ + dS(e, k).

We consider a quasi-geodesic quadrilateral with the vertices k · g−n, k · gn,
gε·n, g−ε·n. To this end we pick (1, 1)-quasi-geodesics γ from g−ε·n to k ·gn, as
well as γ+ from k · gn to gε·n and γ− from k · g−n to g−ε·n. As “bottom” and
“top” quasi-geodesics, we use the segments of m 7→ gm and m 7→ k·gm (which
by left-invariance of dS is a (c, c)-quasi-geodesic embedding). This situation
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m 7→ k · gm

m 7→ gm

k · g−n k · gn

g−ε·n gε·n

γ− γ+

γ

k

x

y

Figure 7.25.: Comparing the quasi-geodesic lines n 7→ k · gn and n 7→ gn

is illustrated in Figure 7.25. We now argue similarly as in Lemma 7.5.5 and
Lemma 7.4.11:

The conjugating element k lies on the “top” quasi-geodesic. Hence, by
hyperbolicity, there is an x in im γ or im γ− that is δ-close to k. We can rule
out the case of im γ− as follows: For all x ∈ im γ− we have by the triangle
inequality and the fact that γ− is (1, 1)-quasi-geodesic:

dS(x, k) ≥ dS(k · g−n, k)− dS(x, k · g−n)

≥ dS(g−n, e)− dS(g−ε·n, k · g−n)− 2.

By the choice of n, we know dS(g−n, e) = dS(e, gn) > C + 2 + 2 · δ+ dS(e, k).
Moreover,

dS(g−ε·n, k · g−n) ≤ dS(g−ε·n, k · g−n · k−1) + dS(k · g−n · k−1, k · g−n)

≤ C + dS(e, k).

Putting these estimates together, we obtain dS(x, k) > 2 ·δ ≥ δ. Hence, there
is an x ∈ im γ with dS(k, x) ≤ δ.

Analogously, we can use hyperbolicity in the “lower” quasi-geodesic tri-
angle to show that there is a point y ∈ 〈g〉G with dS(x, y) ≤ δ (by ruling
out im γ+). Therefore,

dS
(
k, 〈g〉G

)
≤ dS(k, y) ≤ dS(k, x) + dS(x, y) ≤ 2 · δ = ∆,

as claimed.

Proof of Theorem 7.5.10. Let S be a finite generating set and let ∆ ∈ R>0

be a constant for g as provided by Lemma 7.5.14. For every h ∈ CG(g) we
have

sup
n∈Z

dS(h · gn · h−1, gn) = sup
n∈Z

dS(gn, gn) = 0 <∞

and so
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dS
(
h, 〈g〉G

)
≤ ∆.

In other words, 〈g〉G is ∆-dense in CG(g) with respect to dS , which implies
that 〈g〉G has finite index in CG(g) (Exercise 5.E.23).

Corollary 7.5.15. Let G be a hyperbolic group. Then G does not contain a
subgroup isomorphic to Z2.

Proof. Assume for a contradiction that G contains a subgroup H isomorphic
to Z2. Let h ∈ H \ {e}; then h has infinite order and

Z2 ∼= H = CH(h) ⊂ CG(h),

which contradicts that the centraliser CG(h) of h is virtually 〈h〉G (Theo-
rem 7.5.10).

Example 7.5.16 (Heisenberg group, SL(n,Z) and hyperbolicity). By Corol-
lary 7.5.15, the Heisenberg group is not hyperbolic: the subgroup of the
Heisenberg group generated by the matrices1 1 0

0 1 0
0 0 1

 and

1 0 1
0 1 0
0 0 1


is isomorphic to Z2. Thus, for all n ∈ N≥3, the matrix groups SL(n,Z) also
are not hyperbolic.

The proofs of Theorem 7.5.10 and Theorem 7.5.9 are based on the geome-
try of (quasi-)geodesic lines in hyperbolic metric spaces. A systematic study
of the geometry of (quasi-)geodesic rays in hyperbolic spaces leads to the
Gromov boundary (Chapter 8.3). For example, these techniques then also
show that “generic” elements in hyperbolic groups fail to commute in the
strongest possible way (Theorem 8.3.13).

Moreover, the question whether group elements/isometries act by transla-
tion on (quasi-)geodesic lines is already present in the classical classification
of isometries of the hyperbolic plane:

Remark 7.5.17 (The conic trichotomy). Orientation preserving isometries
of the hyperbolic plane H2 are Möbius transformations (Theorem A.3.23).
Therefore, non-trivial orientation preserving isometries of H2 can be classi-
fied into the following three types [18, Proposition A.5.14ff]:

• Hyperbolic. A non-trivial orientation preserving isometry of H2 is hy-
perbolic if it has no fixed point in H2 and if it admits an axis, i.e., a
geodesic line on which this geodesic acts by translation. Such an axis
is then unique.
• Parabolic. A non-trivial orientation preserving isometry of H2 is called

parabolic if it has no fixed point in H2 and if it admits no axis.
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(
2 0
0 1/2

) (
2 1
1 1

) (
1 1
0 1

) (
0 1
−1 0

)

hyperbolic parabolic elliptic
(axes shown)

Figure 7.26.: The three types of orientation preserving isometries of H2, in
the halfplane model

• Elliptic. A non-trivial orientation preserving isometry of H2 is elliptic
if it has a fixed point in H2

The names derive from the fact that the group of orientation preserving
isometries of H2 is isomorphic to the matrix group

PSL(2,R) = SL(2,R)/{E2,−E2}

and that the above classification translates into quadratic equations for the
matrix coefficients, which in turn are related to the classification of (non-
degenerate) conic sections.

In the upper halfplane model for H2, prototypical examples of these three
types of isometries are the following (Figure 7.26):

• Hyperbolic. For example, the matrices(
2 0
0 1/2

)
and

(
2 1
1 1

)
induce the Möbius transformations

z 7−→ 4 · z and z 7−→ 2 · z + 1

z + 1
,

respectively (in the halfplane model). Both of these isometries are hy-
perbolic. The first one has the imaginary axis as axis; the latter one
has the geodesic line in H2 as axis whose image is the semi-circle that
meets the real line in the points 1/2 · (1 +

√
5) and 1/2 · (1−

√
5).

More generally, the Möbius transformation associated with a ma-
trix A ∈ SL(2,R) \ {E2,−E2} is hyperbolic if and only if A is diag-
onalisable over R; this is equivalent to |trA| > 2 (Exercise 7.E.25).
• Parabolic. The matrix
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1 1
0 1

)
yields the parabolic Möbius transformation

z 7−→ z + 1.

More generally, the Möbius transformation associated with a ma-
trix A ∈ SL(2,R)\{E2,−E2} is parabolic if and only if A has real eigen-
values but is not diagonalisable over R; this is equivalent to |trA| = 2
(Exercise 7.E.25).
• Elliptic. The matrix (

0 1
−1 0

)
induces the elliptic Möbius transformation

z 7−→ −1

z
.

The fixed point of this Möbius transformation in H2 is i and this Möbius
transformation can be viewed as rotation around π.
More generally, the Möbius transformation associated with a ma-
trix A ∈ SL(2,R) \ {E2,−E2} is elliptic if and only if A has no real
eigenvalues; this is equivalent to |trA| < 2 (Exercise 7.E.25).

Using the language of boundaries of hyperbolic spaces/groups (Chapter 8.3),
one can express this trichotomy also purely in terms of fixed points (Out-
look 8.3.7).

7.5.3 Quasi-convexity

In order to complete the proof of Theorem 7.5.10 we still need to provide
a proof of Theorem 7.5.9, i.e., that elements of infinite order in hyperbolic
groups give rise to quasi-geodesic lines. Also the proof of Theorem 7.5.9 in
turn heavily uses centralisers. We first need some preparations: In order to
gain control over the centralisers, we need a quasi-version of convexity. Recall
that a subset of a geodesic space is convex if every geodesic whose endpoints
lie in this subset must already be contained completely in this subset (Fig-
ure 7.27).

Definition 7.5.18 (Quasi-convex subspace). Let X be a geodesic metric space.
A subspace C ⊂ X is quasi-convex if there is a c ∈ R≥0 with the following
property: For all x, x′ ∈ C and all geodesics γ in X joining x with x′ we have

im γ ⊂ BX,dc (C).
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C

γ

x x′ C

BX,dc (C)

γ

x x′

Figure 7.27.: Convexity and quasi-convexity, schematically

One could also formulate a notion of quasi-convexity in quasi-geodesic
spaces, but for simplicity we will only consider the geodesic case.

Definition 7.5.19 (Quasi-convex subgroup). Let G be a finitely generated
group, let S be a finite generating set of G, and let H ⊂ G be a subgroup
of G. Then H is quasi-convex with respect to S, if H, viewed as a subset
of |Cay(G,S)|, is a quasi-convex subspace of |Cay(G,S)|.

Proposition 7.5.20 (Properties of quasi-convex subgroups). Let G be a finitely
generated group, and let S be a finite generating set of G.

1. If H ⊂ G is a quasi-convex subgroup of G with respect to S, then H
is finitely generated, and the inclusion H ↪→ G is a quasi-isometric
embedding.

2. If H and H ′ are quasi-convex subgroups of G with respect to S, then
also the intersection H∩H ′ is a quasi-convex subgroup of G with respect
to S.

Proof. This is the contents of Exercise 7.E.26 and Exercise 7.E.27; it should
be noted that the second part is non-trivial in the sense that the analogous
statement for general quasi-convex subspaces is not true (Caveat 7.5.21).

Caveat 7.5.21. The intersection of convex subspaces of a geodesic space is
always convex. However, the intersection of two quasi-convex subspaces of a
geodesic space does not need to be quasi-convex again – this can even happen
in hyperbolic metric spaces!

For example, the subsets

C := 2 · Z and C ′ := (2 · Z + 1) ∪ {n2 | n ∈ Z}

are quasi-convex subsets of R. But the intersection C ∩C ′ = {n2 | n ∈ 2 · Z}
clearly is not quasi-convex in R.

Proposition 7.5.22 (Quasi-convexity of centralisers). Let G be a hyperbolic
group and let g ∈ G. Then the centraliser CG(g) is quasi-convex in G (with
respect to every finite generating set of G).
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Proof. Let S ⊂ G be a finite generating set of G, and let δ ∈ R≥0 be chosen
in such a way that |Cay(G,S)| is δ-hyperbolic. Let γ : [0, L] −→ |Cay(G,S)|
be a geodesic with γ(0) ∈ CG(g) and γ(L) ∈ CG(g). We have to show that
for all t ∈ [0, L] the point γ(t) is uniformly close to CG(g).

Without loss of generality, we may assume γ(0) = e. Furthermore, we set
h := γ(L) ∈ CG(g). Let t ∈ [0, L]; without loss of generality, we may assume
that h := γ(t) ∈ G (otherwise, we pick a group element that is at most
distance 1 away).

Clearly, g · γ : [0, L] −→ |Cay(G,S)| is a geodesic starting in g and ending
in g · h = h · g. Because |Cay(G,S)| is δ-hyperbolic and because

dS(h, g · h) = dS(h, h · g) = dS(e, g),

there is a constant c ∈ R≥0 depending only on dS(e, g) and δ such that γ
and g · γ are uniformly c-close (apply Lemma 7.5.5 twice). In particular, we
obtain

dS(e, h
−1 · g · h) = dS(h, g · h) = dS

(
γ(t), g · γ(t)

)
≤ c.

As next step we show that there is a “small” element h satisfying

h
−1
· g · h = h

−1 · g · h.

To this end, we consider the following two geodesics in |Cay(G,S)|: Let γ :=
γ|[0,t] : [0, t] −→ |Cay(G,S)|; i.e., γ is a geodesic starting in e and ending in h.

Then g ·γ is a geodesic starting in g and ending in g ·h. By construction of c,
the geodesics γ and g · γ are uniformly c-close and so (see above)

γ(s)−1 · g · γ(s) ∈ BS,cG (e)

for all s ∈ [0, t] with γ(s) ∈ G.

If dS(e, h) > |BG,Sc (e)|, then by the pigeon-hole principle and the fact that
geodesics in |Cay(G,S)| basically follow a shortest path in Cay(G,S) there
exist parameters s, s′ ∈ [0, t] such that s < s′ and γ(s), γ(s′) ∈ G, as well as

γ(s)−1 · g · γ(s) = γ(s′)−1 · g · γ(s′)

(see Figure 7.28). Then the element

h := γ(s) · γ(s′)−1 · h

satisfies dS(e, h) < dS(e, h) (because these elements are lined up on the same
geodesic) and
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≤ c

≤ c

γ g · γ

≤ c

≤ c

=
γ(s)

γ(s′)

g · γ(s)

g · γ(s′)

e

h g · h

g

Figure 7.28.: Finding a shorter conjugating element

h
−1
· g · h = h

−1 · γ(s′) · γ(s)−1 · g · γ(s) · γ(s′)−1 · h

= h
−1 · γ(s′) · γ(s′)−1 · g · γ(s′) · γ(s′)−1 · h

= h
−1 · g · h.

Hence, inductively, we can find an element h ∈ G with dS(e, h) ≤ |BG,Sc (e)|
and

h
−1
· g · h = h

−1 · g · h.

The element k := h · h
−1

now witnesses that γ(t) is |BG,Sc (e)|-close
to CG(g): On the one hand we have

dS
(
k, γ(t)

)
= dS(h · h

−1
, h) = dS(h

−1
, e) = dS(e, h)

≤
∣∣BG,Sc (e)

∣∣.
On the other hand, k ∈ CG(g) because

k · g = h · h
−1
· g

= h · h
−1
· g · h · h

−1

= h · h−1 · g · h · h
−1

= g · k.
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Hence, γ is |BG,Sc (e)|-close to CG(g), which shows that the centraliser CG(g)
is quasi-convex in G with respect to S.

As promised, these quasi-convexity considerations allow us to complete
the proof of Theorem 7.5.9:

Proof of Theorem 7.5.9. In view of Proposition 7.5.22, the centraliser CG(g)
is a quasi-convex subgroup of G. In particular, CG(g) is finitely generated by
Proposition 7.5.20, say by a finite generating set T . Then also the intersection⋂

t∈T
CG(t) = C

(
CG(g)

)
,

which is the centre of CG(g), is a quasi-convex subgroup of G; so C(CG(g))
is finitely generated and the inclusion C(CG(g)) ↪→ G is a quasi-isometric
embedding (Proposition 7.5.20). In particular, also C(CG(g)) is a hyperbolic
group (Proposition 7.3.2).

On the other hand, C(CG(g)) is Abelian and contains 〈g〉G ∼= Z; because
C(CG(g)) is hyperbolic, it follows that C(CG(g)) must be virtually Z. Hence
the infinite cyclic subgroup 〈g〉G has finite index in C(CG(g)); in particular,
the inclusion 〈g〉G ↪→ C(CG(g)) is a quasi-isometric embedding.

Putting it all together, we obtain that the inclusion

〈g〉G ↪→ C
(
CG(g)

)
↪→ G

is a quasi-isometric embedding, as was to be shown.

7.5.4 Application: Products and negative curvature

In view of Corollary 7.5.15, most non-trivial products of finitely generated
groups are not hyperbolic.

Corollary 7.5.23. Let M be a closed connected smooth manifold. If the funda-
mental group π1(M) contains a subgroup isomorphic to Z2, then M does not
admit a Riemannian metric of negative sectional curvature (in particular, M
does not admit a hyperbolic structure).

Proof. If M admits a Riemannian metric of negative sectional curvature, then
its fundamental group π1(M) is hyperbolic (Example 7.3.3); hence, we can
apply Corollary 7.5.15 and rule out Z2 as a subgroup.

Example 7.5.24 (Heisenberg manifold). In particular, the closed connected
smooth manifold given as the quotient of the 3-dimensional Heisenberg group
with R-coefficients by the Heisenberg group (i.e., the Heisenberg manifold)
does not admit a Riemannian metric of negative sectional curvature (the
Heisenberg group contains Z2, Example 7.5.16).
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Outlook 7.5.25 (Splittings and presentability by products). A geometric coun-
terpart of the non-existence of Z2-subgroups is the following classical theorem
by Gromoll and Wolf [71] (for simplicity, we only state the version where the
fundamental group has trivial centre):

Theorem 7.5.26 (Splitting theorem in non-positive curvature). Let M be a
closed connected Riemannian manifold of non-positive sectional curvature
whose fundamental group π1(M) has trivial centre.

1. If π1(M) is isomorphic to a product G1×G2 of non-trivial groups, then
M is isometric to a product N1 ×N2 of closed connected Riemannian
manifolds satisfying π1(N1) ∼= G1 and π1(N2) ∼= G2.

2. If M has negative sectional curvature, then M does not split as a non-
trivial Riemannian product.

In a more topological direction, the knowledge about centralisers in hy-
perbolic groups (together with standard arguments from algebraic topology)
shows that manifolds of negative sectional curvature cannot even be domi-
nated by non-trivial products [92, 93]:

Theorem 7.5.27 (Negatively curved manifolds are not presentable by products).
Let M be an oriented closed connected Riemannian manifold of negative sec-
tional curvature. Then there are no oriented closed connected manifolds N1

and N2 of non-zero dimension admitting a continuous map N1 ×N2 −→M
of non-zero degree.

7.6 Non-positively curved groups

We conclude this chapter with a very brief discussion non-positively curved
groups, so-called CAT(0)-groups. Hyperbolic metric spaces are geodesic
spaces whose geodesic triangles are slim. This can be reformulated as geodesic
triangles being not much fatter than geodesic triangles in trees (Exer-
cise 7.E.9).

In order to define a notion of non-positive curvature for metric spaces, we
replace the comparison space: We compare geodesic triangles with triangles
in the Euclidean plane (Figure 7.29) instead of trees.

Definition 7.6.1 (CAT(0)-inequality, CAT(0)-space).
• A geodesic triangle (γ0 : [0, L1] → X, γ1 : [0, L1] → X, γ2 : [0, L2] → X)

in a metric space (X, d) satisfies the CAT(0)-inequality if the following
holds: Let (γ′0 : [0, L1] → X, γ′1 : [0, L1] → X, γ′2 : [0, L2] → X) be a
geodesic triangle in the Euclidean plane (R2, d2) with the same side
lengths (such triangles are unique up to a Euclidean isometry). Then

∀j,k∈{0,1,2} ∀s∈[0,Lj ] ∀t∈[0,Lk] d
(
γj(s), γk(t)

)
≤ d2

(
γ′j(s), γ

′
k(t)

)
.
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γ0

γ1
γ2

γ0(t)

γ2(t)

original geodesic triangle

γ′0

γ′1γ′2

γ′0(t)

γ′2(s)

Euclidean comparison triangle

Figure 7.29.: The CAT(0)-inequality

• A CAT(0)-space is a geodesic metric space (X, d) such that all geodesic
triangles in X satisfy the CAT(0)-inequality.

Remark 7.6.2 (CAT). The name CAT(0) refers to the pioneers of comparison
geometry: Cartan, Alexandrov, and Toponogov. The number 0 denotes the
upper curvature bound. Using other simply connected two-dimensional model
spaces of constant Gaussian/sectional curvature than the Euclidean plane,
one obtains the general notion of CAT(κ)-spaces. For instance, CAT(−1)-
spaces are those geodesic metric spaces whose geodesic triangles are at most
as fat as geodesic triangles in the hyperbolic plane H2.

Example 7.6.3 (CAT(0)-Spaces).
• The Euclidean plane (R2, d2) is a CAT(0)-space (by definition). More

generally, for every n ∈ N, the n-dimensional Euclidean space (Rn, d2)
is a CAT(0)-space (because every geodesic triangle in Rn lies in a Eu-
clidean subspace of dimension 2).
• The hyperbolic plane H2 is a CAT(0)-space: Geodesic triangles in the

hyperbolic plane are slimmer than their Euclidean comparison triangles
(Exercise 7.E.33). More generally, for every n ∈ N≥2, the n-dimensional
hyperbolic space Hn is a CAT(0)-space.
• The round sphere S2 is not a CAT(0)-space: All non-degenerate geodesic

triangles in S2 are fatter than their Euclidean comparison triangles (Ex-
ercise 7.E.30).
• Geometric realisations of trees are 0-hyperbolic and therefore also

CAT(0)-spaces.

Caveat 7.6.4. The property of being a CAT(0)-space is not only a global
property, but also a local property (also small triangles have to satisfy the
CAT(0)-inequality). This has several consequences:

• In general, hyperbolic metric spaces are not CAT(0)-spaces! For exam-
ple, the sphere S2 is a hyperbolic metric space, but it is not a CAT(0)-
space.
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• Being a CAT(0)-space is not a quasi-isometry invariant property for
geodesic metric spaces. For example, the sphere S2 is quasi-isometric
to the one-point space, which clearly is a CAT(0)-space.

In view of Caveat 7.6.4, we have to be careful when trying to define the
notion of CAT(0)-groups (see also Exercise 7.E.32). Instead of Cayley graphs,
one uses group actions:

Definition 7.6.5 (CAT(0)-group). A group is a CAT(0)-group if it admits a
proper cocompact isometric action on a non-empty CAT(0)-space.

Example 7.6.6 (CAT(0)-groups).
• For every n ∈ N the group Zn is a CAT(0)-group (as witnessed by the

translation action of Zn on the Euclidean n-space). In particular, not
every CAT(0)-group is hyperbolic.
• All finite groups are CAT(0)-groups (as witnessed by the trivial action

on the one-point space).
• All finitely generated free groups are CAT(0)-groups (as witnessed by

the translation action on the geometric realisations of Cayley graphs
with respect to free generating sets).
• The fundamental groups of oriented closed connected surfaces are

CAT(0)-groups. In the case of sphere, the fundamental group is trivial
and thus CAT(0). In the case of the torus, the fundamental group is Z2

and thus CAT(0). In the case of higher genus, we choose a hyperbolic
Riemannian metric and consider the corresponding deck transformation
action on H2.
• All Coxeter groups are CAT(0)-groups [45, Chapter 12].

However, it remains an open problem to determine whether all hyperbolic
groups are CAT(0)-groups or not.

Caveat 7.6.7. Being CAT(0) is not a quasi-isometry invariant among finitely
generated groups: Let M be a closed connected Seifert 3-manifold with hyper-
bolic base-surface S and suppose that M is not finitely covered by a product
of a surface and S1; such manifolds indeed exist [77, IV.B.48]. We consider
G := π1(M).
• Then G is not a CAT(0)-group [31, Theorem II.7.27]. The manifold M

has P̃SL-geometry [7, Table.1 on p. 19][77, IV.B.48] and so G is quasi-

isometric to P̃SL (by the Švarc-Milnor lemma).

• On the other hand, P̃SL is quasi-isometric to H2 × R [77, IV.B.48],
which is a CAT(0)-space, and thus (again by the Švarc-Milnor lemma)
quasi-isometric to the CAT(0)-group π1(S)× Z.

It turns out that CAT(0)-spaces share many of the properties of simply
connected manifolds of non-positive sectional curvature and that CAT(0)-
groups share many of the properties of fundamental groups of closed con-
nected Riemannian manifolds of non-positive sectional curvature [31, Part II,
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Chapter III.Γ]. Also, many of the results for hyperbolic groups have suitable
counterparts in the world of CAT(0)-groups:
• All CAT(0)-groups are finitely presented [31, Theorem III.Γ.1.1].
• The word problem is solvable for every CAT(0)-group [31, Theo-

rem III.Γ.1.4].
• There is also a version of the splitting theorem (Theorem 7.5.26) for

CAT(0)-spaces and CAT(0)-groups [31, Theorem II.6.21].
• We have seen that hyperbolic groups cannot contain Z2 as a subgroup

(Corollary 7.5.15) because such a subgroup would lead to a flat plane
in a hyperbolic space. Similarly, by the flat torus theorem [31, Chap-
ter II.7], the maximal dimension of flat subspaces of CAT(0)-spaces
controls the maximal rank of free Abelian groups in CAT(0)-groups.
Moreover, this also leads to the solvable subgroup theorem [31, The-
orem II.7.8] stating that all virtually solvable subgroups of CAT(0)-
groups are in fact finitely generated virtually Abelian.

Outlook 7.6.8 (Application to 3-manifolds). One of the most stunning recent
applications of geometric group theory and CAT(0)-techniques (in the form
of CAT(0)-cube complexes) is Agol’s proof of Waldhausen’s conjecture that
all compact aspherical 3-manifolds are virtually Haken and of Thurston’s
conjecture that all hyperbolic 3-manifolds are virtually fibred [1]. This result
revolutionised the theory of 3-manifolds and their fundamental groups.

Only very few groups are fundamental groups of closed surfaces [115]; in
contrast, every finitely presented group is the fundamental group of some
closed 4-manifold (and also in higher dimensions). Dimension 3 is a fas-
cinating intermediate stage: The class of fundamental groups of compact
3-manifolds is rich enough for interesting examples, but still small and geo-
metric enough to allow for good control [7]. One classical application of the
study of fundamental groups of compact 3-manifolds with torus boundary is
knot theory.

The definition of CAT(0)-spaces and CAT(0)-groups is based on compar-
ison geometry. Alternatively, one can also capture non-positive curvature in
a more combinatorial way. This leads to so-called systolic complexes and
systolic groups [85].
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7.E Exercises

(Quasi-)Hyperbolic spaces

Quick check 7.E.1 (Hyperbolicity?*).
1. Let (X, d) be a geodesic metric space with the following property: There

is a constant δ ∈ R≥0 such that for all geodesics γ and γ′ in X that have

the same start and end points we have the inclusions im γ ⊂ BX,dδ (im γ′)

and im γ′ ⊂ BX,dδ (im γ). Is then X necessarily hyperbolic?
2. Is every hyperbolic space also a 2017-hyperbolic space?

Exercise 7.E.2 (A weird geodesic ray in the Euclidean plane*). Show that

R≥0 −→ R2

t 7−→ t ·
(
sin(ln(1 + t)), cos(ln(1 + t))

)
is a quasi-isometric embedding with respect to the standard metrics on R
and R2 respectively. (It follows that the stability theorem for quasi-geodesics
does not hold in the Euclidean space R2).

Exercise 7.E.3 (Metric trees are hyperbolic**). Let X be a tree. Show that
the geometric realisation |X| of X is 0-hyperbolic.
Hints. A systematic way of organising this is via R-trees (Exercise 7.E.4).

Exercise 7.E.4 (R-trees**). A metric space (X, d) is an R-tree if the following
conditions are satisfied:
• For all x, y ∈ X there exists a unique geodesic from x to y. We denote

this geodesic by [x, y] and its image by |[x, y]|.
• For all x, y, z ∈ X with |[y, x]| ∩ |[x, z]| = {x} we have∣∣[y, x]

∣∣ ∪ ∣∣[x, z]∣∣ =
∣∣[y, z]∣∣.

The second condition can also be reformulated in terms of the geodesics and
not only of their images (how?!).

1. Let T be a tree. Prove that the geometric realisation |T | is an R-tree.
2. Is every R-tree the geometric realisation of a tree?
3. Prove that every R-tree is 0-hyperbolic.
4. Prove that every 0-hyperbolic metric space is an R-tree.

Exercise 7.E.5 (Distance between geodesics and curves in hyperbolic spaces**).
Complete the sketch proof of the Christmas tree lemma (Lemma 7.2.14): Let
δ ∈ R≥0 and let (X, d) be a δ-hyperbolic space. Let γ : [0, L] −→ X be a
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continuous curve and let γ′ : [0, L′] −→ X be a geodesic from γ(0) to γ(L).
Show for all t ∈ [0, L′] that

d
(
γ′(t), im γ

)
≤ δ ·

∣∣log2 LX(γ)
∣∣+ 1.

Exercise 7.E.6 (Geodesics in hyperbolic spaces starting at the same point**).
Let δ,D ∈ R≥0, let (X, d) be a δ-hyperbolic space and let γ : [0, L] −→ X,
γ′ : [0, L′] −→ X be geodesics in X with

γ(0) = γ′(0) and d
(
γ(L), γ′(L′)

)
≤ D.

Show that γ and γ′ are uniformly (2 · δ +D)-close, i.e.,

∀t∈[0,min(L,L′)] d
(
γ(t), γ′(t)

)
≤ 2 · δ +D and |L− L′| ≤ D.

Exercise 7.E.7 (Local geodesics in hyperbolic spaces**). Let (X, d) be a δ-hy-
perbolic space and let c ∈ R>8δ. Let γ : [0, L] −→ X be a c-local geodesic.
Prove that if γ′ : [0, L′] −→ X is a geodesic that satisfies γ(0) = γ′(0) and
γ(L) = γ(L′), then

im γ ⊂ BX,d2·δ (im γ′).

Hints. Consider a point in im γ that has maximal distance from im γ′ and
then look at a suitable geodesic quadrilateral that connects im γ and im γ′

and that contains this point on one of its sides.

Characterisations of hyperbolicity

Exercise 7.E.8 (Tripod triples*). Let a, b, c ∈ R≥0 with a + b ≥ c, b + c ≥ a,
c+ a ≥ b. Show that there are unique a ∈ [0, a], b ∈ [0, b], c ∈ [0, c] with

a+ b = a, b+ c = b, c+ a = c

(Figure 7.30). We call (a, b, c) the tripod triple associated with (a, b, c).

a

b

c

 
a

b

c

 
a

b

c

Figure 7.30.: Tripod triple
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Exercise 7.E.9 (Slim triangles, thin triangles, insize**). Let (X, d) be a geodesic
metric space, let ∆ = (γ0 : [0, L0] → X, γ1 : [0, L1] → X, γ2 : [0, L2] → X) be
a geodesic triangle in X, and let (L0, L1, L2) be the tripod triple associated
with the triple (L0, L1, L2) of side lengths of ∆ (Exercise 7.E.8).
• Let δ ∈ R≥0. The geodesic triangle ∆ is δ-thin if

∀t∈[0,L0] d
(
γ0(t), γ2(L2 − t)

)
≤ δ,

∀t∈[0,L1] d
(
γ1(t), γ0(L0 − t)

)
≤ δ,

∀t∈[0,L2] d
(
γ2(t), γ1(L1 − t)

)
≤ δ.

• The insize of the geodesic triangle ∆ is the diameter of the set{
γ0(L0), γ1(L1), γ2(L2)

}
.

Prove that the following conditions are equivalent:
1. The space X is hyperbolic.
2. There exists a δ ∈ R≥0 such that every geodesic triangle in X is δ-thin.
3. There exists a δ ∈ R≥0 such that the insize of every geodesic triangle

in X is at most δ.
Hints. A convenient way to proceed is to prove the implications “2 =⇒ 1”,
“1 =⇒ 3”, “3 =⇒ 1”.

Exercise 7.E.10 (The Gromov product**). Let (X, d) be a metric space.
For x, y, z ∈ X the Gromov product of x and y with respect to z is defined by

(x · y)z :=
1

2
·
(
d(x, z) + d(y, z)− d(x, y)

)
.

1. How is the Gromov product related to tripod triples (Exercise 7.E.8)
associated with the side lengths of geodesic triangles?

2. Show that a geodesic metric space (X, d) is hyperbolic if and only if
there exists a δ ∈ R>0 with

∀x,y,z,w∈X (x · y)w ≥ min
(
(x · z)w, (y · z)w

)
− δ.

Hints. For instance, one can use the characterisation of hyperbolicity
via the thin triangles condition (Exercise 7.E.9).

Exercise 7.E.11 (Hyperbolicity of graphs***). Let X = (V,E) be a connected
graph and let d be the induced metric on V . Let L := (Lx,y)x,y∈V be a
family of connected subgraphs of X. We say that X satisfies the slim triangles
condition with respect to L if there exists a constant C ∈ R>0 satisfying the
following conditions:
• For all x, y ∈ V , the vertices x and y belong to Lx,y.
• For all x, y ∈ V with d(x, y) ≤ 1, the d-diameter of Lx,y is at most C.
• For all x, y, z ∈ V the subgraph Lx,y is contained in the C-neighbour-

hood (with respect to d) of the union of Lx,z and Lz,y.
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The goal of this exercise is to establish the following hyperbolicity criterion
by Masur and Schleimer [116]:

1. Let X be a connected graph such that |X| is hyperbolic. Show that X
admits a family of subgraphs with respect to which it satisfies the slim
triangles condition.

2. Suppose that X satisfies the slim triangles condition with respect to L.
Prove that then |X| is a hyperbolic metric space.
Hints. It suffices to show that all geodesics in the graph between ver-
tices x, y ∈ V are uniformly close to the selected graph Lx,y (why?). In
order to prove this approximation of geodesics, one can first proceed as
in the proof of the Christmas tree lemma (Lemma 7.2.14) and then as
in the proof of the stability theorem (Theorem 7.2.11).

3. Look up in the literature how the curve graph is defined. Sketch the
proof of Bowditch [24] of hyperbolicity of the curve graph via the cri-
terion from the second part.

Hyperbolic groups

Quick check 7.E.12 (Growth of hyperbolic groups*).
1. Does every infinite finitely generated hyperbolic group have exponential

growth?
2. Is every finitely generated group of exponential growth hyperbolic?

Exercise 7.E.13 (Quasi-hyperbolic groups*). Let G be a finitely generated
group with finite generating set S ⊂ G. Show that G is a hyperbolic group if
and only if (G, dS) is (1, 1)-quasi-hyperbolic.

Exercise 7.E.14 (Products and hyperbolic groups*). Characterise (i.e., give
necessary and sufficient conditions) when the product G×H of two finitely
generated groups G and H is hyperbolic.

Exercise 7.E.15 (0-Hyperbolic groups*). Let G be a finitely generated group
that does not contain elements of order 2 and that has a finite generating
set S ⊂ G for which |Cay(G,S)| is 0-hyperbolic. Prove that G is free.

Exercise 7.E.16 (Free products and hyperbolicity**). Let G and H be finitely
generated groups.

1. Let G ∗H be hyperbolic. Are then also G and H hyperbolic?
2. Let G and H be hyperbolic. Is then also G ∗H hyperbolic?

Exercise 7.E.17 (Geometric structures on manifolds*).
1. Does there exist a closed connected hyperbolic manifold whose funda-

mental group is isomorphic to Out(F2017) ?
2. Does there exists a closed connected flat manifold whose fundamental

group is isomorphic to F2017 × F2017 ?
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Exercise 7.E.18 (Residual finiteness∞*). Is every finitely generated hyperbolic
group residually finite (Definition 4.E.1)?
Hints. This is an open problem!

The word problem

Exercise 7.E.19 (Elements of finite order in hyperbolic groups**). Let G be a
finitely generated hyperbolic group. Show that G contains only finitely many
conjugacy classes of elements of finite order.
Hints. Let 〈S |R〉 be a Dehn presentation of G and let g ∈ G be an element
of order n ∈ N>1. Let w ∈ (S ∪ S−1)∗ be a word of minimal length that
represents g in G. One then applies the Dehn property of 〈S |R〉 to the
word wn. How does this help to bound the length of w ?

Exercise 7.E.20 (Hyperbolic groups satisfy a linear isoperimetric inequality*).
Show that finitely generated hyperbolic groups satisfy a linear isoperimetric
inequality (Definition 6.E.6).
Hints. Use a Dehn presentation and Dehn’s algorithm.

Exercise 7.E.21 (. . . and vice versa***). Let G be a finitely presented group
that satisfies a linear isoperimetric inequality. Show that G is hyperbolic.
Hints. Proceed by contradiction. The proof then requires some serious puz-
zling and area/counting estimates [31, Chapter III.H.2].

Exercise 7.E.22 (The word problem and Dehn functions**). Let 〈S |R〉 be a
finite presentation. Show that the word problem for 〈S |R〉 is solvable if and
only if the associated Dehn function Dehn〈S |R〉 : N −→ N (Definition 6.E.4)
is a computable function.
Hints. If you are not comfortable with terms from computability theory,
you should just solve this exercise with an intuitive notion of algorithmic
computability.

Exercise 7.E.23 (The word problem in BS(1, 2) **). Show that the word prob-
lem in BS(1, 2) is solvable for the standard presentation 〈a, b | bab−1 = a2〉.
Hints. Look at the proof for the normal form in Exercise 2.E.22.

Elements of infinite order

Exercise 7.E.24 (Distorted elements in BS(1, 2) *).
1. Give an example of an element of BS(1, 2) that has infinite order and

is distorted.
Hints. The normal form of Exercise 2.E.22 might be helpful.

2. Conclude that BS(1, 2) is not hyperbolic.
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Exercise 7.E.25 (The conic trichotomy**). Let A ∈ SL2(2,R) \ {E2,−E2}.
1. Show that the Möbius transformation on H2 associated with A is hy-

perbolic if and only if A is diagonalisable over R. Furthermore, prove
that this is equivalent to |trA| > 2.

2. Show that the Möbius transformation on H2 associated with A is
parabolic if and only if A has real eigenvalues but is not diagonalis-
able over R. Furthermore, prove that this is equivalent to |trA| = 2.

3. Show that the Möbius transformation on H2 associated with A is elliptic
if and only if A has no real eigenvalues. Furthermore, prove that this is
equivalent to |trA| < 2.

Exercise 7.E.26 (Quasi-convex subgroups**). Let G be a finitely generated
group and let S ⊂ G be a finite generating set.

1. Show that if H ⊂ G is quasi-convex with respect to S, then H is
finitely generated and the inclusion homomorphism H −→ G is a quasi-
isometric embedding.

2. Does the converse also hold? I.e., is every finitely generated subgroup H
of G such that the inclusion H −→ G is a quasi-isometric embedding
quasi-convex with respect to S ?

Exercise 7.E.27 (Intersections of quasi-convex subgroups***). Let G be a
finitely generated group and let S ⊂ G be a finite generating set of G. Show
that if H, H ′ ⊂ G are quasi-convex subgroups with respect to S, then also
the intersection H ∩H ′ is quasi-convex in G with respect to S.
Hints. Let c ∈ R≥0 be chosen in such a way that H and H ′ are c-quasi-
convex in |Cay(G,S)|. Let

C :=
∣∣BG,Sc (e)

∣∣2.
Show that H ∩ H ′ is C-quasi-convex in |Cay(G,S)| using the following
method: Let h ∈ H ∩ H ′ and let γ : [0, L] −→ |Cay(G,S)| be a geodesic
joining e and h. For t ∈ [0, L] with γ(t) ∈ G then consider the set

M :=
{
g ∈ G

∣∣ γ(t) · g ∈ H ∩H ′, and for all k ∈ G
that lie on a geodesic in |Cay(G,S)| from e to g

we have dS(γ(t) · k,H) ≤ c and dS(γ(t) · k,H ′) ≤ c
}
.

Show that M is non-empty and that every dS(e, · )-minimal element g in M
satisfies dS(e, g) ≤ C.

Exercise 7.E.28 (Quasi-isometry rigidity of Z **). Let G be a finitely generated
group with G∼QIZ. Let g ∈ G be an element of infinite order (such an element
exists by Corollary 7.5.7), and let S ⊂ G be a finite generating set of G.

1. Show that there is a c ∈ R≥0 with the following property: For all h ∈ G
there is an n ∈ Z with dS(h, gn) ≤ c.

2. Conclude that the infinite cyclic subgroup 〈g〉G has finite index in G.
Hints. Exercise 5.E.23 can be applied.
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Exercise 7.E.29 (Lamplighter group**). Let

G :=
⊕
Z

Z/2 oα Z,

where α : Z −→ Aut
(⊕

Z Z/2
)

is given by translation.
1. Show that G is finitely generated.
2. Show that G is not hyperbolic.
3. Does G contain a subgroup that is isomorphic to Z2 ?

Non-positively curved groups

Exercise 7.E.30 (The round sphere*). Show that the round sphere S2 is not
a CAT(0)-space.

Exercise 7.E.31 (Geodesics and contractibility of CAT(0)-spaces*). Let (X, d)
be a CAT(0)-space.

1. Let x, y ∈ X. Prove that there is a unique geodesic from x to y.
2. Prove that X is contractible (with respect to the metric topology).

Exercise 7.E.32 (CAT(0)-Cayley graphs*). Let X = (V,E) be a connected
graph.

1. When is V with the metric induced by X a CAT(0)-space?
2. When is the geometric realisation |X| of X a CAT(0)-space?
3. Would it be a good idea to define that a finitely generated group G is

a CAT(0)-group if there exists a finite generating set S ⊂ G of G such
that Cay(G,S) or |Cay(G,S)| is a CAT(0)-space?

Exercise 7.E.33 (The hyperbolic plane is non-positively curved**). Prove that
the hyperbolic plane H2 is a CAT(0)-space.

Exercise 7.E.34 (Products of CAT(0)-spaces**).
1. Let (X, dX) and (Y, dY ) be CAT(0)-spaces. Show that also the prod-

uct X × Y with the metric

(X × Y )× (X × Y ) −→ X × Y(
(x, y), (x′, y′)

)
7−→

√
dX(x, x′)2 + dY (y, y′)2

is a CAT(0)-space.
2. Conclude that the direct product of finitely many CAT(0)-groups is a

CAT(0)-group.
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Ends and boundaries

This chapter is a brief introduction into geometry “at infinity” and its ap-
plications to finitely generated groups. Roughly speaking, a suitable notion
of geometry at infinity (or a “boundary”) should assign “nice” topological
spaces to given metric spaces that reflect the behaviour of the given metric
spaces “far out,” and it should turn quasi-isometries of metric spaces into
homeomorphisms of the corresponding topological spaces; more concisely,
a boundary mechanism should be a functor promoting maps and proper-
ties from the wild world of quasi-isometries to the potentially tamer world
of topology. In particular, boundaries are quasi-isometry invariants; surpris-
ingly, in many cases, boundaries know enough about the underlying metric
spaces to allow for interesting rigidity results.

In Chapter 8.1, we will formulate a wish-list for boundary constructions
and we will outline a basic construction principle. In Chapters 8.2 and 8.3,
we will discuss two such constructions in more detail, namely ends of groups
and the Gromov boundary of hyperbolic groups. As sample applications,
we will mention Stallings’s decomposition theorem for groups with infinitely
many ends, the ubiquity of free subgroups in hyperbolic groups, and Mostow
rigidity.

Overview of this chapter

8.1 Geometry at infinity 258

8.2 Ends 259

8.3 Gromov boundary 267

8.4 Application: Mostow rigidity 277

8.E Exercises 280
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258 8. Ends and boundaries

8.1 Geometry at infinity

What should a boundary be capable of? A notion of boundary should be
a functor ·∞ from the category QMet of metric spaces whose morphisms
are quasi-isometric embeddings up to finite distance (Remark 5.1.12) to the
category of (preferably compact) topological spaces. More explicitly, a notion
of boundary should associate

• to every metric space X a (preferably compact) topological space X∞,
• and to every quasi-isometric embedding f : X −→ Y between metric

spaces a continuous map f∞ : X∞ −→ Y∞ between the corresponding
topological spaces,

such that the following conditions are satisfied:

• If f , g : X −→ Y are quasi-isometric embeddings that have finite dis-
tance from each other, then f∞ = g∞.
• If f : X −→ Y and g : Y −→ Z are quasi-isometric embeddings, then

(g ◦ f)∞ = g∞ ◦ f∞.

• Moreover, (idX)∞ = idX∞ for all metric spaces X.

In particular: If f : X −→ Y is a quasi-isometry, then f∞ : X∞ −→ Y∞ is a
homeomorphism.

A first example is a trivial example:

Example 8.1.1 (Trivial boundary). We can assign to every metric space the
topological space consisting of exactly one point, and to every quasi-isometric
embedding the unique map of this topological space to itself. Clearly, this
construction does not contain any interesting geometric information.

A general construction principle that leads to interesting boundaries is
given by thinking about points “at infinity” as the “endpoints” of rays: If X
is a metric space, then one defines

X∞ :=
a suitable set of rays [0,∞) −→ X

a suitable equivalence relation on these rays
,

and if f : X −→ Y is a quasi-isometric embedding, one sets

f∞ : X∞ −→ Y∞[
γ : [0,∞)→ X

]
7−→ [f ◦ γ].

In the following, we will briefly discuss two instances of this principle,
namely ends of groups (Chapter 8.2) and the Gromov boundary of hyperbolic
groups (Chapter 8.3).
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8.2 Ends

The ends of a space can be viewed as the set of principal “regions” lead-
ing “to infinity.” Formally, the concept is described via rays and connected
components when bounded pieces are removed. We will first give the defi-
nition in the most straightforward, geodesic, case (Chapter 8.2.1). We will
then explain how this definition can be extended in a meaningful way to the
quasi-geodesic case; in particular, this will also prove quasi-isometry invari-
ance of ends (Chapter 8.2.2). After that we will focus on the case of finitely
generated groups (Chapter 8.2.3).

8.2.1 Ends of geodesic spaces

As first step, we define ends of geodesic spaces as equivalence classes of proper
rays (Figure 8.1).

Definition 8.2.1 (Ends of a geodesic space). Let X be a geodesic metric space.
• A proper ray in X is a continuous map γ : [0,∞) −→ X such that for

all bounded sets B ⊂ X the preimage γ−1(B) ⊂ [0,∞) is bounded.
• Two proper rays γ, γ′ : [0,∞) −→ X represent the same end of X

if for every bounded subset B ⊂ X there exists a t ∈ [0,∞) such
that γ([t,∞)) and γ′([t,∞)) lie in the same path-connected component
of X \B.
• If γ : [0,∞) −→ X is a proper ray, then we write end(γ) for the set of

all proper rays that represent the same end as γ.
• We call

Ends(X) :=
{

end(γ)
∣∣ γ : [0,∞) −→ X is a proper ray in X

}
the space of ends of X.
• We define a topology on Ends(X) through convergence of sequences

of ends in X to a point in Ends(X): Let (xn)n∈N ⊂ Ends(X), and
let x ∈ Ends(X). We say that (xn)n∈N converges to x if there exist
proper rays (γn)n∈N and γ in X representing the ends x0, x1, . . . and x
respectively such that the following condition is satisfied:
For every bounded set B ⊂ X there is a sequence (tn)n∈N ⊂ [0,∞) such
that for all large enough n ∈ N the images γn([tn,∞)) and γ([tn,∞))
lie in the same path-connected component of X \B.
A subset A ⊂ Ends(X) is closed if the following holds: If (xn)n∈N is a
sequence in A that converges to an end x ∈ Ends(X), then x ∈ A.

It should be noted that we used the term “proper” in the previous defini-
tion in the metric sense, not in the topological sense.
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γ same end as γ

not the same end as γ

B

Figure 8.1.: The ends of a space, schematically

Caveat 8.2.2. There are several common definitions of ends; while not all of
them are equivalent on all classes of spaces, all of them give the same result
when applied to finitely generated groups. We work in a setup similar to the
one by Bridson and Haefliger [31, Chapter I.8].

Example 8.2.3 (Ends of spaces).

• If X is a geodesic metric space of finite diameter, then Ends(X) = ∅.
• The proper rays

[0,∞) −→ R
t 7−→ t

t 7−→ −t

do not represent the same end (Figure 8.2). Moreover, a straightforward
topological argument shows that every end of R can be represented by
one of these two rays (Exercise 8.E.3); hence,

Ends(R) =
{

end(t 7→ t), end(t 7→ −t)
}
.

• If n ∈ N≥2, then the Euclidean space Rn has only one end: If B ⊂ Rn
is a bounded set, then there is an r ∈ R>0 such that B ⊂ BRn,d2

r (0),
and Rn \BRn,d2

r (0) has exactly one path-component.
• Similarly, |Ends(Hn)| = 1 for all n ∈ N≥2.
• The subspace R×{0}∪{0}×R of the Euclidean plane R2 (with respect

to the `1-metric) has exactly four ends (Figure 8.2).
• Let d ∈ N≥3. If T is a (non-empty) tree in which every vertex has

degree d, then the geometric realisation of T has infinitely many ends;
more precisely, as a topological space, Ends(T ) is a Cantor set [66,
Chapter 13.4, 13.5][31, Exercise 8.31].
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.. ... .−∞ ∞ .. . .. .

..

.

..

.

Ends(R) Ends
(
R× {0} ∪ {0} × R

)
Figure 8.2.: Examples of ends (indicated by circles)

A first step towards understanding the space of ends of regular trees is the
following simple case:

Example 8.2.4 (Ends of combs). We consider the two combs X and Y in
Figure 8.3. In both cases, we equip these subspaces of R2 with the path-
metric associated with the Euclidean metric of R2; i.e., the distance of two
points is the minimal Euclidean length of paths in X and Y respectively
that connect the two given points. In this way, X and Y are geodesic metric
spaces; hence, Ends(X) and Ends(Y ) are defined.
• In X, we consider for n ∈ N the proper ray

γn : [0,∞) −→ X

t 7−→ (n, t).

Then the ends represented by the rays (γn)n∈N converge in Ends(X) to
the end represented by the proper ray

γ : [0,∞) −→ X

t 7−→ (t, 0).

• In Y , we consider for n ∈ N the proper ray

γn : [0,∞) −→ Y

t 7−→
( 1

n
, t
)
.
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X

0 n

γn

γ

Y

γ

1/n

γn

0 1

Figure 8.3.: Two combs

Then the ends represented by (γn)n∈N do not converge in Ends(Y ) to
the end represented by the proper ray

γ : [0,∞) −→ Y

t 7−→ (0, t).

8.2.2 Ends of quasi-geodesic spaces

We now extend the definition of ends to quasi-geodesic spaces; as always, we
have to be careful with the handling of constants.

Definition 8.2.5 (Ends of quasi-geodesic spaces). Let c ∈ R>0, b ∈ R≥0 and
let X be a (c, b)-quasi-geodesic metric space.

• A proper (c, b)-quasi-ray in X is a map γ : [0,∞) −→ X that is proper
in the metric sense (for every bounded set B ⊂ X, the preimage γ−1(B)
is bounded in [0,∞)) and that satisfies the estimate

∀t,t′∈[0,∞) d
(
γ(t), γ(t′)

)
≤ c · |t− t′|+ b.

• Two proper quasi-rays represent the same quasi-end of X, if, far out,
they lie in the same quasi-path component. I.e., proper (c, b)-quasi-rays
rays γ, γ′ : [0,∞) −→ X represent the same quasi-end of X if for every
bounded subset B ⊂ X there exists a t ∈ [0,∞) such that γ([t,∞))
and γ′([t,∞)) lie in the same (c, b)-quasi-path-component (that is these
points can be connected by (c, b)-quasi-paths).
Here, by a (c, b)-quasi-path we mean a (not necessarily continuous!)
map γ : [0, T ] −→ X that satisfies

∀t,t′∈[0,T ] d
(
γ(t), γ′(t)

)
≤ c · |t− t′|+ b.
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• If γ : [0,∞) −→ X is a proper (c, b)-quasi-ray, then we write endQ(γ) for
the set of all proper (c, b)-quasi-rays that represent the same quasi-end
as γ.
• We call

EndsQ(X) :=
{

endQ(γ)
∣∣ γ : [0,∞) −→ X is a proper (c, b)-quasi-ray

}
the space of quasi-ends of X (more precisely, the space of (c, b)-quasi-
ends of X).
• We define a topology on EndsQ(X) through convergence of sequences

of quasi-ends in X to a point in EndsQ(X): Let (xn)n∈N ⊂ EndsQ(X),
and let x ∈ EndsQ(X). We say that (xn)n∈N converges to x if there
exist proper (c, b)-quasi-rays (γn)n∈N and γ in X representing the quasi-
ends x0, x1, . . . and x respectively such that the following condition is
satisfied:
For every bounded set B ⊂ X there is a sequence (tn)n∈N ⊂ [0,∞) such
that for all large enough n ∈ N the images γn([tn,∞)) and γ([tn,∞))
lie in the same (c, b)-quasi-path-component of X \B.

Remark 8.2.6 (Quasi-ends and constants). The initial choice of constants in
the definition of quasi-ends does not affect the resulting space of quasi-ends:
Let c ∈ R>0, b ∈ R≥0 and let (X, d) be a (c, b)-quasi-geodesic space. If
c′ ∈ R≥c and b′ ∈ R≥b, then every (c′, b′)-quasi-end can be represented by
a proper (c, b)-quasi-ray and two proper (c, b)-quasi-rays represent the same
(c, b)-quasi-end if and only if they represent the same (c′, b′)-quasi-ends. (Ex-
ercise 8.E.4).

Particularly nice examples of proper quasi-rays are quasi-geodesic rays.
For proper geodesic metric spaces, every (quasi-)end can be represented by
geodesic rays and the space of quasi-ends coincides with the space of ends:

Proposition 8.2.7 (Ends of geodesic spaces). Let X be a geodesic metric space
and let x ∈ X.

1. If X is proper, then every end can be represented by a geodesic ray that
starts at x.

2. There is a canonical homeomorphism Ends(X) ∼= EndsQ(X).

Proof. Ad 1. The basic idea is as follows: Let γ : [0,∞) −→ X be a proper
ray. For every n ∈ N we pick a geodesic γn from x to γ(n). Using the Arzelá-
Ascoli theorem, one can then find a subsequence of these geodesics (extended
constantly to all of [0,∞)) that converges to a geodesic ray that starts at x,
which will represent the same end as γ [31, Lemma I.8.28, Proposition I.8.29].

Ad 2. This can be shown by connecting the dots in proper quasi-rays and
quasi-paths by geodesic segments (Exercise 8.E.5).

In view of Proposition 8.2.7, we will in the following also use the sym-
bol Ends to denote the space of quasi-ends of a quasi-geodesic metric space.
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Proposition 8.2.8 (Quasi-isometry invariance of ends). Let X and Y be quasi-
geodesic metric spaces.

1. If f : X −→ Y is a quasi-isometric embedding, then the map

Ends(f) : Ends(X) −→ Ends(Y )

end(γ) 7−→ end(f ◦ γ)

is well-defined and continuous.
2. If f , g : X −→ Y are quasi-isometric embeddings that have finite dis-

tance from each other, then Ends(f) = Ends(g).
Hence, Ends defines a functor from the full subcategory of QMet given by
quasi-geodesic spaces to the category of topological spaces.

In particular: If f : X −→ Y is a quasi-isometry, then the induced map
Ends(f) : Ends(X) −→ Ends(Y ) is a homeomorphism.

Proof. This is a straightforward computation (Exercise 8.E.6). In order to
prove well-definedness in the first part, we need the freedom to represent
ends by more general rays – the composition of a quasi-isometric embedding
with a continuous ray in general is not continuous; so even if we were only
interested in ends of geodesic spaces, we would still need to know that we
can describe ends by some sort of quasi-rays.

8.2.3 Ends of groups

In particular, we obtain a notion of ends for finitely generated groups:

Definition 8.2.9 (Ends of a group). Let G be a finitely generated group. The
space Ends(G) of ends of G is defined as Ends(Cay(G,S)), where S ⊂ G is
some finite generating set of G. (Up to canonical homeomorphism, this does
not depend on the choice of the finite generating set.)

In view of Proposition 8.2.8, the space of ends of a finitely generated group
is a quasi-isometry invariant. From Example 8.2.3 we obtain:

Example 8.2.10 (Ends of groups).
• If G is a finite group, then Ends(G) = ∅.
• The group Z has exactly two ends (because Z is quasi-isometric to R).
• Finitely generated free groups of rank at least 2 have infinitely many

ends; as a topological space the space of ends of a free group of rank at
least 2 is a Cantor set.
• The group Z2 has only one end (because Z2 is quasi-isometric to R2).
• If M is a closed connected hyperbolic manifold of dimension at least 2,

then the fundamental group π1(M) is quasi-isometric to Hn, and so
π1(M) has only one end.

Theorem 8.2.11 (Possible numbers of ends of groups). Let G be a finitely
generated group. Then G has 0, 1, 2 or infinitely many ends.
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γ0

γ1 γ2

BXr (e)

gn = γ0(n)

gn · γ1

gn · γ1(t1)

gn · γ2

gn · γ2(t2)

Figure 8.4.: There is no group with three ends

Proof. We proceed as Bridson and Haefliger [31, Theorem 8.32]; the nota-
tion is illustrated in Figure 8.4. Assume for a contradiction that G has a
finite number of ends that is bigger than 2. By the functoriality of the ends
construction, the space Ends(G) inherits a G-action from the left translation
action of G on itself. By passing to a suitable finite index subgroup, we may
assume without loss of generality that this G-action on Ends(G) is trivial
(Exercise 8.E.10).

Let S ⊂ G be a finite generating set, let X := |Cay(G,S)|, and let
γ0, γ1, γ2 : [0,∞) −→ X be proper rays that represent three different ends
of G. In view of Proposition 8.2.7, we may assume that γ0, γ1, γ2 are geodesic
rays that start at e. Because γ0, γ1, γ2 represent three different ends, we will
find r ∈ R>0 such that

γ0

(
(r,∞)

)
, γ1

(
(r,∞)

)
, γ2

(
(r,∞)

)
lie in three different path-components of X \BXr (e). Because X is a geodesic
space, we obtain in particular: if t, t′ ∈ R>2·r, then

d
(
γ1(t), γ2(t)

)
> 2 · r

(every path, whence every geodesic, between γ1(t) and γ2(t) must take a de-
tour through the ball BXr (e), which disconnects γ1((r,∞)) from γ2((r,∞))).

We now let the elements gn := γ0(n) ∈ G with n ∈ N act on these
rays. Because the G-action on Ends(G) is trivial, the rays gn · γ1 and gn · γ2

represent the same ends as γ1 and γ2 respectively. Let n > 3 ·r and j ∈ {1, 2}.
Then the element gn = γ0(n) ∈ γ0((r,∞)) lies in a different path-component
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of X \BXr (e) than γj((r,∞)). Because gn · γj represents the same end as γj ,
the ray gn · γj has to pass through BXr (e) (in order to eventually reach the
same component of X \BXr (e)). In view of n > 3 ·r we hence find a tj ∈ R>2·r
with gn · γj(tj) ∈ BXr (e). In particular, we obtain

d
(
γ1(t1), γ2(t2)

)
= d
(
gn · γ1(t1), gn · γ2(t2)

)
≤ r + r = 2 · r.

However, this contradicts the estimate obtained in the first part of the proof.
Hence, there is no finitely generated group that has finitely many ends but

more than two ends.

Example 8.2.12. There is no finitely generated group that is quasi-isometric
to the cross R × {0} ∪ {0} × R (with the `1-metric), because such a group
would have exactly four ends (which is impossible by Theorem 8.2.11).

Moreover, using the Arzelá-Ascoli theorem, one can show that the space
of ends of a finitely generated group is compact [31, Theorem I.8.32]. If a
group has infinitely many ends, then the space of ends is uncountable, and
every end is an accumulation point of ends [31, Theorem I.8.32].

As we have seen above, every finitely generated group has 0, 1, 2 or in-
finitely many ends. Conversely, we can use the number of ends of a group to
learn something about the algebraic structure:

Definition 8.2.13 (Splitting over a finite group). A finitely generated group G
splits over a finite group if G is isomorphic to a group of the following type:
• an amalgamated free product G1 ∗A G2, where A is a finite group, G1

and G2 are finitely generated groups, and

[G1 : A] ≥ 2, [G2 : A] ≥ 2, [G1 : A] + [G2 : A] ≥ 5,

• or an HNN-extension H∗ϑ, where ϑ is an isomorphism between finite
subgroups of H that have index at least 2 in H.

Theorem 8.2.14 (Recognising groups via ends).
1. A finitely generated group has no ends if and only if it is finite.
2. A finitely generated group has exactly two ends if and only if it is vir-

tually Z.
3. Stallings’s decomposition theorem. A finitely generated group has in-

finitely many ends if and only if it splits over a finite group.

Sketch of proof. Let G be a finitely generated group.
Ad 1. If G is finite, then Ends(G) = ∅ (Example 8.2.10). Conversely, if

G is infinite, then G contains at least one infinite proper quasi-ray (Exer-
cise 3.E.11), which implies that Ends(G) is non-empty.

Ad 2. If G is virtually Z, then Ends(G) ∼= Ends(Z) (by quasi-isometry
invariance), which consists of exactly two elements (Example 8.2.10). Con-
versely, if G has exactly two ends, then one can show that G contains an
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element of infinite order, which generates a quasi-dense (whence finite index)
subgroup of G (Exercise 8.E.11).

Ad 3. If G splits over a finite group (and hence is a non-trivial amalga-
mated free product or a non-trivial HNN-extension of the above type), then
arguments similar to the case of free groups show that G has infinitely many
ends.

Conversely, if G has infinitely many ends, one can concoct a tree on which
G acts with finite stabilisers (the ends of G being the shadow of the branching
of this tree). Then Bass-Serre theory shows that G is of the claimed shape [66,
Chapter 13.6][53].

The second part, in particular, gives yet another argument proving that Z
is quasi-isometrically rigid.

The most interesting part is the third statement: If for some reason we
know that a group has infinitely many ends, then we know that we can de-
compose the group into “smaller” pieces. Furthermore, one can also derive
quasi-isometry rigidity of virtually free groups from decomposition results of
this type [53]. From a more pessimistic point of view, Stallings’s decom-
position theorem tells us that most interesting groups will have exactly one
end.

8.3 Gromov boundary

The space of ends is a rather crude invariant – many interesting groups have
only one end. Therefore, we are interested in constructing finer boundary
invariants. One example of such a construction is the Gromov boundary.

8.3.1 Gromov boundary of quasi-geodesic spaces

We will refine the construction of ends by looking at the points and directions
of the rays directly instead of at looking only at the location with respect to
path-components at infinity.

Definition 8.3.1 (Gromov boundary). Let X be a quasi-geodesic metric space.
• The (Gromov) boundary of X is defined as

∂X :=
{
γ : [0,∞) −→ X

∣∣ γ is a quasi-geodesic ray
} /
∼,

where two quasi-geodesic rays γ, γ′ : [0,∞) −→ X are equivalent if
there exists a c ∈ R≥0 such that

im γ ⊂ BX,dc (im γ′) and im γ′ ⊂ BX,dc (im γ)

(i.e., im γ and im γ′ have finite Hausdorff distance).



th
is

is
a

dra
ft

ve
rsi

on
!

268 8. Ends and boundaries

• We define a topology on ∂X through convergence of sequences in ∂X
to a point in ∂X: Let (xn)n∈N ⊂ ∂X, and let x ∈ ∂X. We say that
(xn)n∈N converges to x if there exist quasi-geodesic rays (γn)n∈N and
γ representing (xn)n∈N and x respectively such that every subsequence
of (γn)n∈N contains a subsequence that converges (uniformly on com-
pact subsets of [0,∞)) to γ.

Remark 8.3.2 (Finite Hausdorff distance via QMet). Let X be a metric space.
The set of quasi-geodesic rays in X is nothing but MorQMet([0,∞), X) and
the quasi-isometry group QI([0,∞)) = AutQMet([0,∞)) acts from the right
on MorQMet([0,∞), X) via pre-composition. Moreover, the canonical map

MorQMet([0,∞), X)
/

QI([0,∞)) −→ ∂X

[γ] 7−→ [γ]

is a bijection: Clearly, this map is well-defined and surjective. Moreover, it
is injective: Let γ, γ′ : [0,∞) −→ X be quasi-geodesic rays and suppose that
there is a c ∈ R≥0 satisfying

im γ ⊂ BX,dc (im γ′) and im γ′ ⊂ BX,dc (im γ).

We then define a map f : [0,∞) −→ [0,∞) by choosing for every t ∈ [0,∞)
an f(t) ∈ [0,∞) with

d
(
γ(t), γ′(f(t))

)
≤ c.

A straightforward calculation shows that f : [0,∞) −→ [0,∞) is a quasi-
isometry with supt∈[0,∞) d(γ(t), γ′ ◦ f(t)) ≤ c.

Proposition 8.3.3 (Quasi-isometry invariance of the Gromov boundary). Let X
and Y be quasi-geodesic spaces.

1. If f : X −→ Y is a quasi-isometric embedding, then

∂f : ∂X −→ ∂Y

[γ] 7−→ [f ◦ γ]

is well-defined, continuous, and injective.
2. If f , g : X −→ Y are quasi-isometric embeddings that have finite dis-

tance from each other, then ∂f = ∂g.

Hence, the Gromov boundary ∂ defines a functor from the full subcate-
gory of QMet given by quasi-geodesic spaces to the category of topological
spaces. In particular: If f : X −→ Y is a quasi-isometry, then the induced
map ∂f : ∂X −→ ∂Y is a homeomorphism.

Proof. The first part is a straightforward computation (Exercise 8.E.14); the
second part follows directly from the definitions.
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8.3.2 Gromov boundary of hyperbolic spaces

While the definitions above technically make sense for every (quasi-geodesic)
metric space, in general, such a boundary is far too big (as there are too many
quasi-geodesics) and rather difficult to keep under control (Exercise 8.E.22).
However, for proper hyperbolic metric spaces, the Gromov boundary can be
expressed in terms of geodesic rays instead of quasi-geodesic rays:

Theorem 8.3.4 (A geodesic description of the boundary). Let X be a proper
hyperbolic metric space.

1. Let γ : [0,∞) −→ X be a quasi-geodesic ray in X. Then there is a
geodesic ray γ′ : [0,∞) −→ X and a c ∈ R≥0 satisfying

im γ ⊂ BX,dc (im γ′) and im γ′ ⊂ BX,dc (im γ).

2. Let γ, γ′ : [0,∞) −→ X be geodesic rays in X with finite Hausdorff
distance. Then supt∈[0,∞) d(γ(t), γ′(t)) <∞.

3. Let x ∈ X and let γ : [0,∞) −→ X be a geodesic ray. Then there is a
geodesic ray γ′ : [0,∞) −→ X satisfying

γ′(0) = x and sup
t∈[0,∞)

d
(
γ(t), γ′(t)

)
<∞.

4. In particular, for all x ∈ X the canonical maps

geodesic rays in X
/

finite distance −→ ∂X

geodesic rays in X starting in x
/

finite distance −→ ∂X

are bijective.

Proof. The second part follows by applying Lemma 7.5.5 several times. The
first and third part can be shown as follows: In hyperbolic spaces, quasi-
geodesics stay close to geodesics (Theorem 7.2.11). Applying the Arzelá-
Ascoli theorem to finite pieces of the quasi-geodesic rays in question proves
the claims (Exercise 8.E.15). The last part just subsumes the other parts.

Example 8.3.5 (Gromov boundary of spaces).
• If X is a metric space of finite diameter, then clearly ∂X = ∅.
• The Gromov boundary of the real line R consists of exactly two points

corresponding to going to +∞ and going to −∞; hence, the Gromov
boundary of R coincides with the space of ends of R.
• The Gromov boundary of a regular tree of degree at least 3 is a Cantor

set [87].
• One can show that for all n ∈ N≥2, the Gromov boundary of Hn is

homeomorphic to the (n − 1)-dimensional sphere Sn−1 [18, Proposi-
tion A.5.10] (Exercise 8.E.18).
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As a first example application, we use quasi-isometry invariance of the
Gromov boundary (Proposition 8.3.3) to prove quasi-isometry invariance of
hyperbolic dimension:

Corollary 8.3.6 (Quasi-isometry invariance of hyperbolic dimension). Let n,
m ∈ N≥2. Then Hn ∼QI Hm if and only if n = m.

Proof. If Hn ∼QI Hm, then in view of Example 8.3.5 and the quasi-isometry
invariance of the Gromov boundary we obtain homeomorphisms

Sn−1 ∼= ∂Hn ∼= ∂Hm ∼= Sm−1.

By a classical result in algebraic topology, two spheres are homeomorphic if
and only if they have the same dimension [50, Corollary IV.2.3]; hence, we
get n− 1 = m− 1, and so n = m.

Outlook 8.3.7 (The conic trichotomy via fixed points). The topology on the
Gromov boundary of proper hyperbolic metric spaces X admits a canonical
extension to

X := X ∪ ∂X

that is compatible with the metric topology on X and the topology on ∂X
from above [31, Definition III.H.3.5ff]; moreover, X in this topology is com-
pact.

For example, there is a homeomorphism H2 −→ D2 mapping ∂H2 to
the boundary S1 of the unit disk D2, and every isometry f of H2 yields
a homeomorphism f : D2 −→ D2. By the Brouwer fixed point theorem [50,
Corollary IV.2.6], the latter map always has a fixed point. It is then possible to
reformulate the conic trichotomy (Remark 7.5.17) for non-trivial orientation
preserving isometries of H2 as follows [18]:
• Such an isometry f is hyperbolic if and only if f has exactly two fixed

points and these fixed points lie on the boundary (namely the “end-
points” of the axis).
• Such an isometry f is parabolic if and only if f has exactly one fixed

point and this fixed point lies on the boundary.
• Such an isometry f is elliptic if and only if f has exactly one fixed point

and this fixed point does not lie on the boundary.

8.3.3 Gromov boundary of groups

The quasi-isometry invariance of the Gromov boundary allows to define the
Gromov boundary for hyperbolic groups:

Definition 8.3.8 (Gromov boundary of a group). Let G be a finitely generated
group. The Gromov boundary of G is defined as ∂G := ∂Cay(G,S), where
S ⊂ G is some finite generating set of G; up to canonical homeomorphism,
this definition is independent of the choice of the finite generating set S.
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Proposition 8.3.3 shows that the Gromov boundary of finitely generated
groups is a quasi-isometry invariant and that the Gromov boundary of a
group coincides with the Gromov boundary of the geometric realisations of
its Cayley graphs. In the case of hyperbolic groups, we can hence describe
the Gromov boundary in terms of geodesic rays on the geometric realisations
(Theorem 8.3.4). Moreover, Example 8.3.5 yields:

Example 8.3.9 (Gromov boundary of groups).
• If G is a finite group, then ∂G = ∅.
• The Gromov boundary ∂Z of Z consists of exactly two points because
Z is quasi-isometric to R. We will see a converse of this fact in Propo-
sition 8.3.12.
• If M is a closed connected hyperbolic manifold of dimension n, then

∂π1(M) ∼= ∂Hn ∼= Sn−1.

Conversely, it can be shown that if G is a torsion-free hyperbolic group
whose boundary is a sphere of dimension n − 1 ≥ 5, then G is the
fundamental group of a closed connected aspherical manifold of dimen-
sion n [13].
• Let F be a finitely generated free group of rank at least 2. Then ∂F is

a Cantor set; in particular, F and SL(2,Z) are not quasi-isometric to
the hyperbolic plane H2.
We did know this already from the study of ends. However, using Gro-
mov boundaries, we can do even better:
There is no quasi-isometric embedding H2 −→ F : Assume for a contra-
diction that there is a quasi-isometric embedding f : H2 −→ F . Then
the induced map ∂f : ∂H2 −→ ∂F is continuous and injective. How-
ever, because ∂H2 ∼= S1 is connected and the Cantor set ∂F is totally
disconnected, it follows that ∂f is constant. This contradicts injectivity
of ∂f ; hence, there is no such map f .
• More generally, the Gromov boundary of a free product G ∗H of two

hyperbolic groups has the structure of a Cantor-like set, built from the
Gromov boundaries of G and H respectively [168].

The geometry of Gromov boundaries of hyperbolic groups and spaces is
quite rich [87]. In the following, we will focus merely on two aspects: how
to find free groups in hyperbolic groups (Chapter 8.3.4) and how to prove
rigidity results by boundary methods (Chapter 8.4).

8.3.4 Application: Free subgroups of hyperbolic groups

Using the language of the Gromov boundary of hyperbolic groups, we derive
standard results on the ubiquity of free subgroups in hyperbolic groups.
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Definition 8.3.10 (Boundary points of group elements, independence). Let G
be a hyperbolic group and let g ∈ G be an element of infinite order. Then

γ(g)+ : [0,∞) −→ G

t 7−→ gbtc,

γ(g)− : [0,∞) −→ G

t 7−→ g−btc

are quasi-geodesic rays (Theorem 7.5.9). We write

g∞ :=
[
γ(g)+

]
, g−∞ :=

[
γ(g)−

]
for the corresponding points in the Gromov boundary ∂G of G.

Elements g, h ∈ G of infinite order are independent if in the Gromov
boundary ∂G we have {g∞, g−∞} ∩ {h∞, h−∞} = ∅.

Remark 8.3.11. Let G be a hyperbolic group and let g ∈ G be an element of
infinite order. Because

Z −→ G

n 7−→ gn

is a quasi-isometric embedding (Theorem 7.5.9), it follows that g∞ 6= g−∞.

This notation of boundary points of group elements is already useful in
proving the following characterisation of elementary hyperbolic groups via
the Gromov boundary.

Proposition 8.3.12 (Elementary hyperbolic groups and Gromov boundary). Let
G be a hyperbolic group. Then |∂G| = 2 if and only if G is virtually Z.

Proof. If G is virtually Z, then G is quasi-isometric to Z and hence ∂G ∼= ∂Z.
In particular, |∂G| = |∂Z| = 2 (Example 8.3.9).

Conversely, we suppose that |∂G| = 2. There are several ways to prove
that then G is virtually Z. One possibility is via ends: Because |∂G| = 2,
it is not hard to see from the definition that ∂G has exactly two connected
components. Therefore, G also has exactly two ends (Exercise 8.E.20) and so
G is virtually Z (Theorem 8.2.14, Exercise 8.E.11).

Alternatively, we can proceed as follows: Because of ∂G 6= ∅, the group G
is infinite; hence, the hyperbolic group G contains an element g of infinite
order (Theorem 7.5.1). Therefore, ∂G = {g∞, g−∞}. We will now show that
〈g〉G ∼= Z has finite index in G; equivalently, it suffices to show that 〈g〉G is
quasi-dense in G (Exercise 5.E.23).

Assume for a contradiction that 〈g〉G is not quasi-dense in G, i.e., for a
finite generating set S ⊂ G and every n ∈ N there exists xn ∈ G with

dS
(
xn, 〈g〉G

)
≥ n.
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We can then connect e and xn through a (1, 1)-quasi-geodesic. Because the
balls in Cay(G,S) are finite, a counting/inductive selection argument shows
that there exists a (1, 1)-quasi-geodesic ray γ : [0,∞) −→ G that passes
through infinitely many elements of the set {xn | n ∈ N} (this is a discrete
version of the Arzelá-Ascoli theorem). By construction,

[γ] 6∈ {g∞, g−∞},

which contradicts ∂G = {g∞, g−∞}. Hence, 〈g〉G is quasi-dense in G, as
desired.

More generally, the boundary points of group elements determine the al-
gebraic relations between the given group elements to a large extent:

Theorem 8.3.13 (Mini Tits alternative for hyperbolic groups). Let G be a hy-
perbolic group and let g, h ∈ G be elements of infinite order. Then:

1. If g and h are not independent, then the subgroup 〈g, h〉G is virtually Z
and {g∞, g−∞} = {h∞, h−∞} in ∂G.

2. If g and h are independent, then there are m,n ∈ N such that 〈gm, hn〉G
is free of rank 2.

Before we start with the actual proof, we will first look at these statements
from an intuitive, geometric, point of view. If g and h are independent, then
the geodesic lines given by the powers of g and h respectively, grow further
and further apart. Therefore, far out on these lines, one can set up a ping-
pong situation and therefore find powers of g and h that generate a free
subgroup of rank 2.

Conversely, if g and h are not independent, then g and h (or inverses of
these elements) act by translation on the same geodesic ray (up to finite
distance). However, in negative curvature, there is (up to finite error) only a
one-dimensional family of isometries that induces translations on any given
geodesic line. Therefore, it is plausible that 〈g, h〉G is virtually Z.

Proof. Ad 1. Let {g∞, g−∞}∩ {h∞, h−∞} 6= ∅; without loss of generality, we
may assume g∞ = h∞. Then Lemma 8.3.14 below shows that there exists
an n ∈ Z \ {0} such that hn · g = g · hn. Thus, 〈g, h〉G is contained in the
centraliser CG(hn). Because hn has infinite order, the centraliser CG(hn) is
virtually Z (Theorem 7.5.10). In particular, also the infinite group 〈g, h〉G is
virtually Z.

Moreover, because 〈g, h〉G is virtually Z and because the powers of g and
h give rise to quasi-geodesic lines in G, which have to fit inside of 〈g, h〉G, we
also have {g∞, g−∞} = {h∞, h−∞} (Exercise 8.E.26).

Ad 2. Let g and h be independent and let S ⊂ G be a finite generating set
of G. Then, by Lemma 8.3.15 below, there exists R ∈ N>0 such that the sets

A :=
{
x ∈ G

∣∣ dS(x, 〈g〉G) < dS(x, {g−R, . . . , gR})
}
,

B :=
{
x ∈ G

∣∣ dS(x, 〈h〉G) < dS(x, {h−R, . . . , hR})
}
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AB

g∞g−∞

h∞

h−∞

Figure 8.5.: Setting up the ping-pong table, using two diverging geodesic lines

are disjoint (Figure 8.5). We will now apply the ping-pong lemma to this sit-
uation: We already know that A and B are non-empty and B 6⊂ A. Moreover,
for all n ∈ Z \ {0} we have

hn·3·R ·A ⊂ B,

which can be seen as follows: Let x ∈ A. Then A ∩ B = ∅ implies that
x 6∈ B. By definition, therefore all points in 〈h〉G that are closest to x lie
in {h−R, . . . , hR}. As the word metric dS is left-invariant, the points in 〈h〉G
closest to hn·3·R · x will lie in {hn·3·R−R, . . . , hn·3·R+R}, which is disjoint
from {h−R, . . . , hR}. Therefore, hn·3·R · x ∈ B.

The same argument shows that for all n ∈ Z \ {0} we have

gn·3·R ·B ⊂ A.

Hence, we can apply the ping-pong lemma (Theorem 4.3.1) and obtain that
the group 〈g3·R, h3·R〉G is free of rank 2.

It remains to establish the two lemmas used in the proof:

Lemma 8.3.14. Let G be a hyperbolic group and let g, h ∈ G be elements of
infinite order with g∞ = h∞ in ∂G. Then there exists an n ∈ Z \ {0} such
that hn commutes with g.

Proof. Let S ⊂ G be a finite generating set of G. In view of Theorem 8.3.4,
there exists a constant c ∈ R>0 such that

∀n∈N dS(gn, hn) ≤ c.

We then obtain for all m ∈ N that
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dS(h−m · g · hm, g) = dS(g · hm, hm · g)

≤ dS(g · hm, hm+1) + dS(hm · h, hm · g)

≤ dS(g · hm, hm+1) + c

≤ dS(g · hm, g · gm) + dS(gm+1, hm+1) + c

≤ c+ c+ c,

and so {h−m · g · hm | m ∈ N} ⊂ BG,S3·c (g). Because this ball is finite, there
exist m, k ∈ N with m 6= k such that h−m · g · hm = h−k · g · hk. In other
words, hm−k · g = g · hm−k.

Lemma 8.3.15. Let G be a hyperbolic group with finite generating set S ⊂ G
and let g, h ∈ G be independent elements of infinite order. Then there exists
an R ∈ N>0 such that the sets

A :=
{
x ∈ G

∣∣ dS(x, 〈g〉G) < dS(x, {g−R, . . . , gR})
}
,

B :=
{
x ∈ G

∣∣ dS(x, 〈h〉G) < dS(x, {h−R, . . . , hR})
}

are disjoint.

Proof. Because {g∞, g−∞} ∩ {h∞, h−∞} = ∅, there exists r ∈ R>0 such that
every geodesic in |Cay(G,S)| joining points in 〈g〉G and 〈h〉G has to pass
through the ball BG,Sr (e) (Exercise 8.E.17). Let δ ∈ R≥0 be a hyperbolicity
constant for |Cay(G,S)| and let R ∈ N>0 with

∀n∈N>R dS(e, gn) > 2 · (r + δ).

Then the sets A and B as defined in the lemma are disjoint:

Assume for a contradiction that there exists x ∈ A∩B. Let gx ∈ 〈g〉G and
hx ∈ 〈h〉G be closest points to x in 〈g〉G and 〈h〉G, respectively. Moreover,
let γ be a geodesic in |Cay(G,S)| joining gx and hx. In particular, γ passes
through a point z ∈ BG,Sr (e). Because |Cay(G,S)| is δ-hyperbolic, we may
assume without loss of generality that there is a point z′ on a geodesic from x
to gx with dS(z, z′) ≤ δ. Using the definition of A and gx, we obtain

2 · (r + δ) < dS(e, gx)

≤ dS(e, z′) + dS(z′, gx) ≤ dS(e, z′) + dS(z′, e)

≤ 2 ·
(
dS(e, z) + dS(z, z′)

)
≤ 2 · (r + δ),

which is a contradiction. Hence, A ∩B = ∅.

Example 8.3.16 (Independent elements in SL(2,Z)). The group G := SL(2,Z)
is hyperbolic (Example 7.3.3). We consider the elements
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g :=

(
1 1
0 1

)
, h :=

(
1 0
1 1

)
∈ SL(2,Z),

which both are of infinite order. Arguments similar to those in the proof
of Proposition 4.4.2 show that {g, h} is a generating set of SL(2,Z). In
particular, the subgroup 〈g, h〉G is not free (alternatively, one can easily
find concrete non-trivial relations between g and h). On the other hand,
{g∞, g−∞} ∩ {h∞, h−∞} = ∅ and 〈g2, h2〉G is free (Example 4.4.1). This ex-
ample also shows that in general passage to higher powers is needed in the
second part of Theorem 8.3.13.

We can now deduce that most hyperbolic groups contain a free group of
rank 2:

Corollary 8.3.17 (Ubiquity of free groups in hyperbolic groups). Let G be a
hyperbolic group. Then either G is virtually cyclic or G contains a free group
of rank 2 (and hence has exponential growth).

Proof. Clearly, the two alternatives exclude each other. We now consider
the case that G is not virtually cyclic and we prove that then G has to
contain a free group of rank 2. Because G is not virtually cyclic, G is infinite;
in particular, G contains an element g of infinite order (Theorem 7.5.1).
In view of Theorem 8.3.13, it suffices to find an element h ∈ G of infinite
order that is independent of g. Because G is not virtually cyclic, there exist
elements k ∈ G of arbitrarily large distance to 〈g〉G. Therefore, Lemma 7.5.14
implies that there is a k ∈ G such that the conjugate h := k · g · k−1 satisfies
for all ε ∈ {−1, 1}:

sup
n∈Z

dS(hn, gε·n) = sup
n∈Z

dS(k · gnk−1, gε·n) =∞.

With g also h has infinite order and so using Theorem 8.3.4 we can reformu-
late the previous expression as

{h∞, h−∞} 6= {g∞, g−∞}.

By the first part of Theorem 8.3.13, this already implies that g and h are
independent; therefore, the second part of Theorem 8.3.13 can be applied.

Outlook 8.3.18 (Acylindrically hyperbolic groups). A wide-ranging generali-
sation of hyperbolic groups are acylindrically hyperbolic groups [139]: The
notion of acylindrically hyperbolic groups is based on the observation that
many features of hyperbolic groups do not require a hyperbolic Cayley graph,
but only a suitable action on a hyperbolic metric space. Hyperbolic groups
can be characterised as the finitely generated groups that admit proper, co-
compact actions on proper hyperbolic metric spaces (Exercise 8.E.30). One
now replaces proper actions by acylindrical actions:
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• An isometric action of a group G on a metric space (X, d) is acylindrical
if: For every ε ∈ R>0, there exist r, n ∈ N such that for all x, y ∈ X
with d(x, y) ≥ r we have∣∣{g ∈ G | d(x, g · x) ≤ ε and d(y, g · y) ≤ ε}

∣∣ ≤ n.
• A group G is acylindrically hyperbolic if there exists a (not necessarily

finite) generating set S ⊂ G such that |Cay(G,S)| is hyperbolic, the left
translation action of G on |Cay(G,S)| is acylindrical, and ∂|Cay(G,S)|
contains more than two points.

Because |Cay(G,S)| is not a proper metric space if S is infinite, one needs
a version of the Gromov boundary that is robust enough for this situation,
e.g., the description via the Gromov product (Exercise 8.E.21).

For example, finitely generated hyperbolic groups are acylindrically hy-
perbolic if and only if they are not virtually cyclic (Exercise 8.E.32, Exer-
cise 8.E.33). Moreover, the class of acylindrically hyperbolic groups subsumes
the following, geometrically relevant, classes of groups [139]:
• Most mapping class groups of surfaces are acylindrically hyperbolic.
• Outer automorphism groups of free groups of rank at least 2 are acylin-

drically hyperbolic.
• . . .

For example, analogously to non-elementary hyperbolic groups, acylindri-
cally hyperbolic groups contain free groups of rank 2 (this is a far-reaching
generalisation of Corollary 8.3.17).

8.4 Application: Mostow rigidity

We briefly illustrate the power of boundary methods at the example of
Mostow rigidity. Roughly speaking, Mostow rigidity says that certain man-
ifolds that are equivalent in a rather weak, topological, sense (homotopy
equivalent) must be equivalent in a rather strong, geometric, sense (isomet-
ric).

For the sake of simplicity, we discuss only the simplest version of Mostow
rigidity, namely Mostow rigidity for closed hyperbolic manifolds:

Theorem 8.4.1 (Mostow rigidity – geometric version). Let n ∈ N≥3, and let
M and N be closed connected hyperbolic manifolds of dimension n. If M and
N are homotopy equivalent, then M and N are isometric.

Theorem 8.4.2 (Mostow rigidity – algebraic version). Let n ∈ N≥3, and let Γ
and Λ be cocompact lattices in Isom(Hn). If Γ and Λ are isomorphic groups,
then they are conjugate in Isom(Hn), i.e., there exists a g ∈ Isom(Hn) with

g · Γ · g−1 = Λ.
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The corresponding statement for flat manifolds does not hold: Scaling
the flat metric on a torus gives a flat metric on the same torus, but even
though the underlying manifolds are homotopy equivalent (even homeomor-
phic), they are not isometric (e.g., scaling changes the volume).

Caveat 8.4.3. Mostow rigidity does not hold in dimension 2; in fact, in the
case of surfaces of higher genus, the moduli space of hyperbolic structures is
a rich and interesting object [18, Chapter B.4].

Sketch proof of Mostow rigidity. Why are the geometric version and the al-
gebraic version of Mostow rigidity equivalent? The universal covering of hy-
perbolic n-manifolds is hyperbolic n-space Hn. In particular, hyperbolic man-
ifolds have a contractible universal covering and so are classifying spaces for
the fundamental group. Standard arguments in algebraic topology concerning
the homotopy theory of classifying spaces then show that hyperbolic mani-
folds are homotopy equivalent if and only if they have isomorphic fundamental
groups [48, Chapter 8.8]. On the other hand, covering theory shows that a
connected hyperbolic n-manifold M with fundamental group Γ ⊂ Isom(Hn)
is isometric to the quotient Γ \ Hn and that isometries between hyperbolic
n-manifolds lift to isometries of Hn. Now the equivalence between the geo-
metric and the algebraic version follows from a straightforward calculation.

We will now sketch a proof of the geometric version of Mostow rigidity:
Let f : M −→ N be a homotopy equivalence between closed connected hyper-
bolic n-manifolds. Using covering theory and the fact that the Riemannian
universal coverings of M and N are isometric to Hn, we obtain a lift

f̃ : Hn −→ Hn

of f ; in particular, f̃ is compatible with the actions of π1(M) and π1(N)
on Hn by deck transformations. Similar arguments as in the proof of the
Švarc-Milnor lemma show that f̃ is a quasi-isometry.

Hence, we obtain a homeomorphism

∂f̃ : ∂Hn −→ ∂Hn

on the boundary of Hn that is compatible with the actions of π1(M)
and π1(N) on ∂Hn induced by the deck transformation actions.

The main step of the proof is to show that this map ∂f̃ on ∂Hn is confor-
mal (i.e., locally angle-preserving) with respect to the canonical homeomor-
phism ∂Hn ∼= Sn−1; here, the condition that n ≥ 3 enters. One way to show
that ∂f̃ is conformal is Gromov’s proof via simplicial volume and regular
ideal simplices [126, 18, 146].

By a classical result from hyperbolic geometry, every conformal map
on ∂Hn can be obtained as the boundary map of an isometry of Hn [18,
Proposition A.5.13]; moreover, in our situation, it is also true that such an
isometry f ∈ Isom(Hn) can be chosen in such a way that it is compatible
with the deck transformation actions of π1(M) and π1(N) on Hn.
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Now a simple argument from covering theory shows that f induces an
isometry M −→ N . (In view of homotopy theory of classifying spaces, it also
follows that this isometry is homotopic to the original map f).

Using finer boundary constructions (e.g., asymptotic cones), rigidity re-
sults can also be obtained in other situations [63, 53].

Outlook 8.4.4 (Borel conjecture). In a more topological direction, a topolog-
ical version of Mostow rigidity is formulated in the Borel conjecture: Closed
connected manifolds with contractible universal covering space are homotopy
equivalent if and only if they are homeomorphic. This conjecture is wide open
in general, but many special cases are known to be true, including cases whose
fundamental groups have a geometric meaning [106].
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8.E Exercises

Ends of spaces

Quick check 8.E.1 (Ends of subspaces*). Let X be a geodesic metric space
and let Y ⊂ X be a subspace that is geodesic with respect to the subspace
metric. We write i : Y −→ X for the inclusion map.

1. Does the map i always induce an injection Ends(Y ) −→ Ends(X) ?
2. Does the map i always induce a surjection Ends(Y ) −→ Ends(X) ?

Exercise 8.E.2 (Topology via convergence*). Let X be a set and let C be a
subset of XN × X. We say that a set A ⊂ X is C-closed, if the following
holds: For all

(
(xn)n∈N, x

)
∈ C we have(
∀n∈N xn ∈ A

)
=⇒ x ∈ A.

Here, we view C as a specification of when a sequence “converges” to a point
in X.

1. Show that the set

TC :=
{
U ⊂ X

∣∣ the set X \ U is C-closed
}

is a topology on X.
2. Let ((xn)n∈N, x) ∈ C. Show that (xn)n∈N converges to x with respect

to the topology TC .
3. Does the converse also hold?!

Exercise 8.E.3 (Ends of the real line*).
1. Show that the proper rays

[0,∞) −→ R
t 7−→ t

t 7−→ −t

do not represent the same ends in Ends(R).
2. Show that every end of R can be represented by one of these two proper

rays.
3. What is the topology on Ends(R) ?

Exercise 8.E.4 (Quasi-ends and constants**). Let c ∈ R>0, b ∈ R≥0 and let
(X, d) be a (c, b)-quasi geodesic space. Moreover, let c′ ∈ R≥c and b′ ∈ R≥b.

1. Show that every (c′, b′)-quasi-end is represented by a proper (c, b)-quasi-
ray.
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2. Show that two proper (c, b)-quasi-rays represent the same (c, b)-quasi-
end if and only if they represent the same (c′, b′)-quasi-end.

Exercise 8.E.5 (Quasi-ends**). Let X be a geodesic metric space. Fill in the
details of the proof of Proposition 8.2.7.

1. Let X be proper and x ∈ X. Fill in the details for the Arzelá-Ascoli
argument that shows that every end in Ends(X) is represented by a
geodesic ray that starts at x. Do the same for EndsQ(X).

2. Construct a canonical homeomorphism Ends(X) ∼= EndsQ(X) by
“connecting the dots” of proper quasi-rays and quasi-paths through
geodesics.

Exercise 8.E.6 (QI-invariance of ends**). Let X and Y be quasi-geodesic met-
ric spaces.

1. Let f : X −→ Y be a quasi-isometric embedding. Show that the map

EndsQ(f) : EndsQ(X) −→ EndsQ(Y )

endQ(γ) 7−→ endQ(f ◦ γ)

is well-defined and continuous.
2. Let f , g : X −→ Y be quasi-isometric embeddings that have finite dis-

tance from each other. Show that then EndsQ(f) = EndsQ(g).

Exercise 8.E.7 (Ends via π0 ***).
1. Look up the definition of the path-components functor π0 in algebraic

topology.
2. Formulate the definition of Ends for proper metric spaces in terms of π0.

Hints. For a streamlined formulation, it might be convenient to think
about the inverse system (X \ K)K∈K(X), where X is a topological
space and K(X) is the set of all compact subsets of X.

3. Conclude: Proper homotopy equivalences X −→ Y between proper
geodesic metric spaces induce homeomorphisms Ends(X) −→ Ends(Y ).

Ends of groups

Quick check 8.E.8 (Ends of groups*).
1. Does the Heisenberg group have infinitely many ends?
2. Does every group of exponential growth have infinitely many ends?

Exercise 8.E.9 (Free group vs. hyperbolic plane*). Use ends to prove that the
free group of rank 2 is not quasi-isometric to H2.

Exercise 8.E.10 (Groups that act trivially on their ends*). Let G be a finitely
generated group with finitely many ends. By functoriality, the space Ends(G)
inherits a G-action from the left translation of G on itself.
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1. Prove that there is a finite index subgroup H of G such that the re-
striction of the G-action to H is the trivial H-action on Ends(G).
Hints. Look at the kernel of the action.

2. Conclude that H acts trivially on Ends(H) and that H has the same
number of ends as G.

Exercise 8.E.11 (Groups with two ends**). Let G be a finitely generated group
that has exactly two ends.

1. Show that G contains an element of infinite order.
Hints. Look at an element of G whose translation action on the ends
is trivial and that is far away from the neutral element.

2. Show that the subgroup of G generated by an element of infinite or-
der has finite index in G. In particular, G is quasi-isometric to Z and
virtually Z.

Gromov boundary of spaces

Quick check 8.E.12 (Finite Hausdorff distance*). We consider the subsets

X := R× {0}, Y := R× {1}, Z := {0} × R

of the Euclidean plane R2.
1. Do X and Y have finite Hausdorff distance?
2. Do X and Z have finite Hausdorff distance?

Exercise 8.E.13 (Small Gromov boundary**).
1. Give an example of a hyperbolic metric space X that is unbounded but

has empty boundary ∂X.
Hints. Look at a sufficiently spiky tree.

2. Let G be a hyperbolic finitely generated group. Show that G is finite if
and only if ∂G = ∅.

Exercise 8.E.14 (Induced maps on Gromov boundaries**). Let X and Y be
quasi-geodesic metric spaces and let f : X −→ Y be a quasi-isometric em-
bedding.

1. Show that the map

∂f : ∂X −→ ∂Y

[γ] 7−→ [f ◦ γ]

is well-defined.
2. Show that the map ∂f : ∂X −→ ∂Y is continuous and injective.

Hints. Which statement about convergence of points in ∂X will you
need to prove? How can you modify the involved quasi-geodesic rays in
such a way that convergence holds after applying the (not necessarily
continuous!) quasi-isometric embedding f ?
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Exercise 8.E.15 (Quasi-geodesic rays in hyperbolic spaces**). Let X be a
proper hyperbolic metric space.

1. Let γ : N −→ X be a quasi-geodesic ray. Show that there exists a
geodesic ray γ′ : R≥0 −→ X such that im γ and im γ′ have finite Haus-
dorff distance.
Hints. When in need, look at Figure 8.6 and call the Arzelá-Ascoli
theorem for help!

2. Let x ∈ X and let γ ∈ R≥0 −→ X be a geodesic ray. Show that there
exists a geodesic ray γ′ : R≥0 −→ X with

γ′(0) = x and sup
t∈R≥0

d
(
γ(t), γ′(t)

)
<∞.

γ′γ(0)

γ(n)

γ(n+ 1)

Figure 8.6.: Using geodesics to approximate quasi-geodesic rays

Exercise 8.E.16 (Topology of the Gromov boundary in the geodesic descrip-
tion**). Let X be a proper hyperbolic metric space. How can the topology
on ∂X be described in terms of geodesic rays?

Exercise 8.E.17 (Diverging rays**). Let X be a proper geodesic hyperbolic
metric space and let γ, η : [0,∞) −→ X be geodesic rays with γ(0) = η(0)
and supt∈[0,∞) d(γ(t), η(t)) =∞.

1. Let c ∈ R>0. Show that then there is a T ∈ [0,∞) with

∀s,t∈[T,∞) d
(
γ(t), η(s)

)
≥ c.

Hints. For instance, one can use Lemma 7.5.5.
2. Show that there exists r ∈ R>0 such that every geodesic joining a point

on im γ with a point on im η passes through the ball BX,dr (γ(0)).
3. Formulate and prove a version of the second part for quasi-geodesic

rays instead of geodesic rays.
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Exercise 8.E.18 (Boundary of the hyperbolic plane**). Prove that the Gromov
boundary ∂H2 is homeomorphic to S1. Try to give a proof in the halfplane
model as well as a proof in the Poincaré disk model (Figure 8.7). Illustrate
your arguments with suitable pictures!
Hints. Use the classification of geodesic rays starting at a given point in the
hyperbolic plane! (Appendix A.3)

Figure 8.7.: The boundary of the hyperbolic plane, schematically

Exercise 8.E.19 (Visibility of the Gromov boundary**). Let X be a proper
hyperbolic metric space and let x+, x− ∈ ∂X with x+ 6= x−. Prove that
there exists a geodesic line γ : R −→ X that satisfies

[γ+] = x+ ∈ ∂X and [γ−] = x− ∈ ∂X,

where γ+ := γ|[0,∞) and

γ− : [0,∞) −→ X

t 7−→ γ(−t).

Hints. Use the Arzelá-Ascoli theorem.

Exercise 8.E.20 (Gromov boundary vs. ends***). LetX be a proper hyperbolic
metric space. Show that the canonical map

∂X −→ Ends(X)

induces a bijection from the set of connected components of ∂X to Ends(X).

Exercise 8.E.21 (Gromov product and Gromov boundary***). Let X be a
proper hyperbolic metric space and let x ∈ X.

1. Let γ : R≥0 −→ X be a geodesic ray. Show that then the Gromov
products (Exercise 7.E.10) satisfy

lim
m,n→∞

(
γ(n) · γ(m)

)
x
→∞.
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2. Let γ, γ′ : R≥0 −→ X be geodesic rays. Show that γ and γ′ represent
the same point in the Gromov boundary ∂X if and only if

lim
n,m→∞

(
γ(n) · γ′(m)

)
x

=∞.

3. Let (xn)n∈N be a sequence in X with limn,m→∞(xn · xm)x =∞. Show
that there exists a (quasi-)geodesic ray γ : R≥0 −→ X with

lim
n,m→∞

(
xn · γ(m)

)
x

=∞.

4. How can the topology on the Gromov boundary ∂X be described in
terms of the Gromov product?

Exercise 8.E.22 (Boundary of the Euclidean plane∞*). Give a reasonable de-
scription of ∂R2 (where we endow R2 with the Euclidean metric). Beware!
The Euclidean plane has lots of quasi-geodesic rays . . .
Hints. This seems to be an open problem!

Exercise 8.E.23 (Asymptotic cones***).
1. Look up the definition of asymptotic cones in the literature.
2. Why/how can one view asymptotic cones as “geometry at infinity”?
3. How can hyperbolic groups be characterised via asymptotic cones?
4. How can asymptotic cones be used for rigidity results?

Gromov boundary of groups

Quick check 8.E.24 (Translation action on the Gromov boundary*). Let G be
a finitely generated group. Then the left translation action of G on itself
induces a continuous G-action on the Gromov boundary ∂G.

1. Is the left translation action of F2 on ∂F2 free?
2. Let x ∈ ∂F2. Is then F2 · x the whole boundary ∂F2 ?

Exercise 8.E.25 (Groups with small Gromov boundary?!*). Show that there is
no hyperbolic group G with |∂G| = 1.

Exercise 8.E.26 (Gromov boundary and virtually Z subgroups*). Let G be a
hyperbolic group, let g, h ∈ G be elements of infinite order with the property
that 〈g, h〉G is virtually Z. Show that {g∞, g−∞} = {h∞, h−∞} holds in ∂G.

Exercise 8.E.27 (Centre of hyperbolic groups**). Let G be a finitely generated
hyperbolic group that is not virtually Z. Show that the centre of G is finite.
Hints. There are several approaches. One is to look at a free subgroup of
rank 2 in G and at centralisers of free generators.

Exercise 8.E.28 (Geometric structures on manifolds**).
1. Does there exist a closed connected hyperbolic manifold whose funda-

mental group is isomorphic to F2017 ?
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2. Does there exist a closed connected hyperbolic manifold whose funda-
mental group has S1 × S1 as boundary?
Hints. This requires some algebraic topology.

Exercise 8.E.29 (Combinatorial horoballs***). Let X = (V,E) be a connected,
locally finite graph. The graph H(X) is defined as follows: The set of vertices
of H(X) is V × N. A vertex of the form (x, n) with x ∈ V and n ∈ N is a
vertex of level n. The set of edges of H(X) is given by{

{(x, n), (x, n+ 1)}
∣∣ x ∈ V, n ∈ N

}
(vertical edges)

∪
{
{(x, n), (y, n)}

∣∣ {x, y} ∈ E, n ∈ N
}

(horizontal edges).

The combinatorial horoball of X is the metric space ‖H(X)‖ whose under-
lying set is the geometric realisation of H(X) and whose metric is the path-
metric associated with the following lengths of edges (Figure 8.8):
• All vertical edges have length 1.
• All horizontal edges of level n have length 1/2n.

level 3

level 2

level 1

X

combinatorial picture metric picture (horizontal direction)

Figure 8.8.: Combinatorial horoballs, schematically

1. Describe the geodesics in ‖H(X)‖.
Hints. Similarly to H2, in ‖H(X)‖ the path is shorter than . . .

2. Prove that ‖H(X)‖ is a proper hyperbolic metric space.
3. Compute the Gromov boundary ∂‖H(X)‖.

Exercise 8.E.30 (Proper actions on hyperbolic spaces**). Let G be a finitely
generated group.

1. Show that G is hyperbolic if and only if G admits a proper cocompact
isometric action on a (non-empty) proper hyperbolic metric space.

2. Does G always admit a cocompact isometric action on a (non-empty)
proper hyperbolic metric space?

3. Show that G admits a proper isometric action on a (non-empty) proper
hyperbolic metric space.
Hints. Let G act on the combinatorial horoball (Exercise 8.E.29) as-
sociated with a Cayley graph of G with respect to a finite generating
set of G.
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Acylindrically hyperbolic groups

Quick check 8.E.31 (Acylindrical actions*).
1. Is every action of a group on a metric space of finite diameter acylin-

drical?
2. Does every group admit an acylindrical action on some metric space?

Exercise 8.E.32 (Hyperbolic acylindrically hyperbolic groups*). Show that ev-
ery hyperbolic group that is not virtually cyclic is acylindrically hyperbolic.

Exercise 8.E.33 (Elementary hyperbolic groups**). Let G be virtually Z.
1. Let S ⊂ G be a generating set. Show that diam

(
Cay(G,S), dS

)
is finite

if and only if S is infinite.
2. Conclude: The group G is not acylindrically hyperbolic.

Exercise 8.E.34 (Acylindrical hyperbolicity and quasi-isometries?!∞*). Let G
and H be finitely generated quasi-isometric groups, where G is acylindrically
hyperbolic. Does this imply that also H is acylindrically hyperbolic?
Hints. This seems to be an open problem!



th
is

is
a

dra
ft

ve
rsi

on
!



th
is

is
a

dra
ft

ve
rsi

on
!

9

Amenable groups

The notion of amenability revolves around the leitmotiv of (almost) invari-
ance. Different interpretations of this leitmotiv lead to different characterisa-
tions of amenable groups, e.g., via invariant means, Følner sets (i.e., almost
invariant finite subsets), decomposition properties, or fixed point properties.

We will introduce amenable groups via invariant means (Chapter 9.1) and
discuss first properties and examples. We will then study equivalent charac-
terisations of amenability (Chapter 9.2).

The different descriptions of amenability lead to various applications of
amenability. For example, we will discuss the Banach-Tarski paradox (Chap-
ter 9.2.3) and bilipschitz equivalence rigidity of non-amenable groups (Chap-
ter 9.4). Moreover, we will briefly sketch (co)homological characterisations
(Chapter 9.2.4).

Overview of this chapter

9.1 Amenability via means 290

9.2 Further characterisations of amenability 295

9.3 Quasi-isometry invariance of amenability 304

9.4 Quasi-isometry vs. bilipschitz equivalence 305

9.E Exercises 309
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9.1 Amenability via means

We will introduce amenable groups via invariant means. A mean can be
viewed as a generalised averaging operation for bounded functions. If X is a
set, then `∞(X,R) denotes the set of all bounded functions of type X −→ R.
Pointwise addition and scalar multiplication turn `∞(X,R) into a real vector
space. If G is a group, then every left G-action on X induces a left G-action
on `∞(X,R) via

G× `∞(X,R) −→ `∞(X,R)

(g, f) 7−→
(
x 7→ f(g−1 · x)

)
.

Definition 9.1.1 (Amenable group). A group G is amenable if there exists
a G-invariant mean on `∞(G,R), i.e., an R-linear map m : `∞(G,R) −→ R
with the following properties:
• Normalisation. We have m(1) = 1.
• Positivity. We have m(f) ≥ 0 for all f ∈ `∞(G,R) that satisfy f ≥ 0

pointwise.
• Left-invariance. For all g ∈ G and all f ∈ `∞(G,R) we have

m(g · f) = m(f)

with respect to the left G-action on `∞(G,R) induced from the left
translation action of G on G.

9.1.1 First examples of amenable groups

Example 9.1.2 (Amenability of finite groups). Finite groups are amenable: If
G is a finite group, then the averaging operator

`∞(G,R) −→ R

f 7−→ 1

|G|
·
∑
g∈G

f(g)

is a G-invariant mean on `∞(G,R).

Proposition 9.1.3 (Amenability of Abelian groups). Every Abelian group is
amenable.

The proof relies on the Markov-Kakutani fixed point theorem from func-
tional analysis [144, Proposition 0.14]:
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Theorem 9.1.4 (Markov-Kakutani fixed point theorem). Let V be a locally
convex R-vector space (e.g., a normed R-vector space), let A × V −→ V be
an action of an Abelian group A by continuous linear maps on V , and let
K ⊂ V be a non-empty compact convex subset with A ·K ⊂ K. Then there
is an x ∈ K such that

∀g∈A g · x = x.

Proof of Proposition 9.1.3. Let G be an Abelian group. Then the function
space `∞(G,R) is a normed real vector space with respect to the supremum
norm, and the left G-action on `∞(G,R) is isometric. We now consider the
topological dual L of `∞(G,R) with respect to the weak*-topology. Then L
inherits a left G-action by continuous linear maps from the isometric left
G-action on `∞(G,R).

We set
M :=

{
m ∈ L

∣∣ m(1) = 1 and m is positive
}
.

Clearly, M is a closed, convex subspace of L, and G ·M ⊂M . Moreover, M is
non-empty (it contains evaluation at e) and compact by the Banach-Alaoglu
theorem [95, Chapter IV.1]. Hence, M contains a G-fixed point m, by the
Markov-Kakutani theorem (Theorem 9.1.4). By construction, m is then a
G-invariant mean on G, and so G is amenable.

Classically, the most prominent example of a non-amenable group is the
free group of rank 2. The idea behind the following proof will be systemati-
cally exploited in the context of Banach-Tarski type decomposition paradoxa
(Chapter 9.2.2).

Proposition 9.1.5 (Non-amenability of free groups). The free group F2 of
rank 2 is not amenable.

Proof. Assume for a contradiction that F2 is amenable, say via an invariant
mean m on F2. Let {a, b} ⊂ F2 be a free generating set, and consider the
set A ⊂ F2 of reduced words that start with a non-trivial power of a. Then

A ∪ a−1 ·A = F2.

Denoting characteristic functions of subsets with χ..., we obtain

1 = m(1) = m(χF2
) ≤ m(χA + χa−1·A)

= m(χA) +m(a−1 · χA)

= 2 ·m(χA),

and hence m(χA) ≥ 1/2.

On the other hand, the sets A, b ·A, b2 ·A are disjoint, and so
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1 = m(1) ≥ m(χA∪b·A∪b2·A) = m(χA) +m(χb·A) +m(χb2·A)

= m(χA) +m(b · χA) +m(b2 · χA)

= 3 ·m(χA)

≥ 3

2
,

which is impossible. Hence, F2 is not amenable.

9.1.2 Inheritance properties

We will now familiarise ourselves with the basic inheritance properties of
amenable groups:

Proposition 9.1.6 (Inheritance properties of amenable groups).
1. Subgroups of amenable groups are amenable.
2. Homomorphic images of amenable groups are amenable.
3. Let

1 // N
i // G

π // Q // 1

be an extension of groups. Then G is amenable if and only if N and Q
are amenable.

4. Let G be a group, and let (Gi)i∈I be a directed set of (ascending)
amenable subgroups of G with G =

⋃
i∈I Gi. Then G is amenable.

Proof. Ad 1. Let G be an amenable group with left-invariant mean m and
let H ⊂ G be a subgroup. Moreover, let R ⊂ G be a set of representatives
for H \G, and let s : G −→ H be the map with

g ∈ s(g) ·R

for all g ∈ G. Then a small calculation shows that

`∞(H,R) −→ R
f 7−→ m(f ◦ s)

is a left-invariant mean on H.
Ad 2. Let G be an amenable group with left-invariant mean m and let

π : G −→ Q be a surjective group homomorphism. Then

`∞(Q,R) −→ R
f 7−→ m(f ◦ π)

is a left-invariant mean on Q.
Ad 3. If G is amenable, then N and Q are amenable by the previous parts.
Conversely, suppose that the groups N and Q are amenable with left-

invariant means mN and mQ, respectively. Without loss of generality, we
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may assume N ⊂ G and Q = G/N . Then

`∞(G,R) −→ R
f 7−→ mQ

(
g ·N 7→ mN (n 7→ f(g · n))

)
is a well-defined left-invariant mean on G.

Ad 4. For each i ∈ I let mi be a left-invariant mean on Gi. We then set

m̃i : `
∞(G,R) −→ R

f 7−→ mi(f |Gi).

In view of the Banach-Alaoglu theorem, there is a subnet of (m̃i)i∈I that
converges to a functional m on `∞(G,R). One then easily checks that this
limit m is a left-invariant mean on G.

Corollary 9.1.7 (Amenability of locally amenable groups). Let G be a group.
Then G is amenable if and only if all finitely generated subgroups of G are
amenable.

Proof. If G is amenable, then all subgroups of G are amenable.
Conversely, let all finitely generated subgroups of G be amenable. Because

the finitely generated subgroups of G form an ascending directed system of
subgroups of G that cover all of G, the last part of Proposition 9.1.6 shows
that G is amenable.

Moreover, the inheritance properties give us some indication for the loca-
tion of the class of amenable groups in the universe of groups (Figure 1.2):

Corollary 9.1.8 (Amenability of solvable groups). If a group is solvable, then
it is also amenable.

Proof. By Proposition 9.1.3, every Abelian group is amenable. By induction
along the derived series, we obtain with help of Proposition 9.1.6 that every
solvable group is amenable.

Conversely, obviously not every amenable group is solvable; for example,
the finite group S5 is amenable (Example 9.1.2), but it is well-known that S5

is not solvable.

Outlook 9.1.9 (Elementary amenable groups). The class of so-called elemen-
tary amenable groups is the smallest class of groups that contains all Abelian
and all finite groups and that is closed under taking subgroups, quotients, ex-
tensions and directed ascending unions. By Example 9.1.2, Proposition 9.1.3,
and Proposition 9.1.6, every elementary amenable group is amenable. How-
ever, not every amenable group is elementary amenable; this can for example
be seen via the Grigorchuk groups [69].

Corollary 9.1.10. Groups that contain a free subgroup of rank 2 are not
amenable.
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Proof. This follows from the fact that free groups of rank 2 are non-amenable
(Proposition 9.1.5) and that amenability is inherited by subgroups (Proposi-
tion 9.1.6).

Corollary 9.1.11 (Amenability vs. Hyperbolicity). Let G be a hyperbolic group.
Then either G is virtually cyclic or G is not amenable.

Proof. If G is not virtually cyclic, then G contains a free subgroup of rank 2
(Corollary 8.3.17). So, Corollary 9.1.10 implies that G is not amenable.

Remark 9.1.12 (The von Neumann problem). The notion of amenability was
originally introduced by John von Neumann [130]. In view of Corollary 9.1.10,
he asked whether every non-amenable group contained a free subgroup of
rank 2.

A first candidate in this direction seemed to be Thompson’s group F
(Example 2.2.21); while it is known that F does not contain a free subgroup
of rank 2 [33], even now (2017) it remains an open problem to decide whether
this group is amenable or not.

Von Neumann’s question was answered negatively by Ol’shanskii [134]
who constructed a non-amenable torsion group; in particular, such a group
cannot contain a free subgroup of rank 2. In contrast, the von Neumann
problem has a positive answer for many well-behaved classes of groups such
as linear groups (Exercise 9.E.7).

Outlook 9.1.13 (Geometric von Neumann problems). We conclude with a brief
overview of geometric versions of the von Neumann problem. While the situ-
ation is rather involved in the case of groups (Remark 9.1.12), it does simplify
in more geometric contexts and leads to positive answers:

Theorem 9.1.14 (The von Neumann problem for Cayley graphs [160]). Let
k ∈ N>2. Then a finitely generated group is non-amenable if and only if it
admits a Cayley graph with respect to a finite generating set that has a regular
spanning tree of degree k.

Theorem 9.1.15 (The von Neumann problem for actions [175]). A UDBG
space X is non-amenable (in the sense of Definition 9.2.9) if and only if X
admits a free action by a free group of rank 2 by bilipschitz maps at bounded
distance from the identity.

Theorem 9.1.16 (The von Neumann problem in measurable group theory [65]).
Let G be a countable discrete non-amenable group. Then there exists a mea-
surable ergodic essentially free action of F2 on ([0, 1]G, λ⊗G) such that almost
every G-orbit of the Bernoulli shift action of G on [0, 1]G decomposes into
F2-orbits.
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9.2 Further characterisations of amenability

The notion of amenability revolves around the leitmotiv of (almost) invari-
ance. We have seen the definition via invariant means in Chapter 9.1. In the
following, we will study equivalent characterisations of amenability and their
use cases, focusing on geometric properties:
• almost invariant subsets (Følner sequences),
• paradoxical decompositions and the Banach-Tarski paradox,
• (co)homological characterisations.

A more thorough treatment of amenable groups can be found in the books
by Paterson [144] and Runde [152]; representation theoretic aspects are ex-
plained also in the book by Bekka, de la Harpe, and Valette [17].

9.2.1 Følner sequences

We begin with a geometric characterisation of amenability via Følner sets. We
first formulate the notion of Følner sets for UDBG spaces (Definition 5.6.11).

Definition 9.2.1 (Følner sequence). Let X be a UDBG space.
• If F ⊂ X and r ∈ N, then the r-boundary of F in X is given by

∂Xr F := {x ∈ X \ F | ∃f∈F d(x, f) ≤ r}

(Figure 9.1).
• A Følner sequence for X is a sequence (Fn)n∈N of non-empty finite

subsets of X with the following property: For all r ∈ N we have

lim
n→∞

|∂Xr Fn|
|Fn|

= 0.

Følner sets have two interpretations:
• Geometrically, Følner sets are efficient in the sense that they have

“small” boundary, but “large” volume.
• More algebraically, for finitely generated groups, Følner sets can be

thought of as (almost) invariant finite subsets: Let G be a finitely gen-
erated group and let S ⊂ G be a finite generating set. Then for all
subsets F ⊂ G we have

∂G,dS1 (F ) =
{
g ∈ G \ F

∣∣ ∃s∈S∪S−1 g · s ∈ F
}

= F · (S ∪ S−1) \ F.

Hence, ∂G,dS1 (F ) being “small” in comparison to F means that we have
g · (S ∪ S−1) ⊂ F for “many” g ∈ F .
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F

 

∂Xr F

Figure 9.1.: The r-boundary of a set, schematically

Example 9.2.2. From the calculations in Example 6.1.2 we obtain:
• Let n ∈ N and let S := {e1, . . . , en} be the standard generating set

of Zn. Then ({−k, . . . , k}n)k∈N is a Følner sequence for (Zn, dS).
• Let S be a free generating set of F2. Then the balls (BF,Sn (e))n∈N do

not form a Følner sequence of (F2, dS). In fact, we will see that F2 does
not admit any Følner sequence (Theorem 9.2.6 or Exercise 9.E.15).

More generally, if concentric balls in a UDBG space do not contain a
Følner subsequence, then they have to grow fast enough (in order to allow
for enough space for a “thick” boundary):

Proposition 9.2.3 (Subexponential growth yields Følner sequences). Let X be a
UDBG space and let x0 ∈ X. For n ∈ N we consider the ball Fn := BXn (x0).
If the growth function

β : N −→ N
n 7−→ |Fn|

of X (based at the point x0) has subexponential growth (i.e., β ≺ (x 7→ 2x)
but β 6∼ (x 7→ 2x)), then (Fn)n∈N contains a Følner subsequence for X.

Proof. Because β has subexponential growth, we have

∀r∈N ∀N∈N ∀ε∈R>0 ∃n∈N≥N
β(n+ r)

β(n)
< 1 + ε.

Looking at “r = j,N = nj−1 + 1, ε = 1/j” we can inductively find a strictly
increasing sequence (nj)j∈N with

∀j∈N
β(nj + j)

β(nj)
< 1 +

1

j
.

We now prove that the subsequence (Fnj )j∈N is a Følner sequence for X: Let
r ∈ N. By definition of the r-boundary, we have ∂Xr Fn ⊂ BXn+r(x0) \BXn (x0)
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for all n ∈ N and thus∣∣∂Xr Fn∣∣ ≤ ∣∣BXn+r(x0) \BXn (x0)
∣∣ = β(n+ r)− β(n).

Therefore, for all j ∈ N≥r we obtain the estimate∣∣∂Xr Fnj ∣∣
|Fnj |

≤ β(nj + r)− β(nj)

β(nj)
=
β(nj + r)

β(nj)
− 1 ≤ β(nj + j)

β(nj)
− 1

≤ 1 +
1

j
− 1 =

1

j
,

which tends to 0 for j →∞. Thus, (Fnj )j∈N is a Følner sequence for X.

Corollary 9.2.4 (Subexponential growth yields Følner sequences, group case).
Let G be a finitely generated group of subexponential growth and let S ⊂ G
be a finite generating set of G. Then (G, dS) admits a Følner sequence.

Proof. This is an immediate consequence of Proposition 9.2.3.

There are several variations of the notion of Følner sets or Følner se-
quences; in the end, they all lead to the same class of finitely generated
groups. For instance, we have the following:

Proposition 9.2.5. Let X be a UDBG space. Then X admits a Følner se-
quence if and only if for every r ∈ N and every ε ∈ R>0 there is a non-empty
finite subset F ⊂ X with

|∂Xr F |
|F |

≤ ε.

Proof. Every Følner sequence clearly leads to subsets with the desired prop-
erties. Conversely, suppose that for every n ∈ N there is a non-empty finite
subset Fn ⊂ X with

|∂Xn Fn|
|Fn|

≤ 1

n
.

Then (Fn)n∈N is easily seen to be a Følner sequence for X.

Theorem 9.2.6 (Amenability via Følner sequences). Let G be a finitely gener-
ated group and let S ⊂ G be a finite generating set. Then G is amenable if
and only if the UDBG space (G, dS) admits a Følner sequence.

Sketch of proof. Let (Fn)n∈N be a Følner sequence for G (with respect to the
finite generating set S). Moreover, let ω be a non-principal ultrafilter on N.
Then

`∞(G,R) −→ R

f 7−→ lim
n∈ω

1

|Fn|
·
∑
g∈Fn

f(g)
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is a left-invariant mean on G; here, limn∈ω denotes the limit along ω, which
is defined for all bounded sequences in R and picks one of the accumula-
tion points of the argument sequence [39, Chapter J]. The almost invari-
ance of the Følner sets translates into invariance in the limit. Hence, G is
amenable. Alternatively, such a mean can also be obtained using weak*-limits
in `∞(G,R)′ [39, Theorem 4.9.2].

Conversely, let G be amenable. Recall that `1(G,R) is weak*-dense in the
double dual `1(G,R)′′ = `∞(G,R)′ [151, Exercise I.3.5, Section I.4.5]. Then
every invariant mean on `∞(G,R) is an element of `∞(G,R)′ and thus can
be approximated by `1-functions. These `1-functions in turn can be approxi-
mated by `1-functions with finite support. The invariance of the mean then
translates into almost invariance of these finite supports, which yields Følner
sets in the sense of Proposition 9.2.5 [144, Proposition (0.8), Lemma (4.7)][17,
Appendix G].

Because we know an explicit Følner sequence for Z we could attempt to
use the “recipe” in the proof of Theorem 9.2.6 to produce an explicit invariant
mean on `∞(Z,R). However, non-principal ultrafilters on N cannot be made
explicit, and also the resulting invariant means on `∞(Z,R) cannot be made
explicit.

Corollary 9.2.7. Every finitely generated group of subexponential growth is
amenable.

Proof. Finitely generated groups of subexponential growth admit a Følner
sequence (Corollary 9.2.4) and hence are amenable (Theorem 9.2.6).

The converse of this corollary does not hold in general:

Caveat 9.2.8 (An amenable group of exponential growth). The semi-direct
product Z2 oA Z with

A :=

(
1 1
1 2

)
has exponential growth and is solvable (Caveat 6.3.7), whence also amenable
(Corollary 9.1.8).

In view of the characterisation of amenable groups in terms of Følner
sequences (Theorem 9.2.6), we are hence led to the following definition of
amenability for spaces:

Definition 9.2.9 (Amenable spaces). A UDBG space is amenable if it admits
a Følner sequence.

9.2.2 Paradoxical decompositions

Another geometric characterisation of amenability is based on decomposi-
tion paradoxa. These decomposition properties are the main ingredient in
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A+

A− B+

B− a−1·A+

A−

b−1 ·B+B−

Figure 9.2.: A paradoxical decomposition of a free group of rank 2

the Banach-Tarski paradox (Chapter 9.2.3). In short, a paradoxical decom-
position of a group is a decomposition into finitely many disjoint subsets such
that these subsets can be rearranged by translations into two copies of the
group:

Definition 9.2.10 (Paradoxical group). A group G is paradoxical if it ad-
mits a paradoxical decomposition. A paradoxical decomposition of G is a
pair

(
(Ag)g∈K , (Bh)h∈L

)
where K,L ⊂ G are finite and (Ag)g∈K , (Bh)h∈L

are families of subsets of G with the property that

G =
( ⋃
g∈K

Ag

)
∪
(⋃
h∈L

Bh

)
, G =

⋃
g∈K

g ·Ag, G =
⋃
h∈L

h ·Bh

are disjoint unions.

Proposition 9.2.11 (Non-Abelian free groups are paradoxical). Free groups of
rank at least 2 are paradoxical.

Proof. We use the description of free groups in terms of reduced words. In
order to keep notation simple, we consider the case of rank 2 (higher ranks
basically work in the same way). Let F be a free group of rank 2, freely
generated by {a, b}. We then define the following subsets of F (Figure 9.2):

1. Let A+ be the set of all reduced words starting with a positive power
of a.

2. Let A− be the set of all reduced words starting with a negative power
of a.

3. Let B+ be the set containing the neutral element, all powers of b as
well as all reduced words starting with a positive power of b.

4. Let B− be the set of all reduced words starting with a negative power
of b, excluding the powers of b.

Then

F = A+ ∪A− ∪B+ ∪B−, F = A− ∪ a−1 ·A+ F = B− ∪ b−1 ·B+
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are disjoint unions (Figure 9.2). So ((Ae, Aa−1){e,a−1}, (Be, Bb−1){e,b−1}) is a
paradoxical decomposition of F , where Ae := A−, Aa−1 := A+, Be := B−,
and Bb−1 := B+.

The proof of the previous proposition is similar to the proof of Propo-
sition 9.1.5; more generally, paradoxical groups are not amenable (and vice
versa):

Theorem 9.2.12 (Tarski’s theorem). Let G be a group. Then G is paradoxical
if and only if G is not amenable.

Proof. Let G be paradoxical and let ((Ag)g∈K , (Bh)h∈L) be a paradoxical
decomposition of G. Assume for a contradiction that G is amenable, and
let m be an invariant mean for G. Because the corresponding unions all are
disjoint and m is left-invariant, we obtain

1 = m(χG) =
∑
g∈K

m(χg·Ag ) =
∑
g∈K

m(g · χAg ) =
∑
g∈K

m(χAg ),

1 =
∑
h∈L

m(χBh),

and hence

1 = m(χG) =
∑
g∈K

m(χAg ) +
∑
h∈L

m(χBh) = 1 + 1 = 2,

which is a contradiction. Therefore, G is not amenable
Conversely, let G be non-amenable. Then there is “enough space” in G

to perform a combinatorial construction – based on a version of Hall’s mar-
riage theorem (Theorem 9.4.3) – leading to a paradoxical decomposition [39,
Theorem 4.9.1] (Exercise 9.E.18).

9.2.3 Application: The Banach-Tarski paradox

Actions of paradoxical groups lead to paradoxical decompositions of sets, the
most famous example being the Banach-Tarski paradox (Theorem 9.2.17).

Definition 9.2.13 (Paradoxical decomposition). Let G be a group and consider
an action of G on a set X. Then a subset Y ⊂ X is G-paradoxical if Y
admits a G-paradoxical decomposition. A G-paradoxical decomposition is a
pair

(
(Ag)g∈K , (Bh)h∈L

)
where K,L ⊂ G are finite and (Ag)g∈K , (Bh)h∈L

are families of subsets of Y with the property that

Y =
( ⋃
g∈K

Ag

)
∪
(⋃
h∈L

Bh

)
, Y =

⋃
g∈K

g ·Ag, Y =
⋃
h∈L

h ·Bh

are disjoint unions.
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?

Figure 9.3.: The Hausdorff paradox, schematically

As in the group case, a paradoxical decomposition of a set is a decomposi-
tion into disjoint subsets such that these subsets can be rearranged using the
group action into two copies of the set. Notice that in the literature several
different notions of paradoxical decompositions are used.

In the presence of the axiom of choice, we can translate paradoxical de-
compositions of groups into paradoxical decomposition of sets:

Proposition 9.2.14 (Paradoxical groups induce paradoxical decomposition). Let
G be a paradoxical group acting freely on a non-empty set X. Then X is
G-paradoxical with respect to this action.

Proof. Let ((Ag)g∈K , (Bh)h∈L) be a paradoxical decomposition of G. Using
the axiom of choice, we find a subset R ⊂ X that contains exactly one point
of every G-orbit. Then a straightforward calculation shows that(

(Ag ·R)g∈K , (Bh ·R)h∈L
)

is a G-paradoxical decomposition of X.

The special orthogonal group SO(3) acts on R3 by matrix multiplication.
This action is isometric and hence induces a well-defined action on the unit
sphere S2 ⊂ R3. Moreover, SO(3) contains a free subgroup of rank 2 (Propo-
sition 9.2.15), which leads to the Hausdorff paradox (Figure 9.3).

Proposition 9.2.15. The subgroup of the special orthogonal group SO(3) gen-
erated by 

3
5

4
5 0

− 4
5

3
5 0

0 0 1

 and

1 0 0

0 3
5 − 4

5

0 4
5

3
5


is free of rank 2.

Proof. This can be shown by a careful application of the ping-pong lemma
(Exercise 4.E.17).

Corollary 9.2.16 (Hausdorff paradox). There is a countable set D ⊂ S2 such
that S2 \ D is SO(3)-paradoxical with respect to the canonical SO(3)-action
on S2.
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Proof. By Proposition 9.2.15, the group SO(3) contains a free subgroup G of
rank 2. All matrices of SO(3) act on S2 by a rotation around a line and so
every non-trivial element g of SO(3) has exactly two fixed points xg,1, xg,2
on S2. Therefore,

D :=
{
g · xg,j

∣∣ g ∈ G \ {e}, j ∈ {1, 2}} ⊂ S2

is a countable set and the SO(3)-action on S2 restricts to a free G-action
on S2 \D. Because the group G is paradoxical (Proposition 9.2.11) the com-
plement S2\D is G-paradoxical (Proposition 9.2.14). Because G is a subgroup
of SO(3), this implies that S2 \D ⊂ S2 is also SO(3)-paradoxical.

The Hausdorff paradox can be improved as follows [152, Chapter 0.1]:

Theorem 9.2.17 (Banach-Tarski paradox for the sphere). The sphere S2 is
paradoxical with respect to the canonical SO(3)-action on S2 in the follow-
ing sense: There exist n,m ∈ N and pairwise disjoint subsets A1, . . . , An,
B1, . . . , Bm ⊂ S2 as well as group elements g1, . . . , gn, h1, . . . , hm ∈ SO(3)
satisfying

n⋃
j=1

gj ·Aj = S2 =

m⋃
j=1

hj ·Bj .

Clearly, the pieces of any such paradoxical decomposition of S2 are not
Lebesgue measurable, and hence are rather strange sets. The Hausdorff para-
dox and the Banach-Tarski paradox rely on (some basic version of) the axiom
of choice (for the set S2) [82, p. 134].

Further generalisations include the Banach-Tarski paradoxes for balls in R3

and for bounded subsets in R3 [152, Chapter 0.1].

9.2.4 (Co)Homological characterisations of amenability

Amenability admits several characterisations in terms of suitable (co)homol-
ogy theories. We will briefly discuss characterisations in terms of uniformly
finite homology and bounded cohomology, respectively.

Outlook 9.2.18 (Amenability and uniformly finite homology). We begin with
the characterisation via uniformly finite homology [19, 175]. Uniformly finite
homology is introduced in Chapter 5.E. In short, for every normed ring R with
unit (e.g., Z or R) uniformly finite homology provides a sequence of quasi-
isometry invariant functors Huf

n ( · ;R) from the category of UDBG spaces to
the category of R-modules. There are three popular ways to describe uni-
formly finite homology:
• via explicit geometric chains (Exercise 5.E.31, 5.E.32, Definition 5.E.1),
• via coarsening of locally finite homology (Exercise 5.E.35),
• via group homology (Exercise 5.E.36, in the case of finitely generated

groups).
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Using the description by explicit geometric chains for uniformly homology,
we can in particular define the fundamental class of UDBG spaces:

Definition 9.2.19 (Fundamental class). Let R be a normed ring with unit
and let X be a UDBG space. Then

∑
x∈X 1 · x is a cycle in Cuf

0 (X;R). The
corresponding class

[X]R :=

[∑
x∈X

1 · x
]
∈ Huf

0 (X;R)

is the fundamental class of X in Huf
0 ( · , R).

Theorem 9.2.20 (Amenability and the fundamental class [19, 175]). Let X be
a UDBG space. Then the following are equivalent:

1. The space X is not amenable.
2. We have [X]Z = 0 in Huf

0 (X;Z).
3. We have [X]R = 0 in Huf

0 (X;R).

The proof of the implications “1 =⇒ 2” and “1 =⇒ 3” admits a nice
interpretation in terms of Ponzi schemes [19] (Exercise 9.E.29). Conversely,
one can prove the implications “2 =⇒ 1” and “3 =⇒ 1” via Følner sequences
and suitable averaging maps (Exercise 9.E.27).

Outlook 9.2.21 (Amenability and bounded cohomology). There is a comple-
mentary characterisation of amenability in terms of bounded cohomology and
`1-homology: these theories are functional analytic versions of ordinary group
(co)homology, obtained by taking the dual and the `1-completion respectively
of the simplicial chain complex of the group [84, 123, 99] (Appendix A.2).
Bounded cohomology and `1-homology have a wide range of applications in
geometric and measurable group theory [124] as well as in geometric topol-
ogy [73, 100].

Theorem 9.2.22 (Amenability and bounded cohomology/`1-homology [86, 131,
99]). Let G be a group. Then the following are equivalent:

1. The group G is amenable.
2. For all Banach G-modules V and all k ∈ N>0 we have Hk

b (G;V ′) ∼= 0.

3. For all Banach G-modules V and all k ∈ N>0 we have H`1

k (G;V ) ∼= 0.

The easiest part of this theorem is to prove that bounded cohomology with
trivial R-coefficients of amenable groups is trivial – by using an invariant
mean to define a transfer map to bounded cohomology of the trivial group
(Exercise 9.E.30).

Outlook 9.2.23 (Amenability and L2-invariants). Also L2-(co)homology and
L2-invariants exhibit an interesting behaviour in the presence of amenabil-
ity [104].
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9.3 Quasi-isometry invariance of amenability

Amenability is a geometric property of finitely generated groups; more gen-
erally, amenability is a quasi-isometry invariant property of UDBG spaces:

Theorem 9.3.1 (Quasi-isometry invariance of amenability). Let X and Y be
quasi-isometric UDBG spaces. Then X is amenable if and only if Y is
amenable.

Proof. We only need to prove inheritance of Følner sequences under quasi-
isometries. Let f : X −→ Y be a quasi-isometry and let Y be amenable.
Because f is a quasi-isometry and X and Y are UDBG spaces, there are
constants c, C ∈ R>0 with the following properties (Exercise 5.E.7):

• The map f : X −→ Y is a (c, c)-quasi-isometric embedding with c-dense
image.
• For all finite sets F ⊂ Y we have∣∣f−1(BYc (F ))

∣∣ ≥ 1

C
· |F | and

∣∣f−1(F )
∣∣ ≤ C · |F |.

Moreover, let (Fn)n∈N be a Følner sequence for Y . Then (F̃n)n∈N defined by

F̃n := f−1
(
BYc (Fn)

)
for all n ∈ N is a Følner sequence for X, as we will show now: Let r ∈ N. A
straightforward calculation shows that

f
(
∂Xr (F̃n)

)
⊂ ∂Yc·(r+2)(Fn)

holds for all n ∈ N. Hence, we obtain∣∣∂Xr (F̃n)
∣∣ ≤ ∣∣f−1(f(∂Xr (F̃n)))

∣∣ ≤ ∣∣f−1(∂Yc·(r+2)(Fn))
∣∣ ≤ C · ∣∣∂Yc·(r+2)(Fn)

∣∣
and

|F̃n| =
∣∣f−1(BYc (Fn))

∣∣ ≥ 1

C
· |Fn|.

Combining these estimates, yields∣∣∂Xr (F̃n)
∣∣

|F̃n|
≤ C2 ·

∣∣∂Yc·(r+2)(Fn)
∣∣

|Fn|
.

Because (Fn)n∈N is a Følner sequence for Y , the right hand side converges

to 0 for n→∞. Thus, (F̃n)n∈N is a Følner sequence for X.
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In particular, amenability is a geometric property of finitely generated
groups:

Corollary 9.3.2. Let G and H be finitely generated groups with G∼QIH. Then
G is amenable if and only if H is amenable.

Proof. This follows directly from the characterisation of amenable groups
via Følner sequences (Theorem 9.2.6) and the quasi-isometry invariance of
amenability for UDBG spaces (Theorem 9.3.1).

Alternatively, quasi-isometry invariance of amenability of finitely gener-
ated groups or UDBG spaces can also be derived from the quasi-isometry in-
variance of uniformly finite homology and the characterisation of amenability
via uniformly finite homology (Theorem 9.2.20).

9.4 Quasi-isometry vs. bilipschitz equivalence

We will now investigate the difference between quasi-isometry and bilipschitz
equivalence for finitely generated groups. It can be shown that there exist
finitely generated infinite groups that are quasi-isometric but not bilipschitz
equivalent [55, 56]. However, for non-amenable groups we have a rigidity
phenomenon: Every quasi-isometry between finitely generated non-amenable
groups is at finite distance of a bilipschitz equivalence.

In the following, we will give an elementary proof of this bilipschitz equiv-
alence rigidity result for non-amenable UDBG spaces [77, 39]; a refined ap-
proach is sketched briefly in Outlook 9.4.10.

Theorem 9.4.1 (Bilipschitz equivalence rigidity for UDBG spaces). Let X and
Y be UDBG spaces, let Y be non-amenable, and let f : X −→ Y be a quasi-
isometry. Then f is at finite distance of a bilipschitz equivalence X −→ Y .

The idea of the proof is as follows:
• Bijective quasi-isometries between UDBG spaces are bilipschitz equiv-

alences; thus, it suffices to deform f into a bijective quasi-isometry.
• Because Y (and hence also X) are non-amenable, Hall’s marriage the-

orem guarantees that there is enough space to deform f and a quasi-
isometry inverse Y −→ X of f into injective quasi-isometries.
• These injective maps can be glued via the Schröder-Bernstein theorem

to form a bijective quasi-isometry.
We will now explain the ingredients and the steps of this proof in more

detail:

Proposition 9.4.2 (Bijective quasi-isometries vs. bilipschitz equivalences). Let
X and Y be UDBG spaces, and let f : X −→ Y be a bijective quasi-isometry.
Then f is a bilipschitz equivalence.
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Proof. This is a straightforward calculation, similar to the case of finitely
generated groups (Exercise 5.E.5).

A standard tool in combinatorics for finding injections satisfying additional
constraints are marriage theorems.

Theorem 9.4.3 (Hall’s marriage theorem). Let W and M be non-empty sets
and let F : W −→ P fin(M) be a map satisfying the marriage condition

∀V ∈P fin(W )

∣∣∣∣ ⋃
w∈V

F (w)

∣∣∣∣ ≥ |V |;
here, P fin(W ) denotes the set of all finite subsets of W . Then there exists
a (W,M,F )-marriage, i.e., an injective map µ : W −→M with

∀w∈W µ(w) ∈ F (w).

The name marriage theorem is derived from the interpretation where W
represents a set of women, M represents a set of men, and F models which
men appear attractive to which women. By the theorem, there always exists
a marriage W −→M that makes all women happy, provided that the obvious
necessary condition is satisfied.

The marriage theorem for finite sets admits beautiful proofs by induc-
tion [49, Theorem 2.1.2] (Exercise 3.E.8); the general marriage theorem can
then be obtained by applying Zorn’s lemma to suitably extendable partial
marriages [39, Theorem H.3.2] (Exercise 3.E.8).

The last ingredient is the Schröder-Bernstein theorem [164, Theorem 9.2.1]
from set theory:

Theorem 9.4.4 (Schröder-Bernstein). Let X and Y be sets admitting injec-
tions f : X −→ Y and g : Y −→ X. Then there exists a bijection X −→ Y .
More precisely, there is a disjoint decomposition X = X ′tX ′′ of X such that

f |X′ t g−1|X′′ : X −→ Y

is a well-defined bijection between X and Y .

Using these tools, we can now prove the rigidity theorem Theorem 9.4.1:

Proof of Theorem 9.4.1. Let f : X −→ Y be a quasi-isometry, let g : Y −→ X
be a quasi-isometry quasi-inverse to f .

We first construct an injective map X −→ Y at finite distance of f : Be-
cause X is a UDBG space and f : X −→ Y is a quasi-isometry, there is
an E ∈ R≥1 with

∀V ∈P fin(X) |V | ≤ E ·
∣∣f(V )

∣∣.
Moreover, because Y is non-amenable, there is an r ∈ N such that
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∀V ∈P fin(X) |V | ≤ E ·
∣∣f(V )

∣∣ ≤ ∣∣BXr (f(V ))
∣∣

(Exercise 9.E.13). Therefore, the map

X −→ P fin(Y )

x 7−→ BYr
(
f(x)

)
satisfies the marriage condition. So, by the marriage theorem (Theorem 9.4.3),
there exists an injection f ′ : X −→ Y with

∀x∈X f ′(x) ∈ BYr
(
f(x)

)
.

In particular, f ′ has finite distance from f .
Because Y is non-amenable also X is non-amenable (Theorem 9.3.1).

Hence, the same arguments as above yield an injective map g′ : Y −→ X
at finite distance of g.

Because f ′ and g′ have finite distance from quasi-isometric embeddings,
they are also quasi-isometric embeddings (Exercise 5.E.3).

Applying the Schröder-Bernstein theorem (Theorem 9.4.4) to the injec-
tions f ′ : X −→ Y and g′ : Y −→ X we obtain a disjoint decomposi-
tion X = X ′ tX ′′ of X such that

f := f ′|X′ t g′−1|X′′ : X −→ Y

is a well-defined bijection. By construction, f is at finite distance from f .
Hence, f is a bijective quasi-isometry. Proposition 9.4.2 then implies that
f : X −→ Y is a bilipschitz equivalence.

In particular, we obtain:

Corollary 9.4.5 (Bilipschitz equivalence rigidity for groups). Let G and H be
finitely generated groups, let H be non-amenable, and let f : G −→ H be a
quasi-isometry. Then the map f is at finite distance of a bilipschitz equiva-
lence G −→ H.

Proof. Finitely generated groups are UDBG spaces with respect to word
metrics of finite generating sets. Hence, we can apply Theorem 9.4.1.

Remark 9.4.6. The groups F2 and F3 are quasi-isometric; because these
groups are non-amenable, the rigidity theorem tells us that F2 and F3 are
bilipschitz equivalent. Hence, the rank of free groups is not invariant under
bilipschitz equivalence.

A direct application is quasi-isometry stability of taking free products:

Corollary 9.4.7 (Quasi-isometry stability of taking free products). Let G,G′, H
be finitely generated groups with G∼QI G

′ and let G be non-amenable. Then

G ∗H ∼QI G
′ ∗H.
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Proof. Because G is non-amenable and G ∼QI G
′, bilipschitz equivalence

rigidity (Theorem 9.4.1) implies that there is even a bilipschitz equiva-
lence f : G −→ G′. A straightforward calculation shows that the induced
map

f ∗ idH : G ∗H −→ G′ ∗H

is also a bilipschitz equivalence (the corresponding statement for quasi-
isometries does not hold in general, because one loses control over the addi-
tive error term when taking free products (Exercise 9.E.20)). In particular,
we obtain G ∗H ∼QI G

′ ∗H.

Example 9.4.8. The groups (F3 × F3) ∗ F3 and (F3 × F3) ∗ F4 are bilip-
schitz equivalent (and hence quasi-isometric) because F3 is non-amenable
and F3 ∼QI F4. This example can be used to separate commensurability and
quasi-isometry (Caveat 5.4.9).

Caveat 9.4.9. If G,G′, H are finitely generated groups with G∼QIG
′, then in

general G ∗H ∼QIG
′ ∗H does not hold. For example, 1∼QI Z/2, but the free

product 1 ∗ Z/2 ∼= Z/2 is finite and hence not quasi-isometric to the infinite
group Z/2 ∗ Z/2.

Another example of this type is that Z/3 ∗ Z/2 is not quasi-isometric
to Z/2∗Z/2, but Z/3∼QIZ/2. However, these two examples are basically the
only cases where quasi-isometry is not inherited through free products [143].

Outlook 9.4.10 (Bilipschitz equivalence rigidity via uniformly finite homol-
ogy). The bilipschitz rigidity theorem (Theorem 9.4.1) can be refined as fol-
lows [175]:

Theorem 9.4.11 (Bilipschitz equivalence rigidity for UDBG spaces, via uniformly
finite homology). Let X and Y be UDBG spaces and let f : X −→ Y be a
quasi-isometry. Then the following are equivalent:

1. The map f is at finite distance of a bilipschitz equivalence.
2. The map f is compatible with the fundamental classes:

Huf
0 (f ;Z)[X]Z = [Y ]Z.

From this one can easily recover the result of Theorem 9.4.1: Let X and
Y be non-amenable UDBG spaces. Then every quasi-isometry X −→ Y is at
finite distance of a bilipschitz equivalence; this can be seen as follows:

AsX and Y are non-amenable, we have [X]Z = 0 = [Y ]Z (Theorem 9.2.20).
In particular, every quasi-isometry f : X −→ Y maps [X]Z to [Y ]Z. By The-
orem 9.4.11, f is hence at finite distance of a bilipschitz equivalence.

The refined formulation of Theorem 9.4.11 allows in concrete examples
to separate quasi-isometry from bilipschitz equivalence of finitely generated
(amenable) groups [55, 56].
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9.E Exercises

Basic properties of amenable groups

Quick check 9.E.1 (Amenable groups?!*).
1. Is the infinite dihedral group D∞ amenable?
2. Is the modular group SL(2,Z) amenable?
3. Is the group Hom

(
SL(2,Z),Z

)
amenable?

4. Is the lamplighter group over Z amenable?

Quick check 9.E.2 (Amenable group presentations?!*).
1. Is the group 〈x, y, z |xy〉 amenable?
2. Is the group 〈x, y, z |xy, yz〉 amenable?
3. Is the group 〈x, y, z |xyz〉 amenable?
4. Is the group 〈x, y, z |x2y2, y2, z2〉 amenable?

Quick check 9.E.3 (Means?*).
1. Let G be a group and let g ∈ G. Is the map

`∞(G,R) −→ R
f 7−→ f(g)

a G-invariant mean?
2. Is the map

`∞(Z,R) −→ R
f 7−→ sup

x∈Z
f(x)

a Z-invariant mean?

Exercise 9.E.4 (Means of group constructions*). Carry out the calculations
omitted in the proof of Proposition 9.1.6.

Exercise 9.E.5 (Big symmetric groups*).
1. Let X be an infinite set. Show that then the symmetric group SX is

not amenable.
2. Show that the group of permutations of N with finite support is

amenable.

Exercise 9.E.6 (Amenable free products?**). Characterise by necessary and
sufficient conditions for which finitely generated groups G and H the free
product G ∗H is amenable.
Hints. For which m,n ∈ Z does Z/m ∗ Z/n contain a free subgroup of
rank 2 ?
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Exercise 9.E.7 (Characterisation of amenability for linear groups*). Let K be
a field, let n ∈ N and let G be a finitely generated subgroup of GL(n,K).
Prove that G is amenable if and only if G has no free subgroup of rank 2.
Hints. Use the Tits alternative (Theorem 4.4.7).

Exercise 9.E.8 (Non-amenability of large groups*). A group is large if it has a
finite index subgroup that admits a surjective homomorphism onto the free
group of rank 2. Prove that large groups are not amenable.

Exercise 9.E.9 (Amenable radical**).
1. Prove that every group contains a maximal (with respect to inclusion)

normal amenable subgroup, the amenable radical.
2. What is the amenable radical of F2017 ?

Følner sequences

Quick check 9.E.10 (Simplified Følner conditions?!*).
1. Let X be a UDBG space and let (Fn)n∈N be a sequence of finite non-

empty subsets of X with

lim
n→∞

|∂X1 (Fn)|
|Fn|

= 0.

Is X then amenable?
2. Let G be a finitely generated group, let S ⊂ G be a finite generating set

of G, and let (Fn)n∈N be a sequence of finite non-empty subsets of G
with

lim
n→∞

|∂G,dS1 (Fn)|
|Fn|

= 0.

Is G then amenable?

Quick check 9.E.11 (Amenable spaces?!*).
1. We consider the set {(x, y) ∈ Z2 | x · y = 0} ⊂ R2 with the `1-metric.

Is this UDBG space amenable?
2. Do there exist amenable UDBG spaces with infinitely many ends?

Hints. How about a big comb?

Quick check 9.E.12 (More amenable groups?*).
1. Is the first Grigorchuk group amenable?
2. Are all subgroups of automorphism groups of trees amenable?

Exercise 9.E.13 (Thickened subsets in non-amenable spaces**). Let X be a
non-amenable UDBG space and let E ∈ R≥1. Show that there exists an r ∈ N
with

∀F∈P fin(X)

∣∣BXr (F )
∣∣ ≥ E · |F |.
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Exercise 9.E.14 (Exhausting Følner sequences**). Let X be an amenable
UDBG space and let (Fn)n∈N be a Følner sequence of X.

1. If |X| =∞, show that limn→∞ |Fn| =∞.
2. Let x0 ∈ X. Show that ({x0} ∪ Fn)n∈N also is a Følner sequence.

3. Show that X has a Følner sequence (F̃n)n∈N with the following prop-
erties:
• For all n ∈ N we have F̃n ⊂ F̃n+1,

• and
⋃
n∈N F̃n = X.

Hints. Construct the new Følner sequence inductively by combining
({x0} ∪ Fn)n∈N with larger and larger balls. Be careful to choose radii
and indices in the right order!

Exercise 9.E.15 (Følner sequences in trees?**). Let r ∈ N≥3, let T = (V,E)
be a regular tree of degree r, and consider the metric d on V induced by T .
Show that the UDBG space (V, d) is not amenable by analysing the size of
boundaries of finite subsets.

Exercise 9.E.16 (Kazhdan’s property (T) and amenability**). Let G be a group
(for simplicity, we only consider discrete groups). A unitary representation
of G on a Hilbert space H is an action of G on H by unitary operators.
• Let Q ⊂ G and ε ∈ R>0. A (Q, ε)-invariant vector of a unitary repre-

sentation of G on H is a vector x ∈ H with

∀g∈Q ‖g · x− x‖ < ε · ‖x‖.

• A unitary representation of G has almost invariant vectors if for every
finite set Q ⊂ G and every ε ∈ R>0 there is a (Q, ε)-invariant vector.
• A subset Q ⊂ G is a Kazhdan set if there exists an ε ∈ R>0 with:

Every unitary representation of G with a (Q, ε)-invariant vector has a
non-zero invariant vector.
• The group G has property (T) if G contains a finite Kazhdan set.

The goal of this exercise is to compare property (T) with amenability:
1. Show that the left translation action of a finitely generated amenable

group G on `2(G,C) has almost invariant vectors.
2. Show that every finitely generated amenable group with property (T)

is finite.
3. Show that all finite groups have property (T) (and are amenable).
4. Look up in the literature how the interplay of amenability and prop-

erty (T) is used in the normal subgroup theorem by Margulis.

Bilipschitz equivalence rigidity

Quick check 9.E.17 (Bilipschitz equivalence of groups*).
1. Are the groups F2017 and Z× F2017 bilipschitz equivalent?
2. Are the groups F2017 and F2017 × Z/2017 bilipschitz equivalent?
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Exercise 9.E.18 (Non-amenable groups are paradoxical**). Let G be a finitely
generated non-amenable group (via Følner sequences).

1. Show that there exists a surjection f : G −→ G that is at finite distance
from the identity with |f−1(g)| = 2 for all g ∈ G; in particular, there is
a finite set K ⊂ G with the following property: For all g ∈ G we have

g · f(g)−1 ∈ K.

Hints. Use the fact that the projection G × Z/2 −→ G is a quasi-
isometry and apply Theorem 9.4.1.

2. Conclude that G is paradoxical.
Hints. Let f and K be as in the previous step. Use the axiom of choice
to pick two complementing sections f1, f2 : G −→ G of f and consider
the sets (f−1

1 (k))k∈K as well as (f−1
2 (k))k∈K .

How can one now generalise this result to all (not necessarily finitely gener-
ated) groups?

Exercise 9.E.19 (Quasi-Isometry vs. bilipschitz equivalence for Zn **). Let G
be a finitely generated group that is quasi-isometric to Zn for some n ∈ N.

1. Show that there exists an m ∈ N such that there is an injective quasi-
isometric embedding G −→ Zn × Z/m.

2. Show that there is an injective quasi-isometric embedding G −→ Zn.
3. Show that there is an injective quasi-isometric embedding Zn −→ G by

passing to a suitable finite index subgroup of Zn.
4. Why do the previous steps not immediately imply via a Schröder-

Bernstein argument that G and Zn are bilipschitz equivalent?
Hints. There is a serious issue! [37]

5. Prove that G and Zn are bilipschitz equivalent, using quasi-isometry
rigidity of Zn.

Exercise 9.E.20 (Free products of quasi-isometries*). Let G,G′, H be finitely
generated groups and let f : G −→ G′ be a map.

1. Show in a concrete example that f ∗ idH : G∗H −→ G′ ∗H is not neces-
sarily a quasi-isometric embedding if f is a quasi-isometric embedding.

2. Show in a concrete example that f ∗ idH : G ∗ H −→ G′ ∗ H does
not necessarily have quasi-dense image if f : G −→ H has quasi-dense
image.

Amenable actions+

Following the general principle of extending geometric notions from groups
to group actions, one can define and investigate amenability for group ac-
tions [68]:

Definition 9.E.1 (Amenable action). Let G be a group and let X be a set. An
action of G on X is amenable, if there exists a G-invariant mean on `∞(X,R).
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Caveat 9.E.2. There are also other notions of amenable actions [180, 5], in
the context of ergodic theory. These are different from the one above!

Quick check 9.E.21 (Amenable action basics*).
1. For which groups G is the left translation action on G amenable?
2. Which groups admit free amenable actions?
3. Are all actions of amenable groups amenable?
4. For which groups is the trivial action on the one-point space amenable?

Definition 9.E.3 (Faithful action). An action of a group G on a set X is
faithful if the associated homomorphism G −→ SX is injective.

Quick check 9.E.22 (Faithful action basics*).
1. Is every free action faithful?
2. Is every faithful action free?
3. How can one define faithful actions in general categories?

Quick check 9.E.23 (Faithful amenable actions*). Show that every group ad-
mits a faithful amenable action.

Exercise 9.E.24 (Amenable actions via Følner sets** [149]).
1. Give a definition for Følner sequences for group actions (of countable

groups on countable sets).
2. State and prove a characterisation of amenable actions (of countable

groups on countable sets) in terms of Følner sequences.

Exercise 9.E.25 (Amenable actions without finite orbits** [68, Lemma 2.16]).
Let G be a countable group that is not finitely generated. Show that there
exists an amenable action of G that has no finite orbits.
Hints. Use the characterisation of amenable actions in terms of Følner sets
(Exercise 9.E.24) and let G act on the disjoint union of all coset spaces of G
by finitely generated subgroups.

Exercise 9.E.26 (Amenable actions of non-amenable groups***). Prove that
the free group F ({a, b}) of rank 2 admits a faithful, transitive amenable
action, following Glasner and Monod [68]: Let X := Z× {0, 1} and

bn · (z, i) := (z + n, i)

for all n ∈ Z, (z, i) ∈ Z × {0, 1}. For an injection J : Z −→ Z × {0, 1} the
action by powers of a on X is defined by

an · (z, i) :=

{
(z, i) if (z, i) 6∈ im J

(J(m+ n), i) if (z, i) = J(m) with m ∈ Z

for all n ∈ Z, (z, i) ∈ Z × {0, 1}. We only consider injections J that satisfy
J(0) := (0, 0) and J(n) := (n, 1) for all n ∈ Z<0 as well as J(N) ⊂ Z× {0}.

1. Show that every such action is amenable.
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2. Show that every such action is transitive.
3. Show that there exists such an injection J that induces a faithful action.

Hints. Construct J on N>0 step by step, by induction over (some
enumeration of) F ({a, b}).

However, not every finitely generated group admits a faithful, transitive
amenable action [68].

(Co)Homology and amenability+

Exercise 9.E.27 (Fundamental class in uniformly finite homology**). Let X be
an amenable UDBG space. Show that then the fundamental classes

[X]Z :=

[∑
x∈X

1 · x
]
∈ Huf

0 (X;Z),

[X]R :=

[∑
x∈X

1 · x
]
∈ Huf

0 (X;R).

are non-trivial.

Hints. Use a Følner sequence of the space X to define appropriate averaging
maps Huf

0 (X;Z) −→ R and Huf
0 (X;R) −→ R.

Exercise 9.E.28 (The doubling trick in uniformly finite homology**). Let X be
a UDBG space. For a subset A ⊂ X we write

[A]R :=

[∑
x∈A

1 · x
]
∈ Huf

0 (X;R)

for the corresponding class in uniformly finite homology (with R-coefficients).

1. Let A,B ⊂ X be disjoint sets. Show that

[A ∪B]R = [A]R + [B]R ∈ Huf
0 (X;R).

2. Let X be non-amenable. Conclude that [X]R = 0 ∈ Huf
0 (X;R) (using

Theorem 9.4.1).
Hints. Use that the projection X × {0, 1} −→ X is a quasi-isometry
(provided that X × {0, 1} is equipped with a suitable metric).

Exercise 9.E.29 (Ponzi schemes in uniformly finite homology***). Let X be a
non-amenable UDBG space.

1. For each x ∈ X construct a chain (“tail”) tx ∈ Cuf
1 (X;R) with ∂1tx = x.

2. Interpret this situation as a flow of money; hence, x ∈ X will gain
money, through the flow of money specified by the tail tx. All the other
vertices that are involved in tx will have a balanced account!
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3. Prove that [X]R = 0 in Huf
0 (X;R) without using Exercise 9.E.28 or

Theorem 9.4.1.
Hints. Use non-amenability to show that there is enough space in X
to construct tails as in the first part with the additional property that
also “

∑
x∈X tx” gives a well-defined chain in Cuf

1 (X;R).
4. Interpret the previous step as a Ponzi scheme!

Exercise 9.E.30 (Bounded cohomology of amenable groups**). Let G be
a group. Then the bounded cochain complex of G is the cochain com-
plex C∗b (G;R) obtained from the complex C∗(G;R) (Appendix A.2) by taking
the topological dual with respect to the `1-norm on C∗(G;R) given by the
obvious basis.

1. Show that the boundary operator on C∗(G;R) indeed induces a well-
defined coboundary operator on the cochain complex C∗b (G;R).

The cohomology of C∗b (G;R) is called bounded cohomology of G (with trivial
R-coefficients), which is denoted by H∗b (G;R). One can easily extend this
construction to a functor with respect to group homomorphisms.

2. Show that Hk
b ({e};R) ∼= 0 for all k ∈ N>0.

3. Let G be an amenable group and let k ∈ N>0. Prove that H0
b (G;R) ∼= 0.

Hints. Imitate the proof of the corresponding result for ordinary coho-
mology of finite groups: Use an invariant mean on `∞(G,R) to define
a suitable transfer homomorphism Hk

b ({e};R) −→ Hk
b (G;R).

Exercise 9.E.31 (Non-amenability and G-theory∞*). Let R be a (potentially
non-commutative) ring with unit. Then we define the Abelian group G0(R)
as follows: Let FR be the set(!) of isomorphism classes of finitely generated
R-modules; in contrast to K-theory, only finite generation but no projectiv-
ity is assumed. Then G0(R) is defined as the quotient of the free Abelian
group

⊕
[M ]∈FR Z · [M ] by the submodule generated by the relations

[C] = [A] + [B]

for every short exact sequence

0 −→ A −→ B −→ C −→ 0

of finitely generated R-modules.
If G is a group, then we denote the complex group ring of G by CG

(Appendix A.2).
1. Show that the element [CF2] is trivial in G0(CF2).
2. Let G be a group that contains a free subgroup of rank 2. Show that

then the element [CG] is trivial in G0(CG).
3. Let G be a non-amenable group. Show that then the element [CG] is

trivial in G0(CG).
Hints. This is an open problem! [105, Section 7] It is known that the
converse is true: If G is amenable, then the element [CG] is not trivial
in G0(CG) [105, Remark 7.11].
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A.1 The fundamental group

The fundamental group is a concept from algebraic topology: The funda-
mental group provides a translation from topological spaces into groups that
ignores homotopies. In more technical terms, the fundamental group is a
homotopy invariant functor

π1 : path-connected pointed topological spaces −→ groups

basepoint preserving continuous maps −→ group homomorphisms.

A.1.1 Construction and examples

Geometrically, the fundamental group measures how many “holes” a space
has that can be detected by loops in the space in question. The group struc-
ture on such loops is given by concatenation of loops. This idea can be turned
into a precise definition – with two small modifications:
• In order to be able to concatenate loops, we need to fix a basepoint in

the space. A pointed space is a pair (X,x0) consisting of a topological
space X and a point x0 ∈ X, the basepoint.
• In order to obtain an associative composition by concatenation and

inverses, we have to identify loops that can be continuously deformed
into each other through pointed homotopies.
Basepoint preserving maps f, g : (Y, y0) −→ (Z, z0) are homotopic (in
the pointed sense), if f can be continuously deformed into g while fixing
the basepoint, i.e., if there is a continuous map h : Y × [0, 1] −→ Z
satisfying

h( · , 0) = f and h( · , 1) = g

and
∀t∈[0,1] h(y0, t) = z0.

In this case, we write f '∗ g. Such basepoint preserving maps are
homotopy equivalences if they admit an inverse up to pointed homo-
topy. Pointed spaces are homotopy equivalent if there exists a homotopy
equivalence between them. A space is contractible if it is homotopy
equivalent to a single point.

Definition A.1.1 (Fundamental group). The fundamental group

π1(X,x0) := map∗
(
(S1, 1), (X,x0)

)
/ '∗

of a pointed space (X,x0) is defined as the set of all loops in X based
at x0, modulo basepoint preserving homotopies; the composition of two
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A.1. The fundamental group 321

x0

Figure A.1.: The definition of the fundamental group, schematically; the right
hand loop will discover the hole, while the left hand loop repre-
sents the trivial element in π1 (it is homotopic to the constant
loop).

classes of loops is given by taking the class represented by concatenation
(and reparametrisation) of these loops.

If f : (X,x0) −→ (Y, y0) is a continuous map, then the induced homomor-
phism π1(f) : π1(X,x0) −→ π1(Y, y0) is defined by composing f with loops
in X.

This definition is illustrated in Figure A.1. By definition, the fundamen-
tal group functor is homotopy invariant: If f , g : (X,x0) −→ (X ′, x′0) are
basepoint preserving continuous maps that are homotopic (via a basepoint
preserving homotopy), then the induced group homomorphisms

π1(f), π1(g) : π1(X,x0) −→ π1(X ′, x′0)

coincide.
Homotopy invariance and functoriality of π1 show that if (X,x0) and

(X ′, x′0) are homotopy equivalent pointed topological spaces, then π1(X,x0)
and π1(X ′, x′0) are isomorphic groups. In particular, π1 can detect that cer-
tain spaces are not homotopy equivalent: If π1(X,x0) 6∼= π1(X ′, x′0), then
(X,x0) and (X,x0) cannot be homotopy equivalent (and so also cannot be
homeomorphic).

Caveat A.1.2. In general, if spaces have isomorphic fundamental groups, then
they need not be homotopy equivalent.

It turns out that the fundamental group of a path-connected space does not
depend (up to non-canonical isomorphism) on the chosen basepoint. There-
fore, one often does not mention the basepoints in the notation explicitly and
writes π1(X) instead of π1(X,x0).
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The prototypical calculation of a fundamental group is π1(S1) ∼= Z; the
fundamental group measures how often a loop wraps around the “hole” in S1.
In contrast, all loops in the sphere S2 can be deformed into the constant loop,
whence π1(S2) is the trivial group. Some basic examples of fundamental
groups are listed in Figure A.2. Moreover, the following dictionary between
topological and group theoretical constructions is helpful in the calculation
of fundamental groups:
• Products. The fundamental group functor is compatible with products:

The projection maps induce an isomorphism

π1

(
X × Y, (x0, y0)

) ∼= π1(X,x0)× π1(Y, y0).

(This also holds for products over arbitrary index sets.)
• Glueings. The fundamental group functor is compatible with (many)

pushouts: By the Seifert and van Kampen theorem, there is a canon-
ical isomorphism between π1

(
(X, a0) ∪(A,a0) (Y, a0)

)
and the pushout

of π1(X,x0) and π1(Y, y0) over π1(A, a0), provided that X∩Y = A and
both X and Y are path-connected open subsets of X ∪A Y .
• Self-glueings. The fundamental group of mapping tori along π1-injective

maps leads to ascending HNN-extensions. More general π1-injective
self-glueings result in more general HNN-extensions on the level of fun-
damental groups.
• Fibrations. Fundamental groups of fibration sequences of path-connect-

ed topological spaces correspond roughly to extensions of groups.
Details on the fundamental group and proofs of these claims can be found in
most books on algebraic topology [115, 81, 48].

The fundamental group can also be used to introduce a higher version
of path-connectedness: A topological space is path-connected, if every pair
of points can be joined by a continuous path. A topological space is simply
connected if it is path-connected and if every pair of points can be joined by
a continuous path in an essentially unique way:

Definition A.1.3 (Simply connected). A topological space is simply connected
if it is path-connected and if its fundamental group is trivial.

More generally, the paradigm of algebraic topology is to find good homo-
topy invariants of topological spaces with the goal of classifying (large classes
of) topological spaces up to homotopy equivalence; the fundamental group
is just one example of this type. Further examples include, for instance, sin-
gular homology and cohomology, the Euler characteristic, higher homotopy
groups, . . .

A.1.2 Covering theory

In geometric group theory, the most important aspect of the fundamental
group is that it is a source of convenient group actions and that it serves as
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Topology Group theory (via π1)

•, R, R2, H2, . . . trivial group

S1 = Z

S1 −→ S1, z 7→ z2 Z −→ Z, z 7→ 2 · z

S1 ∨ S1 = Z ∗ Z

torus: S1 × S1 = Z× Z

sphere: S2 = trivial group

· · ·
g holes

〈
a1, . . . , ag, b1, . . . , bg

∣∣∣∣ g∏
j=1

[aj , bj ]

〉

projective plane: RP2 Z/2

Figure A.2.: Basic dictionary for the fundamental group

a sort of Galois group in covering theory. Covering maps are maps such that
the preimages over small neighbourhoods in the target space look like several
sheets of the given neighbourhood; in technical terms:

Definition A.1.4 (Covering map). A covering map is a continuous map be-
tween topological spaces that is a locally trivial fibre bundle with discrete
fibre.

For every “nice” (i.e., path-connected, locally path-connected, and semi-
locally simply connected) path-connected pointed topological space (X,x0)

there is a path-connected pointed space (X̃, x̃0), the universal covering space
of (X,x0) with the following properties:

• The space (X̃, x̃0) is simply connected.
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• The space X̃ admits a free, properly discontinuous group action of the
fundamental group π1(X,x0) such that there is a homeomorphism from

the quotient π1(X,x0) \ X̃ to X that sends the class of x̃0 to x0.
• All other path-connected pointed coverings of (X,x0) correspond to

intermediate quotients of (X̃, x̃0) by subgroups of π1(X,x0).
In particular, the fundamental group π1(X,x0) coincides with the deck
transformation group (i.e., the automorphism group) of the universal cover-

ing X̃ −→ X. A thorough treatment of covering theory is given in Massey’s
book [115].

For example, the universal covering of the circle S1 can be identified with
the real line R together with the translation action of π1(S1, 1) ∼= Z (Exam-
ple 4.1.7 and Figure 4.1). Taking quotients of the universal covering space by
subgroups of the fundamental group yields intermediate coverings associated
with these subgroups. These intermediate coverings together with the lift-
ing properties of covering maps turn out to be a useful tool to study groups
and spaces; simple examples of this type are given in the sketch proof of
Corollary 6.2.15 and Remark 4.2.11.

If X is a metric space, then X̃ carries an induced metric (namely, the
induced path-metric) and the action of the fundamental group is isometric
with respect to this metric. Therefore, fundamental groups can be viewed as
(subgroups of) isometry groups. This is a helpful point of view in Riemannian
geometry and geometric group theory, in particular, in the context of the
Švarc-Milnor lemma (Chapter 5.4).

Furthermore, for every group there is a path-connected topological space
that has the given group as fundamental group (one construction is sketched
in Outlook 3.2.5); moreover, this can be arranged in such a way that the
universal covering of this space is contractible (equivalently, all higher ho-
motopy groups are trivial). Spaces with this property are called classifying
spaces or Eilenberg-MacLane spaces. Classifying spaces provide a means to
model group theory in terms of topological spaces, and are a central concept
in the study of group (co)homology [34] (Appendix A.2, Outlook 3.2.5).
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A.2 Group (co)homology

Group (co)homology is an algebraic tool that encodes linear information of
groups. Generally speaking, (co)homology theories measure exactness of al-
gebraic constructions; group (co)homology measures the exactness of tak-
ing tensor products and homomorphism spaces over the integral group ring.
Group (co)homology has a wide range of applications, including, for exam-
ple, structure theory of groups, algebraic number theory, topology of group
actions, and geometry of groups.

We will briefly sketch one of the constructions of group (co)homology and
summarise basic properties and applications of group (co)homology. For more
details we refer to the excellent book by Brown [34].

A.2.1 Construction

The first basic linearisation of a group is obtained through the group ring:

Definition A.2.1 (Group ring). Let R be a commutative ring with unit. Then
the associated group ring RG (sometimes also denoted by R[G]) is defined
as follows:

• The underlying Abelian group is
⊕

GR. Moreover, one identifies ele-
ments of G with the corresponding standard R-basis vectors in

⊕
GR.

• The multiplicative structure is the R-bilinear extension of the group
multiplication

G×G −→ G

(g, h) 7−→ g · h.

More explicitly: If
∑
g∈G ag · g,

∑
g∈G bg · g ∈ RG (where the fami-

lies (ag)g∈G and (bg)g∈G in R have only finitely many non-zero entries),
then (∑

g∈G
ag · g

)
·
(∑
g∈G

bg · g
)

=
∑
g∈G

(∑
h∈G

ah · bh−1·g

)
· g.

For example, the group ring C[Z] is nothing but the ring of Laurent poly-
nomials C[T, T−1] with complex coefficients.

Caveat A.2.2. If G is a non-Abelian group and the ring R is non-trivial,
then the group ring RG is non-commutative! Therefore, it is necessary to
pay attention to the difference between left and right modules over RG.
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A quick, explicit, way of defining group (co)homology is through the simpli-
cial chain complex associated with the group: We take the full (infinite) sim-
plex whose vertices are the group elements, then we take the corresponding
simplicial chain complex (including degenerate simplices). This chain com-
plex has trivial homology (because the underlying space is a simplex, which
is contractible). But if we twist the simplicial chain complex by modules over
the group ring, we obtain interesting objects:

Definition A.2.3 (Group (co)homology). Let G be a group.
• The simplicial resolution C∗(G) of G is the following (N-indexed) chain

complex of Z-modules: For each n ∈ N we set

Cn(G) :=
⊕
Gn+1

Z;

thus, elements of Cn(G) can be written as (finite) linear combinations
of the form

∑
g∈Gn+1 ag · g.

The boundary operator ∂∗ : C∗(G) −→ C∗−1(G) is defined by set-
ting ∂0 := 0: C0(G) −→ 0 and for all n ∈ N>0

∂n : Cn(G) −→ Cn−1(G)∑
g∈Gn

ag · g 7−→
∑
g∈Gn

ag ·
n∑
j=0

(−1)j · (g0, . . . , gj−1, gj+1, . . . , gn).

• Let A be a right ZG-module. Then we define the simplicial chain com-
plex of G with A-coefficients by

C∗(G;A) := A⊗ZG C∗(G)

(with the boundary operator ∂A∗ := idA⊗ZG∂∗). Elements in ker ∂An are
called n-cycles. For n ∈ N the n-th homology of G with A-coefficients
is the Z-module

Hn(G;A) :=
ker
(
∂An : Cn(G;A)→ Cn−1(G;A)

)
im
(
∂An+1 : Cn+1(G;A)→ Cn(G;A)

) .
• Let A be a left ZG-module. Then we define the simplicial cochain com-

plex of G with A-coefficients by

C∗(G;A) := HomZG
(
C∗(G), A

)
(with the coboundary operator δ∗A induced by the A-dual of ∂∗). Ele-
ments in ker δnA are called n-cocycles. For n ∈ N the n-th cohomology
of G with A-coefficients is the Z-module

Hn(G;A) :=
ker
(
δnA : Cn(G;A)→ Cn+1(G;A)

)
im
(
δn−1
A : Cn−1(G;A)→ Cn(G;A)

) .
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Remark A.2.4 (Functoriality of group (co)homology). Group (co)homology is
functorial with respect to compatible transformations of groups and coeffi-
cient modules [34, Chapter II.6, Chapter III.8].

The definition above is only one of many descriptions of group (co)ho-
mology. The most common, generally applicable, descriptions are the follow-
ing:

• Simplicial picture. This is the description that we used as a defini-
tion. It is easy to write down, but it is usually not helpful for concrete
computations because the chain modules tend to be huge.
• Algebraic picture. Alternatively, group (co)homology can be described

as the derived functors associated with tensor products and homo-
morphism modules over group rings [34, Chapter III]. Hence, group
(co)homology can flexibly be computed via resolutions over the group
ring.
• Geometric picture. From a more topological/geometric perspective,

group cohomology can be described in terms of classifying spaces of
groups (Appendix A.1). More precisely, if G is a group and BG is a
classifying space of G (Appendix A.1), then group (co)homology of G is
nothing but ordinary (simplicial, singular, cellular) (co)homology of BG
with twisted coefficients [34, Chapter II.4, Chapter III.1]. Therefore,
“good” models of classifying spaces provide a means to compute group
(co)homology geometrically.

A.2.2 Applications

This diversity of descriptions is the reason for the versatility of group
(co)homology in applications. Classical applications of group (co)homology
include, for example:

• If G is a group, then H1(G;Z) is nothing but the abelianisation of G [34,
Chapter II.3].
• The second group cohomology allows to classify group extensions with

Abelian kernel [34, Chapter IV].
• In algebraic number theory, group cohomology is used to study field

extensions and their Galois groups; for example, the Hilbert 90 Theorem
admits a description and proof in terms of the first cohomology of the
Galois group [128, Chapter VI.2].
• Group (co)homology and its interplay with classifying spaces allows

to introduce several notions of dimension and finiteness conditions for
groups [34, Chapter VIII].
• The study of groups with so-called periodic cohomology is intimately

related to the question of which finite groups admit free continuous
actions on spheres [34, Chapter VI].
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• If G is a finitely generated infinite group and R is a principal ideal
domain, then 1 + rkRH

1(G;RG) equals the number of ends of G [66,
Theorem 13.5.5] (ends of groups are defined in Chapter 8.2.3).

For geometric group theory the following observation is essential: If we
pick the right type of coefficient modules, then the corresponding group
(co)homology will be functorial with respect to interesting types of mor-
phisms between groups. Therefore, group (co)homology leads to algebraic
invariants for various geometric notions of equivalences of groups. Basic ex-
amples of this technique are:
• If we equip the ring Z with the trivial group action, then we obtain

group (co)homology with coefficients in the trivial module Z. This
theory is functorial with respect to all group homomorphisms. Hence,
H∗( · ;Z) and H∗( · ;Z) are invariant under group isomorphisms.
• Taking `∞( · ;Z) or `∞( · ;R) as coefficient modules leads to group ho-

mology that is, for finitely generated groups, functorial with respect to
quasi-isometric embeddings (!). In this way, group (co)homology pro-
vides us with algebraic quasi-isometry invariants. In fact, these func-
tors are nothing but uniformly finite homology (Chapter 5) [19][46,
Appendix A]. A systematic study of coefficient systems that lead to
quasi-isometry invariants was carried out by Xin Li [98].
• Taking group von Neumann algebras as coefficients leads to L2-(co)ho-

mology of groups. This measure-theoretic setting is related to measure
equivalence of groups. Thus, the vanishing of L2-Betti numbers is a
measure equivalence invariant of groups [64].
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A.3 The hyperbolic plane

The hyperbolic plane is one of the origins of modern geometry and a source
of instructive examples. The geometry of the hyperbolic plane is “dual” to
the intuitively more accessible spherical geometry and can be used to show
the independence of the parallel postulate from the other axioms of Euclid.

We will recall the construction of the hyperbolic plane via the halfplane
model and we will then sketch how one can develop its basic metric proper-
ties from scratch, using the language of elementary Riemannian geometry. In
contrast with many of the examples from Riemannian geometry mentioned
in this book, this appendix will not require any previous experience in Rie-
mannian geometry.

A.3.1 Construction of the hyperbolic plane

We construct the hyperbolic plane as a Riemannian manifold. To this end,
we consider the halfplane model. In short the construction reads as follows:
The hyperbolic plane H2 is the open upper halfplane in R2, equipped with
the Riemannian metric

dx2 + dy2

y2
.

We will now give more details: A Riemannian manifold is a smooth mani-
fold together with a smooth family of scalar products on the tangent spaces.
Using the local notion of lengths of vectors in tangent spaces, one can in-
troduce the length of smooth curves (by integration) and a notion of angles
between smooth curves that start at the same point. Minimising the length of
smooth curves between two points gives a metric on the underlying manifold.

Definition A.3.1 (Upper halfplane). We write

H :=
{

(x, y) ∈ R2
∣∣ y > 0

}
⊂ R2

for the upper halfplane. Depending on the context, we will also view H as a
subset of C, using the following identifications:

H −→ {z ∈ C | Im z > 0}
(x, y) 7−→ x+ i · y

(Re z, Im z)←− [ z

Because H ⊂ R2 is open, the set H inherits the structure of a smooth
manifold from R2. Because the tangent bundle of R2 is trivial also the tangent
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bundle of H is trivial and we can hence canonically identify the tangent
space TzH for z ∈ H with R2.

Definition A.3.2 (Hyperbolic plane). The hyperbolic plane H2 is the Rieman-
nian manifold (H, gH), where:
• We endow the open subset H ⊂ R2 with the smooth structure of R2,
• and we consider the Riemannian metric gH on H given by the scalar

products

gH,(x,y) : R2 × R2 −→ R

(v, v′) 7−→ 1

y2
· 〈v, v′〉

for all (x, y) ∈ H on T(x,y)H = R2, where 〈 · , · 〉 denotes the standard
scalar product on R2. Moreover, we will also write 〈 · , · 〉H,z for gH,z,
and we will denote the norm on TzH = R2 induced by gH,z by ‖ · ‖H,z.

A.3.2 Length of curves

The Riemannian metric allows us to define the length of smooth curves by
integration of the length of the speed vectors:

Definition A.3.3 (Hyperbolic length of a curve). Let γ : [T0, T1] −→ H be a
smooth curve. Then the hyperbolic length of γ is defined by

LH2(γ) :=

∫ T1

T0

∥∥γ̇(t)
∥∥
H,γ(t)

dt ∈ R≥0.

The definition of the Riemannian metric gH implies that curves that are
“further up” in the upper halfplane will seem to have a shorter length than
curves that are “further down.”

We will now give two basic estimates for the hyperbolic length of curves
that are the foundation for most results on the metric geometry of the hy-
perbolic plane:

Proposition A.3.4 (Trivial estimate). Let γ : [T0, T1] −→ H be a smooth curve
and let

m := min{Im γ(t) | t ∈ [T0, T1]} ∈ R>0,

M := max{Im γ(t) | t ∈ [T0, T1]} ∈ R>0.

Then we have

1

m
· L(R2,d2)(γ) ≥ LH2(γ) ≥ 1

M
· L(R2,d2)(γ) ≥ 1

M
· d2

(
γ(T0), γ(T1)

)
,

where L(R2,d2) denotes the Euclidean length of γ.
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Proof. This is a straightforward integration estimate; the last inequality fol-
lows from the classical fact that the Euclidean length L(R2,d2) can be calcu-
lated both analytically (by integration of the Euclidean length of the speed
vectors) and metrically (as in Lemma 7.2.14) [142, Chapter 1].

Proposition A.3.5 (Vertical estimate). Let γ : [T0, T1] −→ H be a smooth
curve and let p := i · Im: H −→ H be the projection onto the imaginary
part.

1. We then have LH2(γ) ≥ LH2(p◦γ) and equality holds if and only if Re γ
is constant.

2. Furthermore,

LH2(p ◦ γ) ≥
∣∣ln Im γ(T1)− ln Im γ(T0)

∣∣
and equality holds if and only if the differential of Im γ does not change
its sign.

Proof. The map p is smooth and for all z ∈ H we have

Tzp : R2 −→ R2

(x, y) 7−→ y.

The two claims now follow from straightforward integration estimates.

Proposition A.3.6 (Metric on the hyperbolic plane). We define

dH : H ×H −→ R≥0

(z, z′) 7−→ inf
{
LH2(γ)

∣∣ γ is a smooth curve in H from z to z′
}
.

Then dH is a metric on H.

Proof. Symmetry of dH is immediate from the definition. For the triangle
inequality, one uses smooth approximation of the concatenation of smooth
curves. It remains to show that dH(z, z′) = 0 happens only for z = z′;
in order to check this, one can apply the trivial and vertical estimates for
hyperbolic lengths and then use that the Euclidean metric d2 on R2 has this
property.

A similar argument shows that the topology on H induced by the met-
ric dH coincides with the subspace topology of H ⊂ R2. Moreover, a careful
analysis of this type also shows that hyperbolic length of smooth curves co-
incides with metric length with respect to dH [147, Chapter 13].

Theorem A.3.7 (Hyperbolic vs. metric length). Let γ : [T0, T1] −→ H be a
smooth curve. Then

LH2(γ) = L(H,dH)(γ),

where the metric length L(H,dH)(γ) is given by (cf. Lemma 7.2.14)
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L(H,dH)(γ) := sup

{k−1∑
j=0

dH
(
γ(tj), γ(tj+1)

) ∣∣∣∣ k ∈ N, t0, . . . , tk ∈ [T0, T1],

t0 ≤ t1 ≤ · · · ≤ tk
}
.

In order to get a better understanding of the metric geometry of the hy-
perbolic plane it is essential to classify the geodesics and isometries of the
hyperbolic plane. We start with a special case; the general case will be de-
veloped in the next section.

Proposition A.3.8 (Vertical geodesics). Let y ∈ R>1. Then there is exactly
one smooth geodesic in (H, dH) from i to i · y, namely

γ : [0, ln y] −→ H

t 7−→ i · et.

We have LH2(γ) = ln y and hence dH(i, i · y) = ln y.

Proof. These facts can be derived from the vertical estimate (Proposi-
tion A.3.5) and Theorem A.3.7.

Analogously, we can classify all smooth geodesics between points on the
imaginary axis and smooth geodesic lines passing through two points on
the imaginary axis. We will see a posteriori (Remark A.3.19) that the same
statements also hold if we drop the smoothness hypothesis.

A.3.3 Symmetry and geodesics

We will now determine the isometry group and all geodesics of the hyperbolic
plane. Taking advantage of the point of view of geometric group theory, that
groups, their actions, and the corresponding geometry are intertwined, we
will use a bootstrap mechanism that allows us to simultaneously classify
isometries and geodesics.

Riemannian isometries

We start with Riemannian isometries; these are an analytic source of metric
isometries.

Definition A.3.9 (Riemannian isometry group). A Riemannian isometry of H2

is a smooth diffeomorphism f : H −→ H that satisfies

∀z∈H ∀v,v′∈TzH
〈
Tzf(v), Tzf(v′)

〉
H,f(z)

= 〈v, v′〉H,z.
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The Riemannian isometry group of H2 is the set Isom(H2) of all Riemannian
isometries of H2 with the group multiplication given by composition of maps.

Proposition A.3.10 (Riemannian isometries are isometries). Every Riemannian
isometry of H2 is a metric isometry of (H, dH). In particular, we obtain an
injective group homomorphism

Isom(H2) −→ Isom(H, dH).

Proof. This follows from the definition of dH in terms of Riemannian lengths
of smooth curves and the chain rule (applied to Riemannian isometries and
their inverses).

In fact, we will see in Theorem A.3.23 that this homomorphism is not
only injective, but even an isomorphism; i.e., every metric isometry of the
hyperbolic plane is a Riemannian isometry. (More generally, the analogous
statement holds for all complete Riemannian manifolds.)

Möbius transformations

As next step, we consider an explicit class of isometries of the hyperbolic
plane, the Möbius transformations:

Proposition A.3.11 (Möbius transformations). For

A =

(
a b
c d

)
∈ SL(2,R)

we define the associated Möbius transformation by

fA : H −→ H

z 7−→ a · z + b

c · z + d
.

Then:
1. For all z ∈ H we have Im fA(z) = 1

|c·z+d|2 · Im z.

2. The map fA is a well-defined smooth diffeomorphism.
3. We have fE2

= idH = f−E2
.

4. For all A,B ∈ SL(2,R) we have fA·B = fA ◦ fB .
Proof. These are straightforward calculations.

Example A.3.12 (Simple Möbius transformations).
• Let b ∈ R. Then the Möbius transformation associated with the matrix(

1 b
0 1

)
∈ SL(2,R)

is the horizontal translation z 7−→ z + b on H by b.
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• The Möbius transformation associated with the matrix(
0 1
−1 0

)
∈ SL(2,R)

is the map z 7−→ −1/z (Figure A.3), which is its own inverse. This map
is related to circle inversion in elementary geometry.

Elementary row and column operations show that the set{(
0 1
−1 0

)}
∪
{(

1 b
0 1

) ∣∣∣∣ b ∈ R
}

generates SL(2,R).

The groups SL(2,R) and PSL(2,R) = SL(2,R)/{E2,−E2} act through
isometries on the hyperbolic plane:

Proposition A.3.13 (Möbius transformations are isometries). If A ∈ SL(2,R),
then the associated Möbius transformation fA : H −→ H is a Riemannian
isometry of H2. In particular, we obtain an injective group homomorphism

PSL(2,R) = SL(2,R)/{E2,−E2} −→ Isom(H, dH)

[A] 7−→ fA

and Möbius transformations map geodesics in (H, dH) to geodesics.

Proof. This is a lengthy, but elementary, calculation. One way to simplify the
proof that Möbius transformations are Riemannian isometries is to use the
generating set of Example A.3.12.

Transitivity of Möbius transformations

We will now prove that the action of SL(2,R) by Möbius transformations
on the hyperbolic plane is transitive in a strong sense; hence, the hyperbolic
plane is a symmetric space.

Proposition A.3.14 (Transitivity of Möbius transformations).
1. The action of SL(2,R) on H by Möbius transformations is transitive.
2. The stabiliser group of i with respect to this action is SO(2) (i.e., the

group of all 2× 2-rotation matrices).
3. For all z, z′ ∈ H there exists A ∈ SL(2,R) with

fA(z) = i and Re
(
fA(z′)

)
= 0, Im

(
fA(z′)

)
> 1.

Proof. Ad 1. It suffices to show that every point in H can be moved by a
Möbius transformation to the point i. Let z ∈ H with x := Re z, y := Re z.
Then the Möbius transformation associated with the matrix
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0

i

1

0

i

1

0

i

1

Figure A.3.: The Möbius transformation z 7−→ −1/z on H; in every picture,
objects of the same colour are mapped to each other
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1/
√
y 0

0
√
y

)
·
(

1 −x
0 1

)
(which first translates z to the imaginary axis and then scales the imaginary
axis by 1/

√
y) maps z to i.

Ad 2. This is a simple calculation.
Ad 3. This can be derived from the previous parts (and either a nasty

calculation or a continuity argument on the angles of rotations).

Geodesics

Combining our knowledge on vertical geodesics and the transitivity of Möbius
transformations allows us to classify all geodesics of the hyperbolic plane:

Theorem A.3.15 (Characterisation of hyperbolic geodesics). Let z, z′ ∈ H
with z 6= z′.

1. Then there exists precisely one [smooth] geodesic in (H, dH) from z
to z′. In particular, the metric space (H, dH) is geodesic.

2. Up to reparametrisation on R there exists precisely one [smooth] geodesic
line in (H, dH) that contains z and z′.

More precisely: If A ∈ SL(2,R) with Re(fA(z)) = 0 = Re(fA(z′)), then
fA−1 ◦(t 7→ i ·et) is a geodesic line through z and z′ and the [smooth] geodesic
from z to z′ is a segment of this line.

Proof. We use the Möbius transformation action on (H, dH), which is an
isometric action (Proposition A.3.13). Then the theorem is just a combination
of Proposition A.3.14 and Proposition A.3.8.

Remark A.3.16 (Hyperbolic metric, explicitly). Using the description of hy-
perbolic geodesics from Theorem A.3.15 and the computation of vertical
distances (Proposition A.3.5) allows to cook up an explicit formula for the
metric dH on H: For all z, z′ ∈ H we have

dH(z, z′) = arcosh
(

1 +
|z − z′|2

2 · Im z · Im z′

)
.

Here, the area hyperbolic cosine arcosh is the inverse

arcosh: R≥1 −→ R

x 7−→ ln
(
x+

√
x2 − 1

)
of the hyperbolic cosine function

cosh: R −→ R≥1

x 7−→ ex + e−x

2
= cos(i · x).
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0

i

1m m+ rm− r a

Figure A.4.: Generalised semi-circles in the upper halfplane

To complete our understanding of hyperbolic geodesics, we introduce the
notion of generalised semi-circles (Figure A.4):

Definition A.3.17 (Generalised semi-circle). A generalised semi-circle is a sub-
set K ⊂ H of the following form:
• There exist m ∈ R and r ∈ R>0 with K = {z ∈ H | |z −m| = r} or
• there is an a ∈ R with K = {a+ i · t | t ∈ R>0}.

Looking at the generators for SL(2,R) from Example A.3.12 shows that
Möbius transformations map generalised semi-circles to generalised semi-
circles.

Corollary A.3.18 (Hyperbolic geodesics are generalised semi-circles). [Smooth]
geodesics and [smooth] geodesic lines in (H, dH) are exactly the (correctly
parametrised) segments of generalised semi-circles in H.

Proof. This follows from the characterisation of hyperbolic geodesics in Theo-
rem A.3.15 and the compatibility of Möbius transformations with generalised
semi-circles.

In particular, one can easily find configurations of geodesic lines in the
hyperbolic plane that do not satisfy the parallel postulate by Euclid.

Remark A.3.19 (Smoothness of hyperbolic geodesics). We can now also prove
that the characterisation of vertical geodesics (whence for all geodesics
in (H, dH)) also holds for general metric geodesics (and not only for the
smooth ones); in particular, all geodesics in (H, dH) are smooth.

Let y ∈ R>1 and let η : [0, L] −→ H be a metric geodesic in (H, dH) from i
to i · y; in particular, L = ln y.
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• As first step, one shows that Re η = 0. Assume for a contradiction
that there is a t ∈ (0, L) with Re η(t) 6= 0. By Theorem A.3.15, we can
connect η(t) with i and with i ·y through smooth geodesics. One applies
the projection from Proposition A.3.5 and then uses the calculations
from Theorem A.3.7, Proposition A.3.5, and Proposition A.3.8 to arrive
at a contradiction.
• By the first step, η lives on the imaginary line. As geodesic, the map η

is injective; hence, Im η is injective (and monotonous). Together with
the knowledge on vertical distances we hence obtain

∀t∈[0,L] η(t) = i · et.

Angles

In order to complete the description of the isometry group of the hyperbolic
plane it is convenient to work with angles. As in the case of the length of
curves and of isometries, there are two notions of angles: a Riemannian one
and a metric one.

Definition A.3.20 (Hyperbolic angle). Let γ1 : [0, L1] −→ H, γ2 : [0, L2] −→ H
be smooth curves in H2 with γ1(0) = γ2(0) and γ̇1(0) 6= 0 6= γ̇2(0). Then the
hyperbolic angle between γ1 and γ2 is defined by

^H(γ1, γ2) := ^H
(
γ̇1(0), γ̇2(0)

)
:= arccos

〈γ̇1(0), γ̇2(0)〉H,γ1(0)

‖γ̇1(0)‖H,γ1(0) · ‖γ̇2(0)‖H,γ2(0)
∈ [0, π].

The halfplane model is conformal in the following sense: If γ1 and γ2 are
smooth curves in H with γ1(0) = γ2(0) and γ̇1(0) 6= 0 6= γ̇2(0), then

^H(γ1, γ2) = ^(γ1, γ2)

because 〈 · , · 〉H,z is obtained from the Euclidean scalar product by scaling
(and hence defines the same angles). Hyperbolic angles drawn in the halfplane
model therefore can be read off as the corresponding Euclidean angles.

Proposition A.3.21 (Hyperbolic angle, metric version). Let γ1 : [0, L1] −→ H,
γ2 : [0, L2] −→ H be geodesics in (H, dH) with γ1(0) = γ2(0). Then

^H(γ1, γ2) = lim
t→0

arccos
(

1−
dH
(
γ1(t), γ2(t)

)2
2 · t2

)
.

Proof. By the characterisation of geodesics in (H, dH) (Theorem A.3.15, Re-
mark A.3.19) we know that γ1 and γ2 are smooth and have non-zero derivative
at 0; hence, ^H(γ1, γ2) is defined. Using transitivity of the Möbius transfor-
mation action and the fact that the right hand side in the theorem is in-
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variant under isometries, we can restrict to the case that γ1(0) = i = γ2(0).
Because 〈 · , · 〉H,i = 〈 · , · 〉, we then obtain

^H(γ1, γ2) = ^H
(
γ̇1(0), γ̇2(0)

)
= ^

(
γ̇1(0), γ̇2(0)

)
.

Moreover, by the characterisation of hyperbolic geodesics, we have that
‖γ̇j(0)‖H,i = ‖γ̇j(0)‖2 = 1 for j ∈ {1, 2}. Therefore, polarisation shows that

^H(γ1, γ2) = arccos
(

1− 1

2
·
∥∥γ̇1(0)− γ̇2(0)

∥∥2

2

)
.

Using the trivial and the vertical estimate (Proposition A.3.4 and A.3.5) as
well as the description of the derivatives as differential quotient, one can now
derive the claimed formula for the hyperbolic angle.

Corollary A.3.22 (Hyperbolic isometries are conformal). Let f ∈ Isom(H, dH)
and let γ1, γ2 be geodesics in in (H, dH) with γ1(0) = γ2(0). Then

^H(f ◦ γ1, f ◦ γ2) = ^H(γ1, γ2).

Proof. Because f is an isometry, the curves f ◦ γ1 and f ◦ γ2 are geodesics
in (H, dH) with f ◦ γ1(0) = f ◦ γ2(0). As hyperbolic angles can be expressed
in terms of the metric (Proposition A.3.21), we obtain

^H(f ◦ γ1, f ◦ γ2) = ^H(γ1, γ2).

The isometry group

We now complete the classification of isometries of the hyperbolic plane:

Theorem A.3.23 (The hyperbolic isometry group). The group Isom(H, dH) is
generated by

{fA | A ∈ SL(2,R)} ∪ {z 7→ −z}.

In particular, every isometry of (H, dH) is a (smooth) Riemannian isometry
and so Isom(H, dH) = Isom(H2). The map

PSL(2,R) −→ Isom+(H, dH)

A 7−→ fA

is an isomorphism. Here, Isom+(H, dH) denotes the group of all orientation-
preserving isometries of (H, dH).

Proof. Let f ∈ Isom(H, dH).
• In view of the transitivity of the Möbius transformation action and

the description of the hyperbolic metric on the imaginary line, we may
assume that
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0

i

1

gz′

z

Figure A.5.: Orthogonal geodesic lines and isometries

f(i) = i and f(2 · i) = 2 · i.

• Because f is an isometry, it maps geodesic lines to geodesic lines. Hence,
the characterisation of vertical geodesic lines (Proposition A.3.8) shows
that f(i · y) = i · y holds for all y ∈ R>0.
• The map f is a homeomorphism and so f permutes the path-connected

components P := {z ∈ H | Re z > 0} and N := {z ∈ H | Re z < 0}
of H \ R>0 · i. Applying the hyperbolic isometry (z 7→ −z) (reflection
at the imaginary axis) allows us to assume that

f(P ) = P and f(N) = N.

• We will now prove that f = idH : Let z ∈ H. If Re z = 0, then we already
know f(z) = z. We will now treat the case Re z > 0 (the other case
can be treated in the same way). By the characterisation of hyperbolic
geodesics in terms of generalised semi-circles (Corollary A.3.18), there
exists (up to reparametrisation) exactly one geodesic line g in (H, dH)
through z that intersects the imaginary axis (which is a geodesic line!)
orthogonally; let z′ be this intersection (Figure A.5).
We now apply f to this situation. Because f maps geodesic lines to
geodesic lines, because f maps the imaginary axis to itself, and is con-
formal (Corollary A.3.22), the geodesic line f ◦ g is orthogonal to the
imaginary axis and goes through z′. Then the classification of hyper-
bolic geodesics shows that f ◦ g(R) = g(R). Because of f(P ) = P and

dH
(
f(z), f(z′)

)
= dH(z, z′)

we obtain f(z) = z (by travelling from z′ along g).
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This shows that every isometry of (H, dH) is a composition of a Möbius
transformation (and possibly the reflection at the imaginary axis). Clearly,
all Möbius transformations are orientation preserving and the reflection at the
imaginary axis is orientation reversing; hence, also the claim on Isom+(H, dH)
follows.

A.3.4 Hyperbolic triangles

Geodesic triangles in the hyperbolic plane are uniformly slim; this is one the
key properties of global negative curvature as studied in Chapter 7.

The Gauß-Bonnet theorem for hyperbolic triangles

In contrast with Euclidean triangles, hyperbolic triangles have bounded area
and angle sum less than π. Using the Riemannian volume form on H2 one
obtains a notion of area on the hyperbolic plane. More explicitly:

Definition A.3.24 (Hyperbolic area). Let f : H −→ R≥0 be a Borel measur-
able map. Then we define the integral of f over H2 by∫

H

f dvolH :=

∫
H

f(x, y) ·
√

detGH,(x,y) d(x, y)

=

∫
H

1

y2
· f(x, y) d(x, y) ∈ R≥0 ∪ {∞},

where

GH,(x,y) :=

(
gH,(x,y)(e1, e1) gH,(x,y)(e1, e2)
gH,(x,y)(e2, e1) gH,(x,y)(e2, e2)

)
=

(
1/y2 0

0 1/y2

)
and e1, e2 ∈ TH,(x,y)H = R2 are the standard coordinate vectors.

If A ⊂ H is a measurable set, we define the hyperbolic area of A by

µH2(A) :=

∫
H

χA dvolH ∈ R≥0 ∪ {∞},

where

χA : H −→ R≥0

z 7−→

{
1 if z ∈ A
0 if z 6∈ A

is the characteristic function of A ⊂ H.
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0

i

1

Aϕ,ψ

ψ

ψ

ϕ

ϕ

Figure A.6.: Proof of the Gauß-Bonnet theorem for hyperbolic triangles in
the case that one vertex lies on the boundary of the hyperbolic
plane.

Proposition A.3.25 (Isometries are area-preserving). Let A ⊂ H be a measur-
able set and let f ∈ Isom(H, dH). Then f(A) is measurable and

µH2

(
f(A)

)
= µH2(A).

Proof. The isometry f is a Riemannian isometry of H2 (Theorem A.3.23).
The transformation formula then shows that f is area-preserving.

We can now define the area of geodesic triangles in the hyperbolic plane
as follows: Let ∆ := (γ0 : [0, L0] → H, γ1 : [0, L1] → H, γ2 : [0, L2] → H) be
a geodesic triangle in (H, dH). Using the characterisation of geodesics in the
hyperbolic plane, we deduce that γ0, γ1 and γ2 only meet where they should
and that they bound a compact, measurable set A∆ in H. We then define
the hyperbolic area of ∆ by

µH2(∆) := µH2(A∆).

Theorem A.3.26 (Gauß-Bonnet theorem for hyperbolic triangles). Let ∆ be a
geodesic triangle in (H, dH) with angles α, β, γ and suppose that the image
of ∆ is not contained in a single geodesic line. Then

µH2(∆) = π − (α+ β + γ).

In particular: The angle sum in hyperbolic geodesic triangles is less than π
and the hyperbolic area is bounded from above by π.
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0

i

1

Aα,β

µH2(Aπ−γ,β′)

β + β′

β′β

α

α

γ

π − γ

Figure A.7.: Proof of the Gauß-Bonnet theorem for hyperbolic triangles

Proof. We first determine the area of generalised geodesic triangles that have
one vertex on the boundary of the hyperbolic plane; in a second step, we
demonstrate how the case of ordinary geodesic triangles can be derived from
the first case by a simple decomposition argument.

À Let ϕ,ψ ∈ [0, π] with ϕ+ ψ < π and let

Aϕ,ψ :=
{

(x, y) ∈ H
∣∣ x ∈ [cos(π − ϕ), cosψ], y ≥

√
1− x2

}
(Figure A.6). Then Aϕ,ψ is a closed (whence measurable) subset of H
and a straightforward calculation shows that

µH2(Aϕ,ψ) =

∫
H

χAϕ,ψ dvolH =

∫ cosψ

cos(π−ϕ)

∫ ∞
√

1−x2

1

y2
dy dx

=

∫ cosψ

cos(π−ϕ)

1√
1− x2

dx =

∫ ψ

π−ϕ
−1 dt

= π − (ϕ+ ψ).

Á We now return to the case of our geodesic triangle: Using the tran-
sitivity of the Möbius transformation action we may assume without
loss of generality that the image of ∆ lies above the geodesic opposite
of γ and that the semi-circle of the geodesic opposite of γ has radius 1
and centre 0. Because the halfplane model is conformal, we can deter-
mine the necessary angles by Euclidean considerations. In particular,
we obtain α + β < π. Therefore, A∆ is contained in Aα,β+β′ (where
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β′ is defined as in Figure A.7). Moreover, the closure of the comple-
ment Aα,β+β′ \ (A∆) is isometric to Aπ−γ,β′ .
Therefore, Step À and Proposition A.3.25 imply

µH2(∆) = µH2(Aα,β+β′)− µH2(Aπ−γ,β′)

= π − (α+ β + β′)− π + (π − γ + β′)

= π − (α+ β + γ),

as claimed.

For example, one can use the Gauß-Bonnet theorem for hyperbolic tri-
angles to prove that the hyperbolic plane and the Euclidean plane are not
locally isometric.

Hyperbolic triangles are slim

Hyperbolic geodesic triangles are slim in the following sense:

Theorem A.3.27 (Hyperbolic triangles are slim). There is a constant C ∈ R≥0

such that every geodesic triangle in (H, dH) is C-slim, i.e.: For every geodesic
triangle (γ0 : [0, L0] → H, γ1 : [0, L1] → H, γ2 : [0, L2] → H) in (H, dH) and
every t ∈ [0, L0], there exists
• an s ∈ [0, L1] with dH

(
γ0(t), γ1(s)

)
≤ C

• or an s ∈ [0, L2] with dH
(
γ0(t), γ2(s)

)
≤ C.

In other words, the geodesic metric space (H, dH) is hyperbolic in the sense
of Definition 7.2.2. In fact, the hyperbolic plane is the name-giving example
of hyperbolic metric spaces.

For the proof of Theorem A.3.27, we will combine the Gauß-Bonnet theo-
rem with the following observation on area growth:

Proposition A.3.28 (Exponential growth of hyperbolic area). For all r ∈ R>10

we have
µH2

(
BH,dHr (i)

)
≥ e r

10 · (1− e− r2 )

In particular, the area of hyperbolic disks growths exponentially in the radius.

Proof. Let r ∈ R≥10. Elementary estimates show that the set

Qr :=
{
x+ i · y

∣∣ x ∈ [0, er/10], y ∈ [1, er/2]
}

lies in BH,dHr (i). In particular, we obtain

µH2

(
BH,dHr (i)

)
≥ µH2(Qr) = er/10 · (1− e−r/2).

Proof of Theorem A.3.27. In view of the exponential growth of hyperbolic
area (Proposition A.3.28) there exists a C ∈ R>0 satisfying
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∆f(∆)

Figure A.8.: Proving that geodesic triangles in the hyperbolic plane are slim

µH2

(
BH,dHC (i)

)
≥ 4 · π.

Let ∆ := (γ0, γ1, γ2) be a geodesic triangle in (H, dH) and let x ∈ im γ0.
Without loss of generality we may assume that the image of ∆ is not contained
in a single geodesic line. By transitivity of the Möbius transformation action
we may assume in addition that im γ0 lies on the imaginary axis and x = i.

Assume for a contradiction that there is no point y ∈ im γ1 ∪ im γ2

with dH(x, y) ≤ C. Then we have

BH,dHC (i) ⊂ A∆ ∪ im γ0 ∪ f(A∆),

where f : z 7→ −z (Figure A.8). Because f is an isometry and hence area-
preserving (Proposition A.3.25), we obtain from the Theorem of Gauß-Bonnet
(Theorem A.3.26) that

4 · π ≤ µH2

(
BH,dHC (i)

)
≤ µH2(∆) + µH2(im γ0) + µH2

(
f(A∆)

)
= µH2(∆) + 0 + µH2(∆)

< 2 · π,

which is absurd.

Hence, there is a y ∈ im γ1 ∪ im γ2 with dH(x, y) ≤ C.
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A.3.5 Curvature

We will now indicate how the Gaussian curvature of the hyperbolic plane can
be computed in the halfplane model.

Theorem A.3.29. The Gaussian curvature of the hyperbolic plane is the con-
stant function −1.

Sketch of proof of Theorem A.3.29. By the Theorema Egregium, the Gaus-
sian curvature indeed is an intrinsic invariant of Riemannian surfaces and
can be expressed in terms of local data [96]. Roughly speaking these for-
mulae quantify curvature as the dependence of parallel transport of tangent
vectors along different curves (Chapter 7.1). The Gaussian curvature of H2

is the smooth function K : H −→ R given in local coordinates by the general
formula

K =
R1221

g12 · g21 − g11 · g22

for Riemannian surfaces, where we use the following notation (and calculate
in the standard coordinate system of the upper halfplane H):
• As usual in Riemannian geometry, for j, k ∈ {1, 2} we write gjk for the
jk-component of the Riemannian metric. In our case, gjk is the func-
tion z 7→ gH,z(ej , ek) = (GH,z)j,k (Definition A.3.24). The coefficients
of the pointwise inverse of the matrix valued function z 7→ GH,z are
denoted by gjk. We have for all z = (x, y) ∈ H that

GH,z =

(
1/y2 0

0 1/y2

)
and G−1

H,z =

(
y2 0
0 y2

)
.

The denominator of K is hence given by (x, y) 7−→ −1/y4.
• The geometric relation between tangent spaces at different points and

parallel transport is encoded in the so-called Levi-Civita connection.
Locally, we can express the Levi-Civita connection in terms of the Rie-
mannian metric by the Christoffel symbols: The Christoffel symbols are
functions H −→ R indexed by i, k, ` ∈ {1, 2} and given by

Γik` =
1

2
·

2∑
m=1

gim · (∂`gmk + ∂kgm` − ∂mgk`)

=
1

2
· gii · (∂`gik + ∂kgi` − ∂igk`).

We hence have for all (x, y) ∈ H that

Γ2
11(x, y) =

1

y
Γ2

22(x, y) = −1

y

Γ1
12(x, y) = −1

y
Γ1

21(x, y) = −1

y
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and all other Christoffel symbols are zero.
• The function R1221 is the coefficient of the Riemann curvature tensor,

given by

R1221 =

2∑
h=1

g1h ·Rh221 = g11 ·R1
221.

The version R1
221 of the Riemann curvature tensor is given by

R1
221 = ∂2Γ1

12 − ∂1Γ1
22 +

2∑
h=1

(Γ1
2h · Γh12 − Γ1

1h · Γh22).

Therefore, for all (x, y) ∈ H we obtain

R1221(x, y) =
1

y2
·R1

221(x, y) =
1

y2
·
( 1

y2
− 0 +

1

y2
− 0 + 0− 1

y2

)
=

1

y4
.

In total, this leads to

K(x, y) =
R1221(x, y)

g12(x, y) · g12(x, y)− g11(x, y) · g22(x, y)
=

1
y4

− 1
y4

= −1

for all (x, y) ∈ H, as claimed.

A.3.6 Other models

Models of the hyperbolic plane are metric spaces that are isometric to the
hyperbolic plane. Popular models of the hyperbolic plane are:
• the halfplane model (which we used as defining model),
• the Poincaré disk model,
• the Klein disk model, and
• the hyperboloid model.

The definition of these models and their comparison is, for instance, explained
in the comprehensive book by Ratcliffe [146]. A cunning way of illustrating
these comparisons is realised by Segerman’s 3D-models and suitable lighting
of these models [158, Chapter 4]. For example, the Poincaré disk model can
be obtained from the halfplane model as follows:

Example A.3.30 (Poincaré disk model). The Cayley transform

C : H −→ E :=
{
z ∈ C

∣∣ |z| < 1
}

z 7−→ z − i
z + i
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1

Figure A.9.: The Cayley transform

geodesic lines no geodesic lines

Figure A.10.: Geodesic lines in the Poincaré disk model

is a smooth diffeomorphism between H and E ⊂ C (Figure A.9). Translat-
ing the Riemannian metric gH on H via C to E leads to the Riemannian
metric gE on E described by the term

4 · (dx2 + dy2)

(1− (x2 + y2))2

Let dE be the metric on E obtained from lengths of curves with respect to gE .
By construction, C : H −→ E is an isometry with respect to the metrics dH
and dE . In particular, (E, dE) is a model of the hyperbolic plane, the Poincaré
disk model.

The Poincaré disk model has the following properties:
• The Cayley transform is conformal. Therefore, also the Poincaré disk

model is a conformal model of the hyperbolic plane; i.e., hyperbolic
angles drawn in the disk model coincide with the Euclidean angles.
• Images of geodesic lines in the Poincaré disk model are the diameters

of E and those circle arcs that intersect the boundary {z ∈ C | |z| = 1}
orthogonally (Figure A.10).

Impressive illustrations of the hyperbolic plane in the Poincaré disk model
are the tilings by congruent polygons in Escher’s woodcuts Cirkellimiet I and
Cirkellimiet IV [59].
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A.4 An invitation to programming

An instructive way to experience and comprehend a mathematical field is to
try to feed that subject into a computer – e.g., for illustrative or computa-
tional purposes. The following is a random selection of programming tasks
encouraging the reader to get more involved with this aspect of geometric
group theory. Happy hacking!

Programming task A.4.1 (Verified group theory).
1. Choose a proof assistant (such as Coq [42]).
2. Model the basic terminology of group theory in this proof assistant (or

find and understand a library doing this).
3. Prove basic facts of group theory in the proof assistant, e.g., uniqueness

of the neutral element (or find and understand a library doing this).

Programming task A.4.2 (Abelianisation).
1. Choose a programming language (such as Haskell [80]) or a computer

algebra system (such as SageMath [153]).
2. Model finite presentations of groups in this language.
3. Model the standard isomorphism types of finitely generated Abelian

groups in this language.
4. Implement abelianisation (Exercise 2.E.18) in this setup.

Hints. This will also require the computation of Smith normal forms.

Programming task A.4.3 (Girth in free groups).
1. Choose a programming language or a computer algebra system.
2. Model (finitely generated) free groups in this language.
3. Implement a function that generates the (potentially infinite) list of

free generating sets of a given finitely generated free group.
Hints. The automorphism groups of free groups are generated by the
so-called Nielsen transformations.

4. Model graphs in this language.
5. Implement a function that, given a finitely generated free group F

and a finite generating set S of this free group, computes the girth
of Cay(F, S).
Hints. The girth is infinite if and only if the generating set is free.
Simultaneously search for the generating set in the list of free generating
sets and (try to) list short loops.

Programming task A.4.4 (Regular graphs of large girth).
1. Choose a programming language or a computer algebra system.
2. Model graphs in this language.
3. Construct regular graphs of large girth as in the proof of Theorem 4.4.6.
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Programming task A.4.5 (Regular polyhedra).
1. Choose a 3D-modelling language (such as OpenSCAD [136] for 3D-

printing or Povray [145] for nice rendering).
2. Create 3D-models of regular polyhedra (both convex regular polyhedra

and non-convex regular polyhedra) by first modelling a single face and
then letting the isometry group act on this base face.
Hints. Figure A.11 displays an octahedron, rendered in Povray.

Figure A.11.: Octahedron

Programming task A.4.6 (Hyperbolic tilings).
1. Choose a programming language or a computer algebra system.
2. Model points and geodesics in the Poincaré disk model in this language.
3. Model/implement hyperbolic reflections in this setup. How can such

reflections be evaluated on points and geodesics?
4. Implement a function that, given n ∈ N≥3 and an angle α ∈ (0, π−π/n),

constructs a regular hyperbolic n-gon with vertex angle α in this setup.
5. Implement a function that, given numbers n, k ∈ N≥3 with 1/n+1/k ≤

1/2, generates the (infinite) list of all geodesics in a tiling of the hy-
perbolic plane by regular n-gons such that at every vertex exactly k of
these n-gons meet.
Hints. Let the symmetry group of the tiling act on a base polygon.

6. Implement a function that, given numbers n, k ∈ N≥3 with 1/n +
1/k ≤ 1/2, generates a graphical representation (e.g., via the tikz-
package [169]) of (a sufficiently large portion of) a tiling of the hy-
perbolic plane by regular n-gons such that at every vertex exactly k of
these n-gons meet.
Hints. Figure A.12 displays examples of such tilings.
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Figure A.12.: Examples of regular tilings of the hyperbolic plane

Programming task A.4.7 (The first Grigorchuk group).

1. Choose a programming language or a computer algebra system.
2. Model the rooted binary tree in this language.
3. Model the generators a, b, c, d of the Grigorchuk group Gri (Defini-

tion 4.E.2) in this setup; i.e., it should be possible to evaluate these
elements on words in {0, 1}∗.

4. Implement a function that, given an element (as a word in the standard
generators and their inverses) of the Grigorchuk group Gri and a word
in {0, 1}∗, computes the result of applying this group element to the
given word.

5. Implement the child homomorphism of the Grigorchuk group.
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Programming task A.4.8 (Verified quasi-geometry).
1. Choose a proof assistant.
2. Model the basic terminology of quasi-geometry in this proof assistant

(such as metric spaces, isometric embeddings, bilipschitz embeddings,
quasi-isometric embeddings, . . . ).

3. Prove basic facts of quasi-geometry in the proof assistant, e.g., inheri-
tance properties of quasi-isometric embeddings or independence of the
bilipschitz equivalence type of the choice of finite generating sets of
finitely generated groups.

4. Model hyperbolic groups in this setup and prove basic facts of hyper-
bolic groups in this setup.

Programming task A.4.9 (Growth functions).
1. Choose a programming language or a computer algebra system.
2. Model finite presentations of groups in this language.
3. Use a suitable concept in this programming language to model what it

means that the word problem for a given finite presentation is solvable.
4. Write a function that, given a finite presentation 〈S |R〉 with solvable

word problem and a radius n ∈ N, computes the value β〈S |R〉,S(n) of
the corresponding growth function.

Programming task A.4.10 (Dehn’s algorithm).
1. Choose a programming language or a computer algebra system.
2. Model finite presentations of groups in this language.
3. Model Dehn presentations in this setup.
4. Implement Dehn’s algorithm (Proposition 7.4.7) in this setup.

Programming task A.4.11 (The word problem in residually finite groups).
1. Choose a programming language or a computer algebra system.
2. Model finite presentations of groups in this language.
3. Implement a function that, given a finite presentation 〈S |R〉, generates

the (potentially infinite) list of all words/elements of 〈R〉/〈S |R〉.
4. Model finite symmetric groups in this language.
5. Model group homomorphisms between finitely generated groups in this

language. How can such a group homomorphism be evaluated on group
elements?

6. Implement a function that, given a finite presentation 〈S |R〉 and n ∈ N,
generates the list of all group homomorphisms 〈S |R〉 −→ Sn.
Hints. Generators and relations satisfy a universal property!

7. Implement a function that, given a finite presentation 〈S |R〉 of a resid-
ually finite group (Definition 4.E.1) and a word w ∈ (S ∪ S−1)∗, deter-
mines whether the group element of 〈S |R〉 represented by w is trivial
or not.
Hints. Simultaneously search for w in 〈R〉/〈S |R〉 and for non-triviality
of w through a homomorphism to a finite symmetric group.
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page: 55
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[103] Clara Löh, Matthias Mann. Which finitely generated Abelian groups
admit equal growth functions? preprint, arXiv: 1309.3381 [math.GR],
2013. Cited on page: 175

[104] Wolfgang Lück. L2-Invariants: Theory and Applications to Geometry
and K-Theory, volume 44 of Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3. Folge, Springer, 2002. Cited on page: 303

[105] Wolfgang Lück. L2-Invariants from the algebraic point of view, in Ge-
ometric and Cohomological Methods in Group Theory, volume 358 of
London Math. Soc. Lecture Note Ser., pp. 63–161, Cambridge Univer-
sity Press, 2009. Cited on page: 315

[106] Wolfgang Lück. Aspherical Manifolds, Bull. Man. Atl., pp. 1-17, 2012.
Cited on page: 279

[107] Roger C. Lyndon, Paul E. Schupp. Combinatorial Group Theory,
reprint of the 1977 edition, Classics in Mathematics, Springer, 2001.
Cited on page: 37, 38

[108] Russell Lyons, Yuval Peres. Probability on Trees and Networks, Cam-
bridge University Press, 2016. Cited on page: 60

[109] Saunders MacLane. Categories for the Working Mathematician, second
edition, volume 5 of Graduate Texts in Mathematics, Springer, 1998.
Cited on page: 153

[110] Wilhelm Magnus, Abraham Karrass, Donald Solitar. Combinatorial
Group Theory: Presentations of Groups in Terms of Generators and
Relations, Interscience Publishers, 1966. Cited on page: 31, 181

[111] Avinoam Mann. How groups grow, volume 395 of London Math.
Soc. Lecture Note Ser., Cambridge University Press, 2012. Cited on
page: 179

[112] Micha l Marcinkowski, Piotr W. Nowak. Aperiodic tilings of manifolds
of intermediate growth, Groups Geom. Dyn., 8(2), pp. 479–483, 2014.
Cited on page: 155



th
is

is
a

dra
ft

ve
rsi

on
!

362 Bibliography

[113] Grigorii A. Margulis. Explicit constructions of graphs without short
cycles and low density codes. Combinatorica, 2(1), pp. 71–78, 1982.
Cited on page: 100

[114] Andrei A. Markov. Insolubility of the problem of homeomorphy, (Rus-
sian) Proc. Internat. Congress Math. 1958, pp. 300–306, Cambridge
University Press, 1960.
(Inofficial) English translation (of an untraceable German translation):
http://www.cs.dartmouth.edu/∼afra/goodies/markov.pdf
Cited on page: 29

[115] William S. Massey. Algebraic Topology: An Introduction, volume 56 of
Graduate Texts in Mathematics, Springer, 1977. Cited on page: 5, 24,
35, 78, 80, 91, 93, 136, 140, 178, 179, 249, 322, 324

[116] Howard Masur, Saul Schleimer. The geometry of the disk complex,
J. Amer. Math. Soc., 26(1), pp. 1–62, 2013. Cited on page: 253

[117] John Meier. Groups, Graphs and Trees, An Introduction to the Ge-
ometry of Infinite Groups, volume 73 of London Mathematical Society
Student Texts, Cambridge University Press, 2008. Cited on page: 46

[118] Kostya Medynets, Roman Sauer, Andreas Thom. Cantor systems and
quasi-isometry of groups, preprint, arXiv:1508.07578 [math.DS], 2015.
Cited on page: 146

[119] Donald W. Miller. On a theorem of Hölder, The American Mathemat-
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Symbols

· ab abelianisation, 42

^ Euclidean angle, 338

^H hyperbolic angle, 338

〈 · , · 〉H,z hyperbolic scalar
product, 330

[0, 1] unit interval in R,

| · | cardinality,

| · | geometric realisation
of graphs,

‖ · ‖H,z norm on TzH, 330

[ · , · ] commutator, 42

∩ intersection of sets,

∪ union of sets,

t disjoint union,

⊂ containment of sets
(equality is allowed),

d · e rounding function,

◦ composition of maps
or morphisms, 13

·̂ formal inverse, 22

≺ is quasi-dominated by,
171

≺D is Dehn dominated by,
200

∼ is quasi-equivalent to,
171

∼D is Dehn equivalent to,
200

∼QI is quasi-isometric to,
117

'∗ is homotopic to; is
homotopy equivalent
to, 320

∼= is isomorphic to,
∗ free product, 35
∗A amalgamated free

product, 35
∗ϑ HNN-extension, 37
· ∗ set of words over . . . ;

induced map on
words, 22

× cartesian product,
o semi-direct product,

32
C is a normal subgroup

of, 16
o wreath product, 34
• one point space,

A

Ab category of Abelian
groups, 15

arcosh area hyperbolic cosine
function, 336
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Area〈S |R〉 area function
of 〈S |R〉, 200

Aut automorphism group,
12, 14

B

BG classifying space of G,
327

βG,S growth function, 168
BG,S growth series of G

with respect to S, 198
BG,Sr (e) ball of radius r

around e in (G, dS),
168

BX,dr (x) ball of radius r
around x in (X, d),

BS(m,n) Baumslag-Solitar
group, 28

C

C set of complex
numbers,

Cay(G,S) Cayley graph of G
with respect to S, 57

CG complex group ring
of G, 325

CG(g) centraliser of g in G,
235

ch(X) chromatic number
of X, 73

χA characteristic function
of A,

Cn(G) simplicial resolution
of G, 326

C(n)(G) lower central series,
180

Cn(G;A) chain complex of G
with A-coefficients,
326

Cn(G;A) cochain complex of G
with A-coefficients,
326

Cuf
n uniformly finite chain

complex, 162

ConeS(g) cone type of g with
respect to S, 229

cosh hyperbolic cosine
function, 336

D

deg mapping degree, 178
Dehn〈S |R〉 Dehn function

of 〈S |R〉, 200
∂G Gromov boundary of

a group G, 270
dH hyperbolic metric on

the halfplane, 331
diamX diameter of X, 118
D∞ infinite dihedral

group, 34
Dn dihedral group, 26
∂n boundary operator,

162, 326
∂Xr F r-boundary of F in X,

295
dS word metric with

respect to S, 122
dvolH hyperbolic area

(integration), 341
∂X Gromov boundary of

a space X, 267

E

ε empty word, 22
e neutral element in a

group, 10
end(γ) end represented by γ,

259
endQ(γ) quasi-end represented

by γ, 263
Ends(G) space of ends of a

group G, 264
Ends(X) space of ends of a

space X, 259
Ends(f) induced map on the

space of ends, 264
EndsQ(X) space of quasi-ends

of X, 263
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F

fA Möbius
transformation
associated with A, 333

F Thompson’s group F ,
28

F2 free group of rank 2,
24

Fn free group of rank n,
24

Fred(S) free group (via
reduced words), 62

F (S) free group generated
by S, 22

G

G(n) derived series, 180
[G : H] index of H in G, 10
Gab abelianisation of G, 42
Gal Galois group, 13
[G,G] commutator subgroup

of G, 42
[g, h] commutator of g

and h, 42
Ĝ profinite completion

of G, 111
gH,z hyperbolic

Riemannian metric,
330

g∞, g−∞ boundary points of g,
271

GL(n, k) general linear group,
13

g−1 inverse group element,
10

G/N quotient group, 17
G \X orbit/quotient space,

80
Gri (first) Grigorchuk

group, 113
Group category of groups, 15
G ∗H free product group, 35
G ∗A H amalgamated free

product group, 35
G∗ϑ HNN-extension, 37

G oH wreath product group,
34

G · x G-orbit of x, 80
Gx stabiliser group at x,

81
g(X) girth of X, 100

H

H upper halfplane, 329
H2 hyperbolic plane, 329
Hn hyperbolic space of

dimension n,
Hn
b bounded cohomology,

303
H`1

n `1-homology, 303
Hn( · ;Z) singular homology

with Z-coefficients,
178

Hn(G;A) homology of G with
A-coefficients, 326

Hn(G;A) cohomology of G with
A-coefficients, 326

Huf
n uniformly finite

homology, 162

I

idX identity on X, 14
Im imaginary part,
im image of a map, 11
Inn inner automorphism

group, 18
Isom isometry group, 13
Isom(H2) Riemannian isometry

group of H2, 332

K

ker kernel of a
homomorphism, 11

κγ curvature of a curve γ,
204

κ̃γ signed curvature of a
curve γ, 204

Kn complete graph, 54
Kn,m complete bipartite

graph, 55
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370 Index of notation

κS Gaussian curvature of
a surface S, 206

κ±S,ν principal curvatures of
a surface S, 206

L

LH2(γ) Riemannian
hyperbolic length of γ,
330

LX(γ) length of γ, 215
`∞( · ,R) space of bounded real

valued functions, 290

M

M(α) Mahler measure of α,
192

Metbilip a category of metric
spaces, 121

Metisom a category of metric
spaces, 15

RMod category of (left)
R-modules, 15

MorC morphisms in C, 13
µH2 hyperbolic area, 341

N

N set of non-negative
integers, 5

N oϕ Q semi-direct product,
32

O

Ob class of objects, 13⊕
H G restricted direct

product; direct sum,
47

Out outer automorphism
group, 18

P

P fin(W ) set of finite subsets, 68
ϕ∗ induced map on

words, 23

π1(f) induced map on
fundamental groups,
320

π1(X) fundamental group,
78, 321

π1(X,x0) fundamental group,
320∏

i∈I Gi direct product group,
32

PSL(2,R) projective special
linear group, 240

Q

Q set of rational
numbers,

QI(X) quasi-isometry group
of X, 121

QMet a category of metric
spaces, 121

QMet′ a category of metric
spaces, 121

R

R set of real numbers,
Re real part,
RG group ring of G

over R, 325
R[G] group ring of G

over R, 325
rg rank gradient, 106
%G,S exponential growth

rate of G with respect
to S, 188

rk rank, 106
rkZ rank of Z-modules,

174
Rn Euclidean space of

dimension n,
RP 2 projective plane,

S

S1 unit circle, 77
(S ∪ Ŝ)∗ set of words

over S ∪ Ŝ, 22
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Index of notation 371

(S ∪ S−1)∗ set of words
over S ∪ S−1, 25

Set category of sets, 15
〈S〉G subgroup of G

generated by S, 19
〈S〉/G normal subgroup

generated by S in G,
25

ΣG,S spherical growth series
of G with respect
to S, 198

Ŝ set of formal inverses
of S, 22

SL(n, k) special linear group,
13

Sn symmetric group
over {1, . . . , n}, 12

Sn n-dimensional sphere,
〈S |R〉 group generated by S

with the relations R,
26

SX symmetric group
over X, 12

T

Top category of topological
spaces, 16

tr trace of a matrix,

U

UDBG category of UDBG
spaces, 152

V

Vectk category of k-vector
spaces, 15

vol Riemannian volume,
176

X

|X| cardinality of X,
|X| geometric realisation

of a graph X, 129
Xg fixed set of g, 81
X̃ universal covering, 78

X̃ universal covering
of X, 323

[X]R fundamental class
in Huf

0 (X;R), 314
[X]Z fundamental class

in Huf
0 (X;Z), 314

[x, y] commutator of x
and y, 28

(x · y)z Gromov product, 252

Z

Z set of integers,
ZG integral group ring

of G, 325
Z/n group of integers

modulo n, 18
Z/nZ group of integers

modulo n, 18
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Index

A

Abelian group, 10
amenability, 290
Dehn function, 201
QI-classification, 174
QI-rigidity, 186
rank, 175

abelianisation, 42, 349
universal property, 42

action, 76
acylindrical, 276
amenable, 312
by deck transformations, 78,

324
by quasi-isometries, 121
cocompact, 136
counting via, 83
essentially free, 105
faithful, 313
fixed set, 81
free, 77
free, on a graph, 79
global fixed point, 81
isometric, 77
left translation, 77, 79
on trees, 86, 91
orbit, 80, 82
orbit space, 80

proper, 136
quotient, 80
right action, 141
rotations, 77
shift, 34, 105
spanning tree, 87
stabiliser, 81
transitive, 84
trivial, 76
von Neumann problem, 294

acylindrical action, 276
acylindrically hyperbolic, 276, 287
adjacent, 54
almost invariant subset, 295
almost invariant vectors, 311
amalgamated free product, 35, 47

actions on trees, 91
construction, 35
normal form, 64
uniqueness, 35
universal property, 34

amenability
of free products?, 309
QI-invariance, 304, 305
via bounded cohomology, 303
via `1-homology, 303
via uniformly finite homology,

303
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374 Index

amenable action, 312
of free groups, 313

amenable group, 290
Abelian groups, 290
bounded cohomology, 315
elementary amenable, 293
Følner sequence, 297
finite groups, 290
growth, 298
inheritance properties, 292
`1-homology, 303
linear groups, 310
locally amenable, 293
solvable groups, 293
vs. property (T), 311

amenable radical, 310
amenable UDBG space, 298
angle

hyperbolic plane, 338
area

hyperbolic, 341, 344
of a relation, 200

area hyperbolic cosine, 336
ascending HNN-extension, 48
asymptotic cone, 183, 285
automorphism, 12, 14

inner, 18
automorphism group, 12, 14

inner, 18
outer, 18

B

Banach-Tarski paradox, 302
basepoint, 320
Bass-Serre theory, 38, 91
Baumslag-Solitar group, 28, 43, 48,

71
distorted element, 254
growth, 195
isoperimetric inequality, 202
word problem, 254

bilipschitz embedding, 117
bilipschitz equivalence, 117, 125

of groups, 124
rigidity, 305, 307, 308, 312

bilipschitz equivalent, 117
groups, 124, 307, 308

binary tree, 111
boundary

as functor, 258
construction principle, 258
ends, 259
Euclidean plane, 285
Gromov, 267
of a set, 295

boundary point
of group elements, 271

bounded cohomology
amenability, 303, 315

bounded geometry, 152
braid, 45
braid group, 45
Breuillard’s growth conjecture, 190

C

CAT(0)-group, 248
examples, 248
flat torus theorem, 249
solvable subgroup theorem, 249
splitting theorem, 249
word problem, 249

CAT(0)-inequality, 246
CAT(0)-space, 246

contractibility, 256
examples, 247

category, 13
group theory, 15
isometric geometry, 15
linear algebra, 15
quasi-geometry, 121
set theory, 15
topology, 16

Cayley complex, 86
Cayley graph, 57

Abelian groups, 57
Baumslag-Solitar groups, 71
cyclic groups, 58
elementary properties, 58
free group, 61, 66, 73
free product, 70
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Index 375

geometric realisation, 157
infinite paths, 69
isomorphisms of, 59, 72
spanning tree, 71
symmetric groups, 58
through transitive action, 84
von Neumann problem, 294

Cayley transform, 347
Cayley’s theorem, 12
centraliser, 235

in hyperbolic groups, 235
quasi-convexity, 242

centre, 236
hyperbolic group, 285

chain
uniformly finite, 162

Christmas tree lemma, 215, 250
chromatic number, 73, 109

of a group, 73
circle group, 18
classifying space, 60, 324
close conjugates, 237
closed manifold, 139
coarse embedding, 161
coarse equivalence, 161
coarsening, 152
cocompact action, 136
cocompact lattice, 146
cocycle, 144, 326
cohomology, 144

of a group, 326
colouring, 73
combinatorial horoball, 286
commensurable, 138

weakly, 138
commutator, 28, 42
commutator subgroup, 42
comparison map, 152
complete bipartite graph, 55
complete graph, 54
complex

Cayley, 86
presentation, 60
Rips, 153
simplicial, 153

concatenation, 22
cone

asymptotic, 285
cone type, 229

hyperbolic group, 230
infinite order elements, 233

conformal
halfplane model, 338
Poincaré disk model, 348

conformal map
hyperbolic isometry, 339
on the boundary, 278

conic trichotomy, 239, 255, 270
conjecture

Borel, 279
growth, 190
Hanna Neumann, 93
Lehmer, 192
virtual Haken, 249
von Neumann, 294

conjugation, 18
connected

graph, 56
context-free normal form, 46
continuous action, 77
contractible, 320
convex subspace, 241
coupling

set-theoretic, 141
topological, 144

covering
universal, 78, 323

covering map, 323
covering theory, 322
Coxeter group, 44, 223
Coxeter matrix, 44
curvature

CAT(0), 246
Gaussian, 206
non-positive, 246
of curves, 204, 205
of surfaces, 205
of the hyperbolic plane, 346
principal, 205
Ricci, 207
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376 Index

scalar, 207
sectional, 207

curve
curvature, 204
hyperbolic length, 330
length, 215
signed curvature, 205

cycle, 326
in a graph, 56

cyclic group, 18
geometric characterisation, 107

D

δ-hyperbolic space, see hyperbolic
space

δ-slim triangle, see slim triangle
deck transformation group, 13, 40,

78, 324
decomposition

paradoxical, 299–301
degree, 54
degree of maps, 177
Dehn domination, 200
Dehn equivalence, 200, 201
Dehn function, 200, 201

Baumslag-Solitar group, 202
hyperbolic group, 254
QI-invariance, 201
virtually cyclic group, 202
word problem, 254

Dehn presentation, 225
hyperbolic group, 226

Dehn’s algorithm, 225, 352
derived series, 180
diameter, 118, 161
dihedral group, 26, 35
discrete group, 146
distorted element, 254
distorted subgroup, 176
domination

of Dehn functions, 200
of growth functions, 171

dynamic criterion, 145
for bilipschitz equivalence, 146

E

edge, 54
essential, 88

Eilenberg-MacLane space, 60, 324
element

independent, 272
inverse, 10
neutral, 10
order, 79

elementary amenable group, 293
elementary hyperbolic group, 287
elliptic isometry, 239, 270
embedding

bilipschitz, 117
coarse, 161
isometric, 116
quasi-isometric, 117

endomorphism
infra-nil, 187

ends, 259, 260
convergence, 259, 263
free group, 281
geodesic, 281
Heisenberg group, 281
of Euclidean space, 260
of geodesic spaces, 259
of groups, 264, 266
of hyperbolic space, 260
of quasi-geodesic spaces, 262
of spaces, 260
of trees, 260
space of, 259, 263
trivial action, 281
via π0, 281
vs. Gromov boundary, 284
vs. quasi-ends, 263

equivalence
of Dehn functions, 200
of growth functions, 171

essential edge, 88
essentially free action, 105
Euclidean space

ends, 260
geodesics, 127
not hyperbolic, 209
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vs. Zn, 124
expanding map, 187
exponential growth, 174

amenable example, 298
Baumslag-Solitar group, 195
hyperbolic groups, 276
of hyperbolic area, 344
semi-ping-pong, 195
solvable group, 197
surface group, 195
uniform, 189

exponential growth rate, 188, 199
extension of groups, 32, 47

amenability, 292
equivalence, 47
splits, 33
virtual solvability, 184

F

faithful action, 313
finite distance (of maps), 117
finite group

amenability, 290
Dehn function, 202
QI-classification, 125

finitely generated group, 19, 25,
30, 39

finitely presentable group, 29
finitely presented group, 29

geometric property, 201
hyperbolic groups, 228

first Grigorchuk group, 113
fixed point theorem

Brouwer, 270
for finite groups on trees, 81
Markov-Kakutani, 291

fixed set, 81
flat manifold, 140
flat torus theorem, 249
Følner sequence, 295

Abelian groups, 296
amenability, 297
exhausting, 311

forest, 56
free action, 77

on a graph, 79
on a tree, 81, 86
paradoxical decomposition, 301
universal covering, 324

free amalgamated product, see
amalgamated free prod-
uct

free group, 20, 40
actions on trees, 86
amenable action, 313
Cayley graph, 61, 66
construction, 22
ends, 264
girth, 349
Gromov boundary, 271
growth, 169
hyperbolicity, 220
in SL(2,Z), 97, 98
in hyperbolic groups, 276
in matrix groups, 102
non-amenable, 291
normal form, 64
of homeomorphisms, 107
of rank n, 24
outer automorphism group, 72
paradoxical, 299
ping-pong lemma, 95
QI-rigidity, 267
rank, 24
reduced words, 62
residually finite, 110
subgroups, 92, 93
Tits alternative, 102
word problem, 64

free product, 35, 47, 49
actions on trees, 91, 94
construction, 35
Gromov boundary, 271
hyperbolicity, 253
normal form, 64
ping-pong lemma, 97
quasi-isometry, 307, 308
subgroups, 94
uniqueness, 35
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378 Index

with amalgamation, see amal-
gamated free product

free wreath product, 49
functor, 151

boundary, 258
coarsening, 152
ends, 264
fundamental group, 320
Gromov boundary, 268
group (co)homology, 327
homotopy invariant, 321
preserves isomorphisms, 151

functorial quasi-isometry invariant,
151

fundamental class
and mapping degree, 178
uniformly finite homology, 303,

314
fundamental group, 30, 60, 78, 320

basic examples, 321
Klein bottle, 69
of glueings, 35
of manifolds, 249
quasi-isometry, 139

fundamental lemma of geometric
group theory, 132

G

G-paradoxical, 300
G-paradoxical decomposition, 300
G-theory, 315
Galois group, 13, 40
Gauß-Bonnet theorem, 342
Gaussian curvature, 206

hyperbolic plane, 346
generalised growth function, 171
generalised semi-circle, 337
generating set, 19
generators and relations, see pre-

sentation of a group, 26,
41

universal property, 26
geodesic, 127

hyperbolic plane, 336, 337
Riemannian geometry, 128

starting at the same point, 233
geodesic ends, 281
geodesic ray

represents end, 263
weird, 213

geodesic space, 127
uniquely, 157

geodesic triangle, 208
insize, 252
slim, 208
thin, 252

geodesification, 131
geometric property of groups, 150

finite, 150
finitely presented, 201
virtually Abelian, 186
virtually free, 267
virtually nilpotent, 185

geometric realisation, 129, 131
Cayley graph, 157

girth, 100, 108, 349
global fixed point, 81
globally expanding map, 187
graph, 54

Cayley, 57
chromatic number, 73
colouring, 73
complete, 54
complete bipartite, 55
connected, 56
cycle, 56
forest, 56
geometric realisation, 129, 131
girth, 100, 108
hyperbolicity, 219, 252
isomorphism, 55
locally finite, 59
metric on, 122
Mycielski, 109
path, 55
regular, 59
rooted binary tree, 111
spanning tree, 57, 87
subgraph, 57
tree, 56
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Grigorchuk group, 113, 351
intermediate growth, 196

Gromov boundary, 267
as compactification, 270
free group, 271
free product group, 271
fundamental groups of hyper-

bolic manifolds, 271
Gromov product, 284
hyperbolic plane, 269, 283
infinite cyclic group, 271, 272
of groups, 270
point of group element, 271
QI invariance, 268
trees, 269
via geodesics, 269
visibility, 284
vs. ends, 284

Gromov hyperbolic, see hyperbolic
Gromov product, 252

Gromov boundary, 284
Gromov’s polynomial growth the-

orem, 179
group, 10

Abelian, 10
abelianisation, 42
acylindrically hyperbolic, 276,

287
amalgamated free product, 35
amenable, 290
ascending HNN-extension, 48
automorphism, 12, 14
Baumslag-Solitar, 28
bilipschitz equivalent, 124
braid, 45
CAT(0), 248
Cayley complex, 86
Cayley graph, 57
centraliser, 235
centre, 236
chromatic number, 73
circle, 18
classifying space, 60, 324
cohomology, 326
commensurable, 138

commutator, 42
commutator subgroup, 42
Coxeter, 44, 223
cyclic, 18
deck transformation, 13, 324
derived series, 180
dihedral, 26
discrete, 146
Eilenberg-MacLane space, 60
elementary amenable, 293
ends, 264
exponential growth, 174
extension, 32
finitely generated, 19
finitely presentable, 29
finitely presented, 29
free, 20
free product, 35
free wreath product, 49
freely generated, 20
fundamental group, 320
Galois, 13
generating set, 19
generators and relations, 26
geometric property, 150
Grigorchuk group, 113
Gromov boundary, 270
growth function, 168
growth type, 173
Heisenberg, 47, 159
HNN-extension, 37
homology, 326
Hopfian, 110
hyperbolic, 220
infinite dihedral, 42
intermediate growth, 174, 196
isometry, 13
isoperimetric inequality, 202,

254
lamplighter, 34, 256
large, 310
lattice, 146
locally amenable, 293
lower central series, 180
mapping class, 41, 277
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380 Index

matrix, 13
nilpotent, 180
non-amenable, 291
not finitely presented, 30
outer automorphism, 18, 277
paradoxical, 299
polynomial growth, 174
presentation, 26
presentation complex, 60
product, 32
profinite completion, 111
property (T), 311
pushout, 34, 35
quasi-isometric, 124
quasi-isometry group, 121
quotient, 17
random, 46
rank, 106
rank gradient, 106
reflection group, 223
relatively hyperbolic, 221
residually finite, 110
Riemannian isometry, 332
semi-direct product, 32
sofic, 111
solvable, 180
splits over a finite group, 266
stabiliser, 81
surface, 44
symmetric, 12
symmetry, 13
systolic, 249
Thompson’s, 28, 294
topological, 146
trivial, 10
two-ended, 282
uniform lattice, 146
virtually nilpotent, 180
virtually solvable, 180
weakly commensurable, 138
word length, 122
word metric, 122
wreath product, 34

group action, see action

group extension, see extension of
groups

group homomorphism, 11
group isomorphism, 11
group presentation, see presenta-

tion of a group
group ring, 325

and G-theory, 315
growth

Abelian groups, 168, 174
Baumslag-Solitar group, 195
exponential, 173, 174, 188, 195,

197
free groups, 169, 174
Heisenberg group, 169, 174,

194
hyperbolic groups, 276
intermediate, 173–175, 196
maps of non-zero degree, 177
of hyperbolic area, 344
of subgroups, 175
polynomial, 173, 174, 179
QI-invariance, 172, 174
surface groups, 195
Švarc-Milnor lemma, 176
uniform exponential, 189
volume growth, 176

growth conjecture, 190
growth function, 168

basic properties, 169
computation, 352
exponential, 172
generalised, 171
monomials, 171
quasi-equivalence, 171

growth gap theorem, 190
growth series, 198

spherical, 198
growth type, 173

H

halfplane, 329
halfplane model, 329

conformal, 338
geodesics, 336
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isometry group, 339
Hall’s marriage theorem, 68, 306
halting problem, 224
Hanna Neumann conjecture, 93
Hausdorff distance, 267
Hausdorff paradox, 301
height, 191
Heisenberg group, 47, 147, 159, 160

ends, 281
growth, 169, 194
not hyperbolic, 239

Heisenberg manifold, 187, 245
Hilbert’s problems, 198

fifth, 183
HNN-extension, 37

actions on trees, 91
ascending, 48
normal form, 64
stable letter, 37

homeomorphism group
free subgroup, 107

homology
bounded cohomology, 303
`1-homology, 303
of a group, 326
uniformly finite, 155, 162, 302,

308
homomorphism

of groups, 11
homotopic maps, 320
homotopy equivalence, 320
homotopy invariance, 321
Hopfian group, 28, 110
hyperbolic

graph, 252
manifold, 140
space, see hyperbolic space

hyperbolic angle, 338
metric description, 338

hyperbolic area, 341
Gauß-Bonnet, 342
geodesic triangle, 342
growth, 344

hyperbolic cosine, 336
hyperbolic dimension

QI-invariance, 270
hyperbolic group, 220

acylindrically hyperbolic, 277
centraliser, 235
centre, 285
close conjugates, 237
cone types, 230
Dehn presentation, 226
does not contain Z2, 239
element of infinite order, 229,

235
elementary, 287
elements of finite order, 254
examples, 220
exponential growth, 276
finitely presented, 228
free product, 253
free subgroup, 276
genericity of, 225
isoperimetric inequality, 254
non-amenable, 294
non-examples, 220
product, 253
residually finite?, 254
short-cuts, 226
Tits alternative, 273
word problem, 225

hyperbolic isometry, 239, 270, 339
area-preserving, 341
conformal, 339

hyperbolic length, 330, 331
hyperbolic manifold, 179

Mostow rigidity, 277
hyperbolic plane, 330

angle, 338
ends, 260
Gaussian curvature, 346
geodesics, 336, 337
Gromov boundary, 269, 270,

283
halfplane model, 329
is CAT(0), 247
is hyperbolic, 209
isometry group, 339
metric, 331, 336
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382 Index

Poincaré disk model, 347
slim triangles, 344
tiling, 222, 350

hyperbolic space, 209
characterisations, 251
ends, 260
geodesics vs. quasi-geodesics,

213
graph, 219
hyperbolic plane, 344
local geodesics, 228
QI-invariance, 215, 220
trees, 219
vs. quasi-hyperbolicity, 213

I

identity morphism, 14
image, 11

quasi-dense, 119
independent elements, 272, 273
index, 10
infinite dihedral group, 42, 47
infra-nil-endomorphism, 187
infra-nil-manifold, 187
inner automorphism, 18
insize, 252
intermediate growth, 174, 175, 196
invariance principle, 148, 151
invariant mean, 290
inverse element, 10
isometric, 116
isometric action, 77
isometric embedding, 116
isometry, 116

elliptic, 239, 270
hyperbolic, 239, 270
parabolic, 239, 270

isometry group, 13, 40
hyperbolic plane, 339
regular polyhedra, 350
Riemannian, 332

isomorphism, 14
and functors, 151
of graphs, 55
of groups, 11

isoperimetric inequality, 202
hyperbolic groups, 254

isotopy of braids, 46

K

Kazhdan set, 311
Kazhdan’s property (T), see prop-

erty (T)
kernel, 11, 39
Klein bottle, 69

L

`1-homology
amenability, 303

lamplighter group, 30, 34, 47, 256
large group, 310
lattice, 146

cocompact, 146
uniform, 146

left translation action, 77, 79
Lehmer conjecture, 192
lemma

Christmas tree, 215
ping-pong, 95

length
hyperbolic, 330, 331
of a curve, 215

linear isoperimetric inequality, 202
hyperbolicity, 254

local geodesic, 228, 251
locally amenable group, 293
locally compact, 144
locally finite

graph, 59
long cycle, see very long cycle
lower central series, 180
loxodromic, 235

M

Mahler measure, 192
manifold

3-manifold, 249
Borel conjecture, 279
closed, 139
curvature, 204
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Index 383

flat, 140
fundamental group, 249
geometric structures, 253, 285
Heisenberg, 245
hyperbolic, 140, 179, 245
infra-nil-manifold, 187
negative sectional curvature,

245
nil-manifold, 187
surface, 44, 140, 205
unclassifyability, 29
virtually fibred, 249

map
basepoint preserving, 320
bilipschitz, 117
covering, 323
expanding, 187
finite distance, 117
globally expanding, 187
homotopic, 320
isometric, 116
quasi-isometric, 117
topologically conjugate, 187

mapping class group, 41, 277
mapping degree, 177
Markov-Kakutani fixed point the-

orem, 291
marriage, 69, 306
marriage condition, 68, 306
marriage theorem, 68, 306
matrix

Coxeter, 44
matrix group, 13

free subgroup, 97, 98, 108
Tits alternative, 102

mean
invariant, 290
of an action, 312

measurable group theory
von Neumann problem, 294

measure equivalence, 148, 159
metric, 116

on a graph, 122
on the hyperbolic plane, 331
proper, 125

word, 122
metric space, 116

amenability, 298
bounded geometry, 152
CAT(0), 246
ends, 259
Følner sequence, 295
geodesic, 127
Gromov boundary, 267
hyperbolic, 209
proper, 135
quasi-geodesic, 128
quasi-hyperbolic, 210
quasi-isometry group, 121
uniformly discrete, 152

Milnor-Wolf theorem, 182
Möbius transformation, 136, 159,

239, 333
isometry, 334
transitivity, 334

model
halfplane, 329
Poincaré disk, 347

Moore bound, 108
morphism, 13

identity, 14
isomorphism, 14

Mostow rigidity, 277
fails for surfaces, 278

Mycielski graph, 109

N

natural transformation, 152
neighbour, 54
neutral element, 10
Nielsen-Schreier theorem, 92

quantitative, 92
topological proof, 93

nil-manifold, 187
nilpotent group, 180, 181

growth, 179, 181, 182
non-amenable group

bilipschitz equivalence, 305, 307,
308

free group, 291
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384 Index

free subgroup, 293
G-theory, 315
hyperbolic group, 294
paradoxical, 300
quasi-isometry, 305, 307, 308

normal form, 46
amalgamated free product, 64
Baumslag-Solitar group, 43
context-free, 46
free group, 64
free product, 64
HNN-extension, 64
regular, 46

normal generation, 25
normal subgroup, 16

generated by, 25

O

object, 13
orbit, 80, 82
orbit space, 80
order of a group element, 79
outer automorphism group, 18, 39,

72, 277

P

parabolic isometry, 239, 270
paradox

Banach-Tarski, 302
Hausdorff, 301

paradoxical action, 300
paradoxical decomposition, 299–301

Banach-Tarski paradox, 302
Hausdorff paradox, 301

paradoxical group, 299
non-amenable, 300

paradoxical set, 300
past, 230
path

in a graph, 55
quasi-path, 262

Petersen graph, 70
ping-pong lemma, 95

for free products, 97
in GL(2,C), 103

in homeomorphism group, 107
in hyperbolic groups, 274
in SL(2,Z), 97
semi-version, 195

plane
hyperbolic, 330

Poincaré disk model, 347
Poincaré halfplane model, see half-

plane model
pointed space, 320
polynomial growth, 174

integrality of degree, 185
polynomial growth theorem, 179
Ponzi scheme, 314
positive presentation, 42
presentation complex, 60
presentation of a group, 26

Abelian groups, 26
abelianisation, 42
amalgamated free product, 35
Baumslag-Solitar groups, 28
braid groups, 45
Coxeter groups, 44
Dehn function, 200
Dehn presentation, 225
dihedral groups, 26, 42
finite, 29
Heisenberg group, 47, 180
HNN-extension, 37
hyperbolic groups, 228
positive, 42
surface groups, 44
Thompson’s group, 28
trivial group, 28
universal property, 26
via topology, 30
word problem, 29, 224

principal curvature, 205
principle

invariance, 148, 151
transitivity, 84

problem
geometric von Neumann prob-

lem, 294
von Neumann problem, 294
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product
hyperbolicity?, 253
CAT(0)-spaces, 256
of manifolds, 246

product group, 32
profinite completion, 111
programming tasks, 349
proof assistant, 349
proper action, 136
proper metric, 125, 135
proper quasi-ray, 262
proper ray, 259
property (T), 311
pushout of groups, 34

construction, 35
fundamental group, 35
uniqueness, 35
universal property, 34

Q

QI, see quasi-isometr∗
QI-classification

Abelian groups, 174
finite groups, 125
surface groups, 140

QI-invariant, see quasi-isometry in-
variant

QI-rigidity
of Abelian groups, 186
of virtually free groups, 267
of Z, 126, 186, 234, 267, 282

quadratic isoperimetric inequality,
202

quasi-convex
centraliser, 242
subgroup, 242, 255
subspace, 241

quasi-dense image, 119
quasi-dense subgroup, 160
quasi-domination, 171
quasi-ends, see ends
quasi-equivalence, 171
quasi-geodesic, 128

stability, 213
taming of, 216

quasi-geodesic space, 128
geodesification, 131

quasi-geodesic triangle, 210
slim, 210

quasi-hyperbolic
group, 253
QI-invariance, 211
space, 210
vs. hyperbolic, 213

quasi-inverse, 117
quasi-isometric, 117

groups, 124
quasi-isometric embedding, 117
quasi-isometry, 117, 119

and CAT(0), 248
and free products, 307, 308
and hyperbolicity, 215, 220
and quasi-hyperbolicity, 211
bijective, 125, 305
dynamic criterion, 145
homomorphism, 160
of groups, 124
set-theoretic coupling, 142
topological coupling, 145
uniform lattice, 147
via homotopy category, 121
vs. bilipschitz equivalence, 305

quasi-isometry group, 121
quasi-isometry invariant, 148

Abelian rank, 174
amenability, 304, 305
Dehn function, 201
ends, 264
functorial, 151
Gromov boundary, 268
growth, 172, 174
hyperbolic dimension, 270
hyperbolicity, 213

quasi-path, 262
quotient group, 17
quotient of an action, 80

R

radical
amenable, 310
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random group, 46, 225
rank gradient, 106
rank of Abelian groups, 175
rank of free groups, 24
rank of groups, 106
ray

convergence, 268
geodesic, 263
proper, 259
represents end, 259

reduced word, 62
amalgamated free product, 64
free product, 64
HNN-extension, 64

reflection group, 26, 44, 223
regular graph, 59
regular normal form, 46
regular polyhedra, 350
relation, 26

area of, 200
relatively hyperbolic group, 221
representation, 77

unitary, 311
residually finite group, 110

free group, 110
hyperbolic groups?, 254
non-examples, 110
word problem, 352

Ricci curvature, 207
Riemannian isometry group, 332
right action, 141
rigidity, 150

bilipschitz equivalence, 305, 307,
308, 312

Borel conjecture, 279
Mostow rigidity, 277
of Cayley graphs, 59

Rips complex, 153
rooted binary tree, 111
R-tree, 250

S

scalar curvature, 207
Schröder-Bernstein theorem, 306
Schwarz, see Švarc

sectional curvature, 207
Seifert and van Kampen theorem,

35
semi-circle

generalised, 337
semi-direct product, 32, 33

ascending HNN-extension, 48
semi-direct product group, 33
semi-ping-pong, 195
series

derived, 180
growth, 198
lower central, 180
spherical growth, 198

set-theoretic coupling, 141, 145, 158,
159

quasi-isometry, 142
shift action, 34, 105
signed curvature, 205
silly cycle, see long cycle
simplicial complex, 153
simply connected, 322
slim triangle, 208, 210

hyperbolic plane, 344
sofic group, 111
solvable group, 180

amenability, 293
exponential growth, 197
growth, 182
not nilpotent, 197

solvable subgroup theorem, 249
space

CAT(0), 246, 247
classifying space, 60, 324
contractible, 320
Eilenberg-MacLane space, 324
geodesic, 127
hyperbolic, 209
metric, 116
of ends, 259, 263
pointed, 320
quasi-geodesic, 128
quasi-hyperbolic, 210
simply connected, 322
UDBG, 152
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universal covering, 323
spanning tree, 57, 68

of an action, 87
sphere

Banach-Tarski paradox, 302
geodesics, 127
Hausdorff paradox, 301

spherical growth series, 198
split extension, 33
splits over a finite group, 266
splitting theorem

CAT(0)-group, 249
manifolds, 246

stabiliser group, 81
stability of quasi-geodesics, 213
stable letter, 37
Stallings’s decomposition theorem,

266
subexponential growth, 196

amenability, 298
Følner sequence, 296, 297

subgraph, 57
subgroup, 10

commutator, 42
distorted, 176
finite generation, 94
generated by . . . , 19
growth, 175
index, 10
normal, 16
normal generation, 25
quasi-convex, 242, 255
quasi-dense, 160

subspace
convex, 241
quasi-convex, 241

surface, 140
curvature, 205
fundamental group, 44
Gaussian curvature, 206

surface group, 44
growth, 195
QI-classification, 140

Švarc-Milnor lemma, 132, 135
for growth types, 176

quasi-geometric, 158
symmetric group, 12

amenability, 309
symmetry group, 13

of tilings, 223, 350
systolic group, 249

T

Tarski’s theorem, 300
theorem

Cayley, 12
dynamic criterion, 145
flat torus, 249
fundamental lemma of geomet-

ric group theory, 132
Gauß-Bonnet, 342
growth gap, 190
Hall’s marriage, 68, 306
Markov-Kakutani, 291
marriage, 68, 306
Milnor-Wolf, 182
Mostow rigidity, 277
Nielsen-Schreier, 92
ping-pong lemma, 95
polynomial growth, 179
Schröder-Bernstein, 306
Seifert and van Kampen, 35
solvable subgroup, 249
splitting theorem, 246, 249
Stallings’s decomposition the-

orem, 266
Švarc-Milnor lemma, 132, 135,

176
Tarski’s, 300
Theorema Egregium, 206
Tits alternative, 102
uniform Tits alternative, 191

Theorema Egregium, 206
thin triangle, 252
Thompson’s group, 28, 42, 294
tiling

hyperbolic plane, 222, 350
symmetry group, 223

Tits alternative, 102
hyperbolic group, 273
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uniform, 191
topological coupling, 144, 145
topological group, 146

lattice, 146
uniform lattice, 146

topological space
fundamental group, 320
locally compact, 144

topologically conjugate maps, 187
topology

algebraic, 322
via convergence, 280

torus, 187
transitive action, 84
transitivity principle, 84

for Cayley graphs, 84
translation action, 77, 79
tree, 56

action by free product, 94
actions on, 91
as Cayley graph, 61
characterisation, 68
ends, 260
free actions on, 81, 86
hyperbolicity, 219
rooted binary, 111
R-tree, 250
spanning, 57, 68
spanning (action), 87

triangle inequality, 116
tripod triple, 251
trivial action, 76
trivial boundary, 258
trivial estimate, 330
trivial group, 10

U

UDBG space, 152
amenable, 298
bilipschitz equivalence rigid-

ity, 305
Følner sequence, 295
uniformly finite homology, 155,

162
undistorted element, 235, 236

uniform exponential growth, 189
QI-invariance?, 200

uniform lattice, 146, 147
quasi-isometry, 147

uniform Tits alternative, 191
uniformly discrete, 152
uniformly finite chain, 162
uniformly finite homology, 155, 162

amenability, 303
and bilipschitz equivalence rigid-

ity, 308
fundamental class, 303, 314
Ponzi scheme, 314

uniquely geodesic, 157
unitary representation, 311
universal covering, 78, 323
universal property

of abelianisation, 42
of amalgamated free products,

34
of free groups, 20
of free products, 34
of generators and relations, 26
of product groups, 32
of pushout groups, 34
of quotient groups, 17
yoga, 20

universe of groups, 2
upper halfplane, 329

V

vertex, 54
vertex colouring, see colouring
vertical estimate, 331
very long cycle, see silly cycle
virtual Haken conjecture, 249
virtually . . . , 150
virtually cyclic group

isoperimetric inequality, 202
QI-rigidity, 186, 234, 282

virtually nilpotent group, 180
geometric property, 185
growth, 179, 182

virtually solvable group, 180
growth, 182
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visibility
of Gromov boundary, 284

volume growth, 176, 185
von Neumann problem, 294

for actions, 294
for Cayley graphs, 294
geometric, 294
measurable group theory, 294

W

weakly commensurable, 138
word, 22

concatenation, 22
normal form, see normal form
reduced, 62

word length, 122
word metric, 122, 123

proper, 125
word problem, 224

Baumslag-Solitar group, 254
CAT(0)-groups, 249
Dehn function, 254
Dehn’s algorithm, 225, 352
free groups, 64
hyperbolic groups, 225
residually finite groups, 352
undecidability, 29
unsolvability, 224

wreath product group, 34
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