











About this book

This book is an introduction into geometric group theory. It is certainly not
an encyclopedic treatment of geometric group theory, but hopefully it will
prepare and encourage the reader to take the next step and learn more ad-
vanced aspects of geometric group theory.

The core material of the book should be accessible to third year students,
requiring only a basic acquaintance with group theory, metric spaces, and
point-set topology. I tried to keep the level of the exposition as elementary
as possible; preferring elementary proofs over arguments that require more
machinery in topology or geometry. I refrained from adding complete proofs
for some of the deeper theorems and instead included sketch proofs, high-
lighting the key ideas and the view towards applications. However, many of
the applications will need a more extensive background in algebraic topology,
Riemannian geometry, and algebra.

The exercises are rated in difficulty, from easy™ over medium** to hard***.
And very hard>* (usually, open problems of some sort). The core exercises
should be accessible to third year students, but some of the exercises aim at
applications in other fields and hence require a background in these fields.
Moreover, there are exercise sections that develop additional theory in a series
of exercises; these exercise sections are marked with T.

This book covers slightly more than a one-semester course. Most of the
material originates from various courses and seminars I taught at the Uni-
versitiat Regensburg: the geometric group theory courses (2010 and 2014),
the seminar on amenable groups (2011), the course on linear groups and
heights (2015, together with Walter Gubler), and an elementary course on
geometry (2016). Most of the students had a background in real and complex
analysis, in linear algebra, algebra, and some basic geometry of manifolds;
some of the students also had experience in algebraic topology and Rieman-
nian geometry. I would like to thank the participants of these courses and
seminars for their interest in the subject and their patience.

I am particularly grateful to Toni Annala, Matthias Blank, Luigi Ca-
puti, Francesca Diana, Alexander Engel, Daniel Fauser, Stefan Friedl, Wal-
ter Gubler, Michat Marcinkowski, Andreas Thom, Johannes Witzig, and the
anonymous referees for many valuable suggestions and corrections. This work
was supported by the GRK 1692 Curvature, Cycles, and Cohomology (Uni-
versitdt Regensburg, funded by the DFG).

Regensburg, September 2017 Clara Loh
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Figure 1.1.: Basic examples of Cayley graphs

A key example of geometric objects associated with a group are Cayley
graphs (with respect to a chosen generating set) together with the corre-
sponding word metrics. For instance; from the point of view of large scale
geometry, Cayley graphs of Z resemble the geometry of the real line, Cayley
graphs of Z X Z resemble the geometry of the Euclidean plane, while Cayley
graphs of the free group Z * Z on two generators have essential features of
the geometry of the hyperbolic plane (Figure 1.1; exact definitions of these
concepts are introduced in later chapters).

More generally, in (large scale) geometric group theoretic terms, the uni-
verse of (finitely generated) groups roughly unfolds as depicted in Figure 1.2.
The boundaries are inhabited by amenable groups and non-positively curved
groups respectively = classes of groups that are (at least partially) accessi-
ble. However, studying these boundary classes is only the very beginning of
understanding the universe of groups; in general, knowledge about these two
classes of groups is far from enough to draw conclusions about groups at the
inner regions of the universe:

“Hic abundant leones.” [29]
“A statement that holds for all finitely generated groups
has to be either trivial or wrong.” [attributed to M. Gromov]

Why study geometric group theory? On the one hand, geometric group
theory is an interesting theory combining aspects of different fields of math-
ematics in a cunning way. On the other hand, geometric group theory has
numerous applications to problems in classical fields such as group theory,
Riemannian geometry, topology, and number theory.

For example, free groups (an a priori purely algebraic notion) can be char-
acterised geometrically via actions on trees; this leads to an elegant proof of
the (purely algebraic!) fact that subgroups of free groups are free.

Further applications of geometric group theory to algebra and Riemannian
geometry include the following:
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translating these curvature conditions into group theory and looking
at groups associated with the given smooth manifold (e.g., the funda-
mental group). Moreover, a similar technique also yields (non-)splitting
results for certain non-positively curved spaces.

o Rugidity results for certain classes of matriz groups and Riemannian
manifolds; here, the key is the study of an appropriate geometry at
infinity of groups.

o _Group-theoretic reformulation of the Lehmer conjecture; by the work of
Breuillard et al:, the Lehmer conjecture in algebraic number theory is
equivalent to a problem about growth of certain matrix groups.

o Geometric group theory provides a layer of abstraction that helps to
understand and_generalise classical geometry —in particular, in the case
of negative or non-positive curvature and the corresponding geometry
at infinity.

o The Banach-Tarski paradox (a sphere can be divided into finitely many
pieces that in turn can be puzzled together into two spheres congruent to
the given one [this relies on the axiom of choice]); the Banach-Tarski
paradox corresponds to certain matrix groups not being “amenable”,
a notion related to both measure theoretic and geometric properties of
groups.

o A better understanding of many classical groups; this includes, for in-
stance, mapping class groups of surfaces and outer automorphisms of
free groups (and their behaviour similar to certain matrix groups).

Overview of the book. The goal of this book is to explain the basic termi-
nology of geometric group theory, the standard proof techniques, and how
these concepts can be applied to obtain the results listed above.

As the main charactersin geometric group theory are groups, we will start
by reviewing concepts and examples from group theory and by introducing
constructions that allow to generate interesting groups (Chapter 2). Readers
familiar with group theory and the standard examples of groups can happily
skip this chapter.

Then we will introduce one of the main combinatorial objects in geometric
group theory, Cayley graphs, and review basic notions concerning actions of
groups (Chapter 3-4). A first taste of the power of geometric group theory
is the geometric characterisation of free groups via actions on trees.

As next step, we will introduce a metric structure on groups via word
metrics on Cayley graphs, and we will study the large scale geometry of
groups with respect to this metric structure, in particular; the concept of
quasi-isometry (Chapter 5).

After these preparations, we will enjoy the quasi-geometry of groups, in-
cluding

e growth types (Chapter 6),
hyperbolicity (Chapter 7),
geometry at infinity (Chapter 8),
amenability (Chapter 9).
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Basics on fundamental groups, group (co)homology, and elementary prop-
erties of the hyperbolic plane, are collected in the appendices (Appendix A).
As the proof of the pudding is in the eating, Appendix A.4 contains a list of
programming tasks related to geometric group theory.

Literature. Geometric group theory is a vast, rapidly growing area of mathe-
matics; therefore, not all aspects can be covered in this book. The selection of
topics is biased by my own preferences, but I hope that this book will prepare
and encourage the reader to discover more of geometric group theory. The
standard resources for geometric group theory are:

e Topics in_Geometric group theory by de la Harpe [77] (one of the first
collections of results and examples in geometric group theory),

o Geometric Group Theory by Drutu and M. Kapovich, with an appendix
by Nica [53] (the latest compendium on geometric group theory for
advanced students and researchers),

o Office Hours with a Geometric Group Theorist edited by Clay and Mar-
galit [41] (a-recent collection of topics and examples with a focus on
intuition ),

e Metric spaces of non-positive curvature by Bridson and Haefliger [31] (a
compendium on non-positive curvature and its relations with geometric
group theory; parts of Chapter 7 and Chapter 8 follow this source),

o Trees by Serre [159] (the standard source for Bass-Serre theory).

A short and comprehensible introduction into curvature in classical Rie-
mannian geometry is given in the book Riemannian manifolds. An introduc-
tion to curvature by Lee [96]. Background material on fundamental groups
and covering theory can be found in the book Algebraic Topology: An Intro-
duction by Massey [115].

Furthermore, I recommend to look at the overview articles by Bridson
on geometric and combinatorial group theory [29; 30]. The original reference
for modern large scale geometry of groups is the landmark paper Hyperbolic
groups [74] by Gromov.

One sentence on notation. The natural numbers N contain 0.
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Remark 2.1.7 (Isomorphisms via kernel/image). It is a simple exercise in al-
gebra to verify the following:
1. A group homomorphism is injective if and only if its kernel is the trivial
subgroup (Exercise 2.E.3).
2. A group homomorphism is an isomorphism if and only if it is bijective.
3. In particular: A group homomorphism ¢: G — H is an isomorphism
if and only if ker ¢ is the trivial subgroup and im ¢ = H.

2.1.2 Concrete groups: automorphism groups

The concept; and hence the axiomatisation, of groups developed originally out
of the observation that certain collections of “invertible” structure preserving
transformations of geometric or algebraic objects fit into the same abstract
framework; moreover, it turned out that many interesting properties of the
underlying objects are encoded in the group structure of the corresponding
automorphism group.

Example 2.1.8 (Symmetric groups). Let X be a set. Then the set Sx of all
bijections of type X — X is a group with respect to composition of maps,
the symmetric group over X. If n € N, then we abbreviate S, := Sg; . ny. If
| X| > 3, the group Sx is not Abelian.

This example is generic in the following sense:

Proposition 2.1.9 (Cayley's theorem). Every group is isomorphic to a sub-
group of some symmetric group.

Proof. Let G be a group. Then G is isomorphic to a subgroup of Sg: For g € G
we define the map
fo:G—G

T g T
For all g,h € G we have fgo f;, = fg.n. Therefore, looking at f,-1 shows that
fg: G — G is a bijection for all g € G. Moreover, it follows that

f:G— 5S¢
9— fg

is a group homomorphism, which is easily shown to be injective. So, f induces
an isomorphism G = im f C Sg, as desired. O

Example 2.1.10 (Automorphism group of a group). Let G bea group. Then the
set Aut(G) of group isomorphisms of type G — G is a group with respect
to composition of maps, the automorphism group of G. Clearly, Aut(G) is a
subgroup of Sg.
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Example 2.1.11 (Isometry groups/Symmetry groups). Let X be a metric space
(basic notions for metric spaces are recalled in Chapter 5.1). The set Isom(X)
of all isometries of type X — X forms a group with respect to composi-
tion (a-subgroup of the symmetric group Sx). For example, in this way the
dihedral groups naturally occur as symmetry groups of regular polygons (Ex-
ample 2.2.20, Exercise 2.E.8).

Example 2.1.12 (Matrix groups). Let k be a commutative ring with unit,
and let V be a k-module. Then the set Aut(V) of all k-linear isomor-
phisms V.— V forms a group with respect to composition. In particular,
the set GL(n, k) of invertible n x n-matrices over k is a group (with respect to
matrix multiplication) for every n € N. Similarly, also SL(n, k), the subgroup
of invertible matrices of determinant 1, is a group.

Example 2.1.13 (Galois groups). Let K C L be a Galois extension of fields.
Then the set
Gal(L/K) = {c € Aut(L) | o|x = idx }

of field automorphisms of L fixing K is a group with respect to composition,
the Galois group of the extension L/K.

Example 2.1.14 (Deck transformation groups). Let 7: X — Y be a covering
map of topological spaces. Then the set

{f € map(X, X) | f is a homeomorphism with 7 o f = 77}
of deck transformations forms a group with respect to composition.

In more conceptual language, these examples are all instances of the follow-
ing general principle: If X is an object in a category C, then the set Aute(X)
of C-isomorphisms of type X — X is a group with respect to composition
in C'. We will now explain this in more detail:

Definition 2.1.15 (Category). A category C' consists of the following compo-
nents:

e A class Ob(C); the elements of Ob(C') are objects of C. (Classes are a
generalisation of sets, allowing, e.g., for the definition of the class of all
sets [164]).

e A set Morg(X,Y) for each choice of objects X, Y € Ob(C); elements
of Morq(X,Y) are called morphisms from X to Y. (We implicitly as-
sume that morphism sets between different pairs of objects are disjoint.)

e For all objects X,Y,Z € Ob(C) a composition

o: Mor¢(Y, Z) x More(X,Y) — More (X, Z)
(9: /) =—=g°f

of morphisms.
These data have to satisfy the following conditions:
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e For each object X in C there is a morphism idx € Morc (X, X) with
the following property: For all Y € Ob(C) and all f € Morqc(X,Y) and
g € Mor¢ (Y, X) we have

foidx = f and idx og = g.

(The morphism idx is uniquely determined by this property; it is the
identity morphism of X in C).

e Morphism composition is associative, i.e., for all W, X, Y, Z € Ob(C)
and-all f € Morc(W,X), g € Morg(X,Y) and h € Morc (Y, Z) we
have

ho(go f)=(hog)of.

Caveat 2.1.16. The concept of morphisms and compositions is modelled on
the example of maps between sets and ordinary composition of maps. How-
ever, in general, morphisms in categories need not be given as maps between
sets and composition need not be composition of maps!

The notion of categories contains all the ingredients necessary to talk about
isomorphisms and automorphisms:

Definition 2.1.17 (Isomorphism). Let C' be a category. Objects X, Y € Ob(C)
are4somorphic in C' if there exist f € Morg(X,Y) and g € Mor¢(Y, X) with

go f =idx and fog=idy.

In this case, f and g are isomorphisms in C and we write X 2o Y (or X 2 Y
if the category is clear from the context).

Definition 2.1.18 (Automorphism group). Let C be a category and let X
be an object of C'. Then the set Autc(X) of all isomorphisms X — X
in C is a group with respect to composition in C' (Proposition 2.1.19), the
automorphism_group of X in C.

Proposition 2.1.19 (Automorphism groups in categories).
1. Let C be a category and let X € Ob(C). Then Autc(X) is a group.
2. Let G be a group. Then there exists a category C'" and an object X in C
such that G = Aute(X).

Proof. Ad 1. Because the composition of morphisms in C' is associative, com-
position in Aute(X) is associative. The identity morphism idx is an isomor-
phism X — X (being its own inverse) and, by definition, id x is the neutral
element with respect to composition. Moreover, the existence of inverses is
guaranteed by the definition of isomorphisms in categories.

Ad 2. We consider the category C' that contains only a single object X. We
set Morg(X; X) := G and we define the composition in C via the composition
in G by
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o: Morg (X, X) x Morg(X, X) — Morg(X, X)
(9,h) —> g h.

A straightforward computation shows that C' indeed is a category and that
Aute (X) is G. O

We will now illustrate these terms in more concrete examples:

Example 2.1.20 (Set theory). The category Set of sets consists of:

e Objects: Let Ob(Set) be the class(!) of all sets.

e Morphisms: For sets X and Y, we let Morse:(X,Y) be the set of all
set-theoretic maps X — Y.

e Compositions are ordinary compositions of maps: For sets X, Y, Z we
define the composition Morse (Y, Z) X Morse (X, Y) — Morse (X, Z)
to be ordinary composition of maps.

It is clear that this composition is associative. If X is a set, then the ordinary
identity map

X — X

r+—T

is the identity morphismof X in Set. Objects in Set are isomorphic if and only
if they have the same cardinality and for all sets X the symmetric group Sx
coincides with Autger(X).

Example 2.1.21 (Algebra). The category Group of groups consists of:
e Objects: Let Ob(Group) be the class of all groups.
e Morphisms: For groups G and H we let Morguoup(G, H) be the set of
all group homomorphisms.
e Compositions: As compositions we choose ordinary composition of
maps.
Analogously, one also obtains the category Ab of Abelian groups, the cate-
gory Vectr of R-vector spaces, the category pMod of left R-modules over a
ring R, ... Objects in Group, Ab, Vectr, gMod, ... are isomorphic in the
sense of category theory if and only if they are isomorphic in the algebraic
sense. Moreover, both the category theoretic and the algebraic point of view
result in the same automorphism groups.

Example 2.1.22 (Geometry of isometric embeddings). The category Metisom of
metric spaces and isometric embeddings consists of:

e Objects: Let Ob(Met;som) be the class of all metric spaces.

e Morphisms in Met;som are isometric embeddings (i.e., distance preserv-

ing maps) of metric spaces.

e The compositions are given by ordinary composition of maps.
Then objects in Metisom are isomorphic if and only if they are isometric and
automorphism groups in Metisom are nothing but isometry groups of metric
spaces.
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Example 2.1.23 (Topology). The category Top of topological spaces consists
of:

e Objects: Let Ob(Top) be the class of all topological spaces.

e Morphisms in Top are continuous maps.

e The compositions are given by ordinary composition of maps.
Isomorphisms in Top are precisely the homeomorphisms; automorphism
groups in Top are the groups of self<homeomorphisms of topological spaces.

Taking automorphism groups of geometric/algebraic objects is only one
way to associate meaningful groups to interesting objects. Over time, many
group-valued invariants have been developed in all fields of mathematics. For
example:

e fundamental groups (in topology, algebraic geometry, operator algebra

theory, ... )

e homology groups (in topology, algebra, algebraic geometry, operator

algebra theory,...)

2.1.3 Normal subgroups and quotients

Sometimes it is convenient to ignore a certain subobject of a given object
and to focus on the remaining properties. Formally, this is done by taking
quotients. In contrast to the theory of vector spaces, where the quotient of any
vector space by any subspace again naturally forms a vector space, we have
to be a little bit more careful in the world of groups. Only special subgroups
lead to quotient groups:

Definition 2.1.24 (Normal subgroup). Let G be a group. A subgroup N of G
is normal if it is conjugation invariant, i.e., if

g-n-gteN

holds for all n € N and all g € G. If NV is a normal subgroup of G, then we
write N < G.

Example 2.1.25 (Some (non-)normal subgroups).

e All subgroups of Abelian groups are normal.

e Let 7 € S5 be the bijection given by swapping 1 and 2 (i.e., 7 =(1 2)).
Then {id,7} is a subgroup of Sz, but it is mot a normal subgroup.
On the other hand, the subgroup {id,s,0?} C S3 generated by the
cyele o := (12,2 — 3,3 — 1) is a normal subgroup of Ss.

e Kernels of group homomorphisms are normal in the domain group;
conversely, every normal subgroup also is the kernel of a certain group
homomorphism (namely of the canonical projection to the quotient
(Proposition 2.1.26)).
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2.2 Groups via generators and relations

How can we specify a group? One way is to construct a group as the automor-
phism group of some object or as a subgroup or quotient thereof. However,
when interested in finding groups with certain algebraic features, it might
sometimes be difficult to find a corresponding geometric object.

In this section, we will see that there is another — abstract — way to con-
struct groups, namely by generators and relations: We will prove that for
every list of elements (“generators”) and group theoretic equations (“rela-
tions”) linking these elements there always exists a group in which these
relations hold as non-trivially as possible. (However, in general, it is not pos-
sible to decide whether the given wish-list of generators and relations can
be realised by a non-trivial group.) Technically, generators and relations are
formalised by the use of free groups and suitable quotient groups.

2.2.1 Generating sets of groups

We start by reviewing the concept of a generating set of a group; in geometric
group theory, one usually is only interested in finitely generated groups (for
reasons that will become clear in Chapter 5).

Definition 2.2.1 (Generating set).

e Let G be a group and let S C G be a subset. The subgroup generated
by S in G is the smallest subgroup (with respect to inclusion) of G that
contains S; the subgroup generated by S in G is denoted by (S)¢.
The set S generates G if (S)a = G.

e A group is finitely generated if it contains a finite subset that generates
the group in question.

Remark 2.2.2 (Explicit description of generated subgroups). Let G be a group
and let S"C G. Then the subgroup generated by &S in G always exists and
can be described as follows:

(SYa = ﬂ{H | H C G is a subgroup with S C H}

= {s‘il ----- son |n€N7 81,.4-,8, €S, €1,...,En € {—1,—1—1}}.

Example 2.2.3 (Generating sets).
e If GG is a group, then G is a generating set of G.
e The trivial group is generated by the empty set.
e The set {1} generates the additive group Z; moreover, also, e.g., {2,3}
is a generating set for Z. But {2} and {3} are no generating sets of Z.
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e Let X bea set. Then the symmetric group Sx is finitely generated if
and only if X is finite (Exercise 2.E.4).

2.2.2 Free groups

Every vector space admits special generating sets: namely those generating
sets that are as free as possible (meaning having as few linear algebraic rela-
tions between them as possible), i.e., the linearly independent ones. Also, in
the setting of group theory, we can formulate what it means to be a free gener-
ating set — however, as we will see; most groups do not admit free generating
sets. This is one of the reasons why group theory is much more complicated
than linear algebras

Definition 2.2.4 (Free groups, universal property). Let S be a set. A group F
containing S'is freely generated by S if F has the following universal property:
For every group G and every map ¢: S — G there is a unique group
homomorphism @: F' — G extending ¢:

SL;G

[ >
Jo—
L, ¥

F
A group is free if it contains a free generating set.

Example 2.2.5 (Free groups).

e The additive group Z is freely generated by {1}. The additive group Z
is not freely generated by {2,3} or {2} or {3}; in particular, not every
generating set of a group contains a free generating set.

e The trivial group is freely generated by the empty set.

e Not every group is free; for example; the additive groups Z/2 and 7?2
are not free (Exercise 2.E.11).

The term “universal property” obliges us to prove that objects having this
universal property are unique in an appropriate sense; moreover, we will see
below (Theorem 2.2.7) that for every set there indeed exists a group freely
generated by the given set.

Proposition 2.2.6 (Free groups, uniqueness). Let'S be a set. Then, up to
canonical isomorphism, there is at most one group freely generated by S.

The proof consists of the standard universal-property-yoga (Figure 2.1):
Namely, we consider two objects that have the universal property in question.
We then proceed as follows:

1. We use the existence part of the universal property to obtain interesting

morphisms in both directions.












24 2. Generating groups

Let sy, s3 € S.“We consider the map p: S — Z given by (s1) := 1 and

©(s3) := —1. Then the corresponding homomorphism @: F(S) — G satisfies
?(i(s1)) = p(s1) = 1# =1 = p(s2) = B(i(s2));
in particular, i(s1) #4(s2). Hence, 7 is injective. O

Depending on the problem at hand, the declarative description of free
groups via the universal property or a constructive description as in the pre-
vious proof might be more appropriate than the other. A refined constructive
description of free groups in terms of reduced words will be given in the con-
text of Cayley graphs (Chapter 3.3.1).

We conclude by collecting some properties of free generating sets in free
groups: First of all, free groups indeed are generated (in the sense of Def-
inition 2.2.1) by every free generating set (Corollary 2.2.8); secondly, free
generating sets are generating sets of minimal size (Proposition 2.2.9); more-
over, finitely generated groups can be characterised as the quotients of finitely
generated free groups (Corollary 2:2.12).

Corollary 2.2.8. Let F' be a free group, and let S be a free generating set of F'.
Then S generates F.

Proof. By construction, the statement holds for the free group F'(S) gener-
ated by S constructed in the proof of Theorem 2.2.7. In view of the uniqueness
result Proposition 2.2.6, we find an isomorphism F'(S) & F that is the iden-
tity .on S. Hence, it follows that also the given free group F' is generated
by S. O

Proposition 2.2.9 (Rank of free groups). Let F' be a free group.
1. Let S C F be a free generating set of F' and let S’ be a generating set
of E. Then |S'| > |S|.
2. In particular: All free generating sets of F' have the same cardinality,
called the rank of F'.

Proof. The first part can be derived from the universal property of free groups
(mapping to Z/2) together with a counting argument (Exercise 2.E.12). The
second part is a consequence of the first part. O

Definition 2.2.10 (Free group F,). Let n € N and let S = {x1, ..., x,}, where
T1,..., Ty, are n distinct elements. Then we write F,, for “the” group freely
generated by S, and call F,, the free group of rank n.

Caveat 2.2.11. While subspaces of vector spaces cannot have bigger dimen-
sion than the ambient space, free groups of rank 2 contain subgroups that are
isomorphic to free groups of higher rank, even free subgroups of (countably)
infinite rank. Subgroups of this type can easily be constructed via covering
theory [115, Chapter VL8] or via actions on trees(Chapter 4.2.3).
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Corollary 2.2.12. A group is finitely generated if and only if it is the quotient
of a finitely generated free group, i.e., a group G is finitely generated if and
only if there exists a finitely generated free group F and a surjective group
homomorphism F — G.

Proof. Quotients of finitely generated groups are finitely generated (e.g., the
image of a finite generating set is a finite generating set of the quotient).
Conversely, let G be a finitely generated group, say generated by the finite
set S C G. Furthermore, let F' be the free group generated by .S; by Corol-
lary 2.2.8; the group F is finitely generated. Using the universal property
of F', we find a group homomorphism 7: F' — G that is the identity on S.
Because S generates G and because S lies in the image of 7, it follows that
imw = G. O

2.2.3 Generators and relations

Free groups enable us to generate generic groups over a given set; in order to
force generators to satisfy a given list of group theoretic equations, we divide
out a suitable normal subgroup.

Definition 2.2.13 (Normal generation). Let G be a group and let S C G be a
subset. The normal subgroup of G generated by S is the smallest (with respect
to inclusion) normal subgroup of G containing .S; it is denoted by (S)&.
Remark 2.2.14 (Explicit description of generated normal subgroups). Let G be
a group and let S C G. Then the normal subgroup generated by S in G
always exists and can be described as follows:

()= ﬂ{H | H € G is a normal subgroup with S C H}

= {gl . Sil gl_l ..... gn . !52”1 . g;l

’nEN,sl,...,snES, €1,..56n € {=1,+1}, gl,...,gneG}.

Example 2.2.15 (Normal generation).
o As all subgroups of Abelian groups are normal, we have (S)& = (S)a
for all Abelian groups G and all subsets S C G.

e We consider the symmetric group S3 and the permutation 7 € S3 given
by swapping 1 and 2; then (7)s, = {idf12 3}, 7} and (1)§, = Ss.
Caveat 2.2.16. If G is a group, and N < G, then, in _general, it is rather
difficult to determine what the minimal number of elements of a subset S C G

is that satisfies (S)& = N.

In the following, we use the notation A* for the set of (possibly empty)
words in a set A; moreover, we abuse notation and denote elements of the
free group F(S) over a set S by words in (S U S71)* (even though, strictly
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speaking, elements of F(S) are equivalence classes of words in (S U S~H)*).
If we want to emphasise the formality of inverses, we will also sometimes use
words in (SUS)* instead of (SUS—1)*.

Definition 2.2.17 (Generators and relations). Let S be a set, let R € (SUS—1)*
bea subset; let F'(S) be the free group generated by S. Then the group

(STR) := F(S)/(R)ps)

is'said to be generated by S with the relations R.

If G is a group with G = (S| R), then the pair (S, R) is a presentation
of Gy by abuse of notation we also use the symbol (S|R) to denote this
presentation.

Relations of the form “w -w'~!" are also sometimes denoted as “w = w'”,

because in the generated group, the words w and w’ represent the same group
element.

The following proposition is a formal way of saying that (S'| R) is a group
in which the relations R hold as non-trivially as possible:

Proposition 2.2.18 (Universal property of generators and relations). Let S be a
set and let R C (SUS~1)*. The group (S | R) generated by S with relations R
together with the canonical map 7: S — F(S)/(R)5 gy = (S|R) has the
following universal property: For every group G and every map ¢: S — G
with the property that

o (r)=e inG

holds for all wordsr € R, there exists precisely one group homomorphism
®: (S|R) — G such that pom = ¢; here, o*: (SUS™1)* — G is the
canonical extension of @ to words over SU S~ (as described in the proof of
Theorem 2.2.7). Moreover, (S| R) (together with w) is determined uniquely
(up to canonical isomorphism) by this universal property.

Proof. This is a combination of the universal property of free groups (Def-
inition 2.2.4) and of the universal property of quotient groups (Proposi-
tion 2.1.26) (Exercise 2.E.15). O

Example 2.2.19 (Presentations of groups).
e Forall n € N, we have (x | ™) & Z/n. This can be seen via the universal
property or via the explicit construction of (x|z™).
e We have (z,y |ayx—'y~!) = Z2, as can be derived from the universal
property (Exercise 2.E.14).

Example 2.2.20 (Dihedral groups). Let n € N>3 and let X,, CR? be a regular
n-gon (with the metric induced from the Euclidean metric on R?). Then the
isometry group of X,, is a dihedral group:

Tsom(X,,) = (s,t]s", ¢ tst =t = s71) =: D,
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Example 2.2.21 (Thompson's group F'). Thompson’s group F is defined as
F = <:v0,:c1,... | {x,:lxna:k =@py1 | k,neN k< n}>

Actually, F' admits a presentation by finitely many generators and relations,
namely
F={a,b] [ab~' a "ba),[ab ", a"%ba’])

(Exercise 2.E.20). Here, we use the commutator notation “[z,y] := zyz~1y~1”

both for group elements and for words. Geometrically, the group F can be
interpreted in terms of certain PL-homeomorphisms of [0, 1] and in terms of
actions on certain binary rooted trees [38].

Thompson’s group F has many peculiar properties. For example, the com-
mutator subgroup [F, F], i.e., the subgroup of F that is generated by the
set {[gsh] | g, h € F'} is an example of an infinite simple group [38]. Moreover,
it can be shown that F does not contain subgroups isomorphic to Fy [38].
However, the question whether F' belongs to the class of so-called amenable
groups (Chapter 9) is a long-standing open problem in geometric group the-
ory with an interesting history [155]: “False proof of amenability and non-
amenability of the R. Thompson group appear about once a year. The in-
teresting thing is that about half of the wrong papers claim amenability and
about half claim non-amenability.”

Example 2:2.22 (Baumslag-Solitar groups). For m,n € Ny the Baumslag-
Solitar group BS(m,n) is defined via the presentation

BS(m,n):= {(a,b|ba™b" = a").

For example, BS(1,1) = Z? (Exercise 2.E.21). The family of Baumslag-
Solitar groups contains many intriguing examples of groups. For instance,
the group BS(2,3) is a group given by only two generators and a single
relation that is mon-Hopfian, i.e., there exists a surjective group homomor-
phism BS(2,3) — BS(2,3) that is not an isomorphism [16], namely the
homomorphism given by

BS(2,3) — BS(2,3)
a —>a?

b+—b.

However, proving that this homomorphism is not injective requires more
advanced techniques.

Further examples of prominent classes of group presentations are discussed
in the exercises (Exercise 2.E.19ff).

Example 2.2.23 (Complicated trivial group). The group

G = (zv,y|aya™" =y yry ' =2?)
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is trivial: Let Z°€ G and y € G denote the images of x and y respectively
under the canonical projection

F({z,y}) — F({@,y})/{aya 'y =2, yzy 272 s = G.

By definition, in G we obtain

1

and so T = = = e. Because T and y generate G, we conclude that G is

trivial.

Caveat 2.2.24 (Word problem). The problem to determine whether a group
given by (finitely many) generators and (finitely many) relations is the trivial
group or not is undecidable (in the sense of computability theory); i.e., there
is no algorithmic procedure that, given generators and relations, can decide
whether the corresponding group is trivial or not [150, Chapter 12].

More generally, the word problem, i.e., the problem of deciding for given
generators and relations whether a given word in these generators represents
the trivial element in the corresponding group or not, is undecidable. In
contrast; we will see in Chapter 7.4 that for certain geometric classes of
groups the word problem is solvable.

The undecidability of the triviality problem and the word problem implies
the undecidability of many other problems in pure mathematics. For example,
the homeomorphism problem for closed manifolds in dimension at least 4
is undecidable [114], and there are far-reaching consequences for the global
shape of moduli spaces [174].

2.2.4  Finitely presented groups
Particularly nice presentations of groups consist of a finite generating set and
a finite set of relations:

Definition 2.2.25 (Finitely presented group). A group G'is finitely presented® if
there exists a finite set S and a finite set R C (SUS71)* such that G = (S| R).

However, the examples given above already show that also finitely pre-
sented groups can be rather complicated.

1Sometimes the term finitely presented is reserved for groups together with a choice of
a finite presentation. If only existence of a finite presentation is assumed, then this is
sometimes called finitely presentable. This is in analogy with the terms oriented vs.
orientable for manifolds.
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Example 2.2.26 (Geometric finite presentation). If X is a path-connected CW-
complex with finite 2-skeleton, then the fundamental group m(X) of X is
finitely presented (Exercise 2.E.25). For example, this implies that compact
connected manifolds have finitely presented fundamental group. Conversely,
every finitely presented group is the fundamental group of a finite CW-
complex (Outlook 3:2.5) and of a closed manifold of dimension at least 4.

Clearly, every finitely presented group is finitely generated. The converse
is not true in general:

Example 2.2.27 (A finitely generated group that is not finitely presented). The

group
(st | {[t"st™" t"st™™] | n,m € Z})

is finitely generated, but not finitely presented [15] (Exercise 2.E.27). This
group is an example of a lamplighter group (see also Example 2.3.5).

While it might be difficult to prove that a specific group is not finitely
presented (and such proofs often require some input from algebraic topology),
there is a non-constructive argument showing that there are finitely generated
groups that are not finitely presented (Corollary 2.2.29):

Theorem 2.2.28 (Uncountably many finitely generated groups). There exist
uncountably many isomorphism classes of groups generated by two elements.

Before sketching Hall’s proof [76, Theorem 7][77, Chapter III.C] of this
theorem, we discuss an important consequence:

Corollary 2.2.29. There are uncountably many isomorphism classes of finitely
generated groups that are not finitely presented.

Proof. Notice that (up to renaming) there are only countably many finite
presentations of groups, and hence that there are only countably many iso-
morphism types of finitely presented groups. However, there are uncountably
many finitely generated groups by Theorem 2.2.28. O

The proof of Theorem 2.2.28 consists of two steps:

1. We first show that there exists a group G generated by two elements
that contains uncountably many different normal subgroups (Proposi-
tion 2.2.30).

2. We then show that GG even has uncountably many quotient groups that
are pairwise non-isomorphic (Proposition 2:2.31).

Proposition 2.2.30 (Uncountably many normal subgroups). There exists a
group generated by two elements with uncountably many normal subgroups.

Proof. The basic idea is as follows: We construct a group G generated by
two elements that contains a central subgroup C (i.e., each element of this
subgroup is fixed under conjugation by all other group elements) isomorphic
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to the big additive group @y Z. The group C contains uncountably many
subgroups (e:g., given by taking subgroups generated by the subsystem of the
unit vectors corresponding to different subsets of N), and all these subgroups
of C' are normal in GG because C' is central in G.

An example of such-a group is G := (s,t | R), where

R := {[[s,t"st "]ys] | n € Z} U {[[sst"st™"],¢] | n € Z}.

Let C' be the subgroup of G generated by the set {[s,t"st™"] | n € Z}. All
elements of C' are invariant under conjugation with s by the first part of the
relations, and they are invariant under conjugation with ¢ by the second part
of the relations; thus, C'is central in G. Moreover, using the so-called calculus
of commutators, it can be shown that C' contains the additive group Py Z [76,
p. 4341{][110, Corollary 5.12]. Alternatively, one can give an explicit construe-
tion of such a group (Exercise 2.E.35). O

Proposition 2.2.31 (Uncountably many quotients). For a finitely generated
group G the following are equivalent:

1. The group G contains uncountably many normal subgroups.

2. The group G has uncountably many pairwise non-isomorphic quotients.

Proof. Clearly, the second statement implies the first one. Conversely, sup-
pose that G has only countably many pairwise non-isomorphic quotients.

If @ is a quotient group of G, then @ is countable (as G is finitely gen-
erated). Hence, there are only countably many group homomorphisms of
type G — @Q (because every such homomorphism is uniquely determined
by its values on a finite generating set of G); in particular, there can be only
countably many normal subgroups N of G with G/N = Q. Thus, in total, G
can have only countably many different normal subgroups. O

Outlook 2.2.32 (Non-constructive existence proofs). The fact that there exist
uncountably many finitely generated groups can be used for non-constructive
existence proofs of groups with certain features; a recent example of this type
of argument is Austin’s proof of the existence of finitely generated groups and
Hilbert modules over these groups with irrational von Neumann dimension
(thereby answering a question of Atiyah in the negative) [8].

2.3 New groups out of old

In many categories, there are ways to construct objects out of given compo-
nents; examples of such constructions are products-and sums/pushouts (or,
more generally, limits and colimits). In the world of groups; these correspond
to direct products and (amalgamated) free products. There are two views
on such constructions: through universal properties and through concrete
construction recipes.
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For every group H and all group homomorphisms ¢;: G; — H and
po: Gy — H with ¢ 0 a1 = 2 0 ag there is exactly one homomor-
phism ¢: G — H with oo 81 = ¢ and ¢ o 85 = 5. Such a pushout
is denoted by Gy *4 G2 (see Theorem 2.3.9 for existence and uniqueness).
Two special cases deserve their own names:
e If A s the trivial group, then we write Gy * Go := G %4 G2 and
call Gy * G4 the free product of Gy and Gs.
o If @y and ap both are injective, then the pushout group G x4 G5 is
an amalgamated free product of G1 and Go over A (with respect to o
and az).

Caveat 2.3.7.In the situation of the above definition, in general, pushout
groups and amalgamated free products do depend on the glueing homomor-
phisms aj, as; however, usually, it is clear implicitly which homomorphisms
are meant and so they are omitted from the notation.

Example 2.3.8 (Pushout groups, (amalgamated) free products).

e Free groups can also be viewed as free products of several copies of the
additive group Z; e.g., the free group of rank 2 is nothing but Z x Z
(which can be seen by comparing the respective universal properties
and using uniqueness).

e The infinite dihedral group Do, = Isom(Z) (Example 2.3.5) is isomor-
phic to the free product Z/2 x Z/2; for instance, reflection at 0 and
reflection at 1/2 provide generators of D, corresponding to the obvi-
ous generators of Z/2 x 7./2 (Exercise 2.E.31).

e The matrix group SL(2, Z) is isomorphic to the amalgamated free prod-
uct 7Zj/6 *7,5 Z/4 [159, Example 1.4.2] (Outlook 4.4.3).

e Pushout groups occur naturally in topology: By the theorem of Seifert
and van Kampen, the fundamental group of a pointed space glued to-
gether out of two components is a pushout of the fundamental groups
of the components over the fundamental group of the intersection (the
two subspaces and their intersection have to be non-empty and path-
connected) [115, Chapter IV] (see Figure 2.3). A quick introduction to
fundamental groups is given in Appendix A.1.

Theorem 2.3.9 (Pushout groups: uniqueness and construction). All pushout
groups exist and are unique up to canonical isomorphism.

In particular, all amalgamated free products and all free products of groups
exist and are unique up to canonical isomorphism.

Proof. The uniqueness proof is similar to the one that free groups are uniquely
determined up to canonical isomorphism by the universal property of free
groups (Proposition 2.2.6).

We now prove the existence of pushout groups: The idea is to use genera-
tors and relations to enforce the desired universal property. Let A be a group
and let a1 A — G and ay: A — G4 be group homomorphisms. Let
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71 (X1 Ua Xo) 2 mi(Xy) 1, (4) m1(X2)

Figure 2.3.: The theorem of Seifert and van Kampen, schematically

G = ({xg | g € G1}U{zy| g € G2} | {20, (@)Tas( ' | @ € A}URG, URGq,),
where (for j € {1,2})

Re, = {xgzpar =" | g, bk € G; with g - h =k in G,}.
Furthermore, we define for j € {1,2} group homomorphisms

ﬂjZGj—)G
g|—>l'g;

the relations R¢, ensure that §; indeed is compatible with the compositions
in G; and G respectively. Moreover, the relations {xal(a)xm(a)_l |'a € A}
show that 81 o ay = (2 0 as.

The group G (together with the homomorphisms 3y and (32) has the univer-
sal property of the pushout group of G; and G5 over A: Let H be a group and
let p1: G; — H, po: Go — H be homomorphisms with ¢; o a1 = @3 0 ag.
We define a homomorphism ¢: G — H using the universal property of
groups given by generators and relations (Proposition 2.2.18): The map on
the set of all words in the generators {z, | g € G} U {z, | g € G} and their
formal inverses induced by the map

{zglgeGitU{zg|ge Gy — H

A ©1(9) ?fgeGl
w2(g) ifgeGe

vanishes on the relations in the above presentation of G (it vanishes on Rg,
because ¢; is a group homomorphism, and it vanishes on the relations in-
volving A because p10a; = paoas). Letw: G — H be the homomorphism
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arise naturally as fundamental groups of certain self-glueings, e.g., of map-
ping tori of maps that are injective on the level of fundamental groups [107,
p. 180] (see Figure 2.4).

Outlook 2.3.11 (Amalgamated free products and HNN-extensions as building
blocks). The class of (non-trivial) amalgamated free products and of (non-
trivial) HNN-extensions plays an important role in geometric group theory;
more precisely, they are the key objects in Stallings’s classification of groups
with infinitely many ends [166] (Theorem 8.2.14), and they are the starting
point of Bass-Serre theory [159] (Outlook 4.2.7), which is concerned with ac-
tions of groups on trees (Outlook 4.2.7). Moreover, free groups, free products,
amalgamated free products, and HNN-extensions can be understood in very
concrete terms via suitable normal forms (Outlook 3.3.8).

Remark 2.3.12 (The (von) Neumann forest). The name “Neumann” is ubig-
uitous in geometric group theory. On the one hand, there is the Neumann
family (Hanna Neumann, Bernhard Neumann, Peter Neumann, Walter Neu-
mann were/are all involved in geometric group theory and related fields); on
the other hand, there is also John von Neumann, who — among many other
disciplines ~ shaped geometric group theory:

(Jo)Hanna Neumann o0 Bernhard Neumann John von Neumann
(née von Caemmerer)
1914-1971 1909-2002 1903-1957

[rene “ Peter Barbara Walter Daniel
1939~ 1940- 1943— 1946- 1951

The contributions to geometric group theory of the (von) Neumanns are
too numerous to be listed here [10, 9, 140]; for the topics in this book, the
most important ones are:
e Bernhard Neumann and Hanna Neumann developed and applied to-
gether with Higman the theory of a class of groups that is now accord-
ingly named HNN extensions (Definition 2.3.10).

e There is/was the Hanna Neumann conjecture on ranks of certain sub-
groups of free groups (Outlook 4.2.13).

e There is a joint article by Bernhard, Hanna, and Peter Neumann [129].

e There is/was the von Neumann conjecture on the relation between non-
amenability and free subgroups (Remark 9.1.12).
























46

2. Generating groups

e There exists a permutation m € S,, such that for all j € {1,...,n}
we have a;(1) = (7(4),0,1).

An (ambient) isotopy between two n-braids a and 3 is a continuous
map F: R3x[0,1] — R? with the following properties: For all ¢ € [0, 1],
the map F(-,t) is a self-homeomorphism of R® that is the identity
on R? x {0,1} and that maps o to an n-braid, and furthermore we
have F(-,0) = idgs; and F(+,1) maps a to 8. In this terminology,
vertical concatenation (and rescaling) of braids corresponds to compo-
sition in B,, and the braid depicted in Figure 2.8 corresponds to the
generator s; of B,,.
Draw the geometric braid relations corresponding to the defining alge-
braic relations in the braid group B,.

Exercise 2.E.27 (A finitely generated group that is not finitely presented**).
We consider the group

G .= (st { {[t"st™",t"st™™] | n,m € Z}).

The goal of this exercise is to prove that G is not finitely presentable.

1.
2.

3.

Show that G = (s,t | {[s,t"st™"] | n € N5o}).

For N € Nyg let Gy = (sit | {[s,t"st™"] | n € {1,....N}}).
Show that the homomorphism 7y : Gy — Gy 41 given by the identity
on {s,t} is surjective but not injective.

Hints. Use the universal property of generators and relations and try
to map s to the tramnsposition (1.2) € Son s and ¢ to the permuta-
tion (l = 3,2 — 4.3 — :) - ) S SQ.]\,"+3.

Use the second part to-conclude that G is not finitely presentable.

Exercise 2.E.28 (Normal forms**). Let G be a group and let S C G be
a generating set. A nmormal form for G over S is a split of the canonical
projection (SUS)* — G. We then say that G admits a regular normal form
if G has a finite generating set and a normal form N: G — (S'U §)* for
which the language N(G) C (SU.S)* is regular [40, Chapter 1][2]. Similarly,
groups with context-free normal form are defined.

1.
2.

3.

Give regular normal forms for Z, Z /2017, and Z2.

Show that the existence of a regular normal form is independent of the
chosen finite generating set.

Use the pumping lemma for regular languages to show that every
finitely generated infinite group with regular normal form contains an
element of infinite order [117].

Use the pumping lemma for context-free languages to show that every
finitely generated infinite group with context-free normal form contains
an element of infinite order.

Exercise 2.E.29 (Random groups***). Look up in the literature how random
finitely presented groups can be defined. There are several popular models;
choose one of these models and describe it in detail.
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Figure 3.2.: Constructing a cycle (blue) out of two different paths.

o The graph X is called connected if every two of its vertices can be
connected by a path in X.

e Let n € Nuo. A cycle in X of length n is a path vg,...,v,—1 in X
with {v,<1,v,} € E.

Example 3.1.7. In Example 3.1.3, the graphs X, and X3 are connected, but
X7 is not connected (e.g.,in X; there is no path connecting the vertex 4 to
vertex 1). The sequence 1,2, 3 is a path in X3, but 7,8,9 and 2,3,2 are no
paths in X3. In X, the sequence 1,2, 3 is a cycle.

Definition 3.1.8 (Tree). A tree is‘a connected graph that does not contain
any cycles. A graph that does not contain any cycles is a forest; so, a tree is
the same as a connected forest.

Example 3.1.9 (Trees). The graph X3 in Example 3.1.3 is a tree, while X3
and X, are not.

Proposition 3.1.10 (Characterising trees). A graph is a tree if and only if for
every pair of vertices there exists exactly one path connecting these vertices.

Proof. Let X be a graph such that every pair of vertices can be connected
by exactly one path in X; in particular, X is connected. Assume for a con-
tradiction that X contains a cycle vg,...,v,_1. Because n > 2, the two
paths vy, v,_1 and vy, . .., v,_1 are different, and both connect vy with v,, <1,
which is a contradiction. Hence, X is a tree.

Conversely, let X be a tree; in particular, X is connected, and every two
vertices can be connected by a path in X. Assume for a contradiction that
there exist two vertices v and v’ that can be connected by two different paths p
and p’. By looking at the first index at which p and p’ differ and at the first
indices of p and p’ respectively where they meet again, we can construct a
cycle in X (see Figure 3.2), contradicting the fact that X is a tree. Hence,
every two vertices of X can by connected by exactly one path in X. O

An alternative characterisation of finite trees is given in Exercise 3.E.4.
Trees can be viewed as basic ingredients of graphs: every connected graph
contains a spanning tree (Exercise 3.E.6).
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e Finitely generated free groups admit isomorphic Cayley graphs if and
only if they have the same rank. The proof is probabilistic; more pre-
cisely, it is based on the relation between the expected degree of random
spanning forests and the first L?-Betti number [108].

So far, we considered only the combinatorial structure of Cayley graphs;
later, we will also consider Cayley graphs from the point of view of group
actions (most groups act freely on their Cayley graphs) (Chapter 4), and from
the point of view of large scale geometry, by introducing metric structures
on Cayley graphs (Chapter 5).

Outlook 3.2.5 (Presentation complex, classifying space). There are higher di-
mensional analogues of group presentations and Cayley graphs in topology:

Associated with a presentation of a group, there is the presentation com-
plex [31, Chapter I.8A], which is a two-dimensional object. Roughly speaking,
the presentation complex is the two-dimensional CW-complex given by

e taking a point,

e attaching a circle for every generator,

e and attaching adisk for every relation (in such a way that the boundary
of the disk represents the word of the relation in the fundamental group
of the glued circles).

By the Seifert and van Kampen theorem, the fundamental group of the pre-
sentation complex coincides with the given group. The presentation complex
is finite/compact if and only if the underlying presentation is finite.

For example, the presentation complex associated with the presenta-
tion <x7 Y | [z, y]> is the torus and the presentation complex associated with
the presentation (x| 2?) is the projective plane RP? (Figure 3.6).

More generally, every group admits a classifying space (or Eilenberg-
MacLane space of type K(-,1)), a space whose fundamental group is the
given group, and whose higher dimensional homotopy groups are trivial [81,
Chapter L.B]; one way to construct classifying spaces is to start with a pre-
sentation complex and then to add higher dimensional cells that kill the
higher homotopy groups. These spaces are unique up to homotopy equiva-
lence and allow to model group theory (both groups and homomorphisms)
in topology. Classifying spaces play an important role in the study of group
cohomology [34, 101] (Appendix A.2). Hence, classifying spaces (and their
(co)homology) can be viewed as higher dimensional versions of group presen-
tations.

For example, the torus is a classifying space for Z? and the infinite-
dimensional projective space RP* is a classifying space for Z/2.

How is all this related to Cayley graphs? The one-dimensional part (i.e.,
the 1-skeleton) of the universal covering of the presentation complex of a pre-
sentation (S | R) almost is the Cayley graph Cay(({S|R),S) (in case of gen-
erators of order 2 some modifications might be necessary) [45; Chapter 2.2].
We will return to this point of view in Outlook 4.1.21.
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While it might be intuitively clear that free generating sets do not lead
to any cycles in the corresponding Cayley graphs and vice versa, a formal
proof requires the description of free groups in terms of reduced words (Chap-
ter 3.3.1). More generally, any explicit and complete description of the Cayley
graph of a group G with respect to a generating set S basically requires to
solve the word problem of G with respect to .S.

3.3.1 Free groups and reduced words

The construction F'(S) of the free group generated by S consisted of taking
the set of all words in elements of S and their formal inverses, and taking
the quotient by the cancellation relation (proof of Theorem 2.2.7). While
this construction is technically clean and simple, it has the disadvantage that
getting hold of the precise nature of said equivalence relation is tedious.

In the following, we discuss an alternative construction of a group freely
generated by S by means of reduced words; it is technically a little bit more
cumbersome; but has the advantage that every group element is represented
by a canonical word:

Definition 3.3:4 (Reduced word). Let S be a set, and let (S U 5)* be the set
of words over S and formal inverses of elements of S.
e Let n € N and let sq,...,s, €SUS. The word sy ... s, is reduced if

sir1#8; and S 7 s

holds for all j € {1,...,n — 1}. (In particular, ¢ is reduced.)
o We write Fi.q(S) for the set of all reduced words in (SUS)*.

Proposition 3.3.5 (Free groups via reduced words). LetS be a set.

1. The set Fyoa(S) of reduced words over S U S forms a group with respect
to the composition Freq(S) X Frea(S) — Frea(S) given by

(81 - SnySntl v Sm) — (814 Sp—rSutidr - - - Sntm)s

where 81 ... 8p and Spy1 . .. Smare in Frea(S) (with $1,...,8m € SU§),
and
ri= max{k € {0,...,min(n,m —1)} | Vicq0,k—1} Sn—j = Snt1+tj

\ Spn—j = 5n+1+j}-

In other words, the composition of reduced words is given by first con-
catenating the words and then reducing maximally at the concatenation
position.

2. The group Fiea(S) is freely generated by S.
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i z
vy y
et 7] - [ L e o

Figure 3.7.: Associativity of the composition in Fy.q(S); if the reduction areas
of the outer elements do not interfere

7w Y z

i 7] ] 9

Figure 3.8.: Associativity of the composition in Fi.q(S); if the reduction areas
of the outer elements do interfere

Proof. Ad. 1..The above composition is well-defined because if two reduced
words are composed, then the composed word is reduced by construction.
Moreover, the composition has the empty word ¢ (which is reduced!) as neu-
tral element, and it is not difficult to show that every reduced word admits
an inverse with respect to this composition (take the inverse sequence and
flip the hat status of every element).

Thus it remains to prove that this composition is associative (which is
the ugly part of this construction): Instead of giving a formal proof involving
lots of indices, we explain the argument graphically (Figures 3.7 and 3.8): Let
x,y, z € Freq(S); we want to show that (z-y)<z = z-(y-z). By definition, when
composing two reduced words, we have to remove the maximal reduction area
where the two words meet.

e If the reduction areas of x,y and ¥,z have no intersection in y, then
clearly (z-y)-z=2-(y-z) (Figure 3.7).

e If the reduction areas of =,y and 9, z have a non-trivial intersection 3’
in y, then the equality (z -y) -2z = x - (y - z) follows by carefully in-
specting the reduction areas in x and z and the neighbouring regions,
as indicated in Figure 3.8; because of the overlap in 4", we know that
z'" and 2z coincide (they both are the inverse of y'’).

Ad. 2. We show that S is a free generating set of Fyeq(S) by verifying that

the universal property is satisfied: So let' H be a group and let ¢: S — H
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be a map. Then a straightforward (but slightly technical) computation shows
that

© =0 |Foa(s): Frea(S) — H

is a group homomorphism (recall that ¢* is the extension of the map ¢ to
the'set (SUS)* of all'words). Clearly, p|s = ¢; because S generates Fieq(S),

it follows that ¥ is the only such homomorphism. Hence, Fieq(.S) is freely
generated by S. O

As a corollary to the proof of the second part, we obtain:

Corollary 3.3.6 (Normal form for free groups). Let S be a set. Every element of
the free group F(S) = (SUS)*/ ~ can be represented by exactly one reduced
word over S'U S. Ll

Corollary 3.3.7 (Word problem for free groups). The word problem in. free
groups with respect to free generating sets is solvable.

Proof. Let F be a free group with free generating set S. If w € (S'U §)*,
then we inductively reduce the word w until we reach a reduced word w'.
Then the words w and w’ represent the same element of F. Arguing as in
the proof of the second part of Proposition 3.3.5 via the canonical isomor-
phism F,.q(S) & F, we now only need to check whether w’ is the empty word
or not to determine whether the group element w is trivial or not. N

Outlook 3.3.8 (Reduced words in free products etc.). Using the same method
of proof as in Proposition 3.3.5, one can describe free products G, * G of
groups GG; and Gy by reduced words: In this case, one calls a word

g1---gnE(G1|—|G2)*

with n € N and g1, ..., g9, € Gy U G4 reduced, if for all j € {1;...,n —1}

e cither g; € Gy \ {e} and g; 11 € G2\ {e},

o or g, € Go\{e} and gj+1 € G1\ {e}.

Such reduced words can be composed by “concatenation and then maximal
reduction at the concatenation position”. The resulting group is the free
product of G and G2 (all of this is not hard to check).

One can also describe amalgamated free products and HNN-extensions by
suitable classes of reduced words [159, Chapter I][150, Chapter 11] (however,
these generalisations are slightly more involved because more bookkeeping is
needed and more ambiguities occur):

1. Amalgamated free products. Let A, Gy, G5 be groups, let a1 : A — G,

ag: A — G2 be injective group-homomorphisms. Let n € N and let
9o, -+, 9n € Gy, ho, ..., hy, € Go with

Vieti,.ny 93 € imay and  Vicgo,..n—1) hr € imas.
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Exercise 3.E.24 (Automorphisms of Cayley trees**). Let F be a free group
of rank 2 and let S C F be a free generating set. Show that the Cayley
graph Cay(F,S) admits uncountably many graph automorphisms.

Exercise 3.E.25 (Cayley graphs of free groups®*). Let F and F’ be finitely
generated free groups. Show that the following are equivalent:
1. The free groups F' and F’ have the same rank.
2. There exist finite generating sets .S C F and S’ C F' such that the
graphs Cay(F, .S) and Cay(F’, S") are isomorphic.
Hints. There is a_ probabilistic proof of thisfact (Outlook 3.2.4). However,
no elementary, geometric,proof is known.

Chromatic number of groups™

Cayley graphs of groups allow to apply invariants from graph theory to
groups, for example the chromatic number. The following exercises will dis-
cuss some basic properties and problems related to chromatic numbers of
groups, as introduced by Babai [11, 165].

Definition 3.E.1 (Chromatic number). Let X = (V, E) be a graph. Let C be
a set. A colouring of X by C' is amap c: V — C satisfying

v{v,w}EE C(U) 7é C(’LU)

The chromatic numberch(X) of X is the smallest n € N'such that X admits
a-colouring by {1,...,n}.

Quick check 3.E.26 (Chromatic number of small graphs*). Let n, m € N.
1. Is ch(K,) =n?
2. Is ch(K, m) = min(n,m) ?

Definition 3.E.2 (Chromatic number of a group). Let G be a group. Then the
chromatic number ch(G) of G is defined by

ch(G) := inf{ch(Cay(G,S5)) | S C G generates G} € NU {oo}.

Quick check 3.E.27 (High chromatic numbers?*).
1. Does Sg contain a generating set S with ch(Cay(Sg,)) > 2017 ?
2. Does Z contain a generating set S with ch(Cay(Z, S)) > 2017 ?

Exercise 3.E.28 (Chromatic number of small groups*). Let n € N.
1. Determine ch(Z/n).
2. Determine ch(Z™).

Exercise 3.E.29 (Groups with chromatic number 2 ** [11]). Let G be a group.
1. Let N C G be a normal subgroup. Show that ch G < ch(G/N).
2. Show that ch(G) = 2 if and only if G contains a subgroup of index 2.
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of morphisms is nothing but composition of maps. This applies for

example to

actions by isometries on a metric space (isometric actions),

— actions by homeomorphisms on a topological space (continuous
actions),

— actions by linear isomorphisms on vector spaces (representations),

e Further examples of group actions are actions of groups on a topo-
logical space by homotopy equivalences or actions on a metric space
by quasi-isometries (see Chapter 5); in these cases, automorphisms are
equivalence classes of maps of sets and composition of morphisms is per-
formed by composing representatives of the corresponding equivalence
classes.

On the one hand, group actions allow us to understand groups better by
looking at suitable objects on which the groups act nicely; on the other hand,
group actions also allow us to understand geometric objects better by looking
at groups that can act nicely on these objects. Further introductory material
on group actions and symmetry can be found in Armstrong’s book [6].

411 Free actions

The relation between groups and geometric objects acted upon is particularly
strong if the group action is a so-called free action. Important examples of free
actions are the natural actions of groups on their Cayley graphs (provided
the group does not contain any elements of order 2), and the action of the
fundamental group of a space on its universal covering.

Definition 4.1.3 (Free action on a set). Let G be a group, let X bea set, and
let G x X — X be an action of G on X. This action is free if

g -T#x

holds for all g € G \ {e} and all 2 € X. In other words, an action is free if
and only if every non-trivial group element acts without fixed points:

Example 4.1.4 (Left translation action). If G is a group, then the left trans-
lation action

G — Sg = Autse(G)
g (h —=g- h)
is a free action of GG on itself by bijections.

Example 4.1.5 (Rotations on the circle). Let S := {z € C | |z| = 1} be the
unit circle in C, and let @ € R. Then the rotation action
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e The fundamental group of the figure eight S Vv S is isomorphic to
the free group Fb, the universal covering space of S' v.S! is the CW-
complex T whose underlying combinatorics is given by the regular tree
of degree 4 (Figure 3.10), the universal covering map T" —» S! Vv St
collapses all O-cells to the glueing point of S* Vv S' and wraps the “hor-
izontal” and “vertical” edges around the two different circles.

There are two natural definitions of free actions on graphs — one that
requires that no vertex and no edge is fixed by any non-trivial group element
and one that only requires that no vertex is fixed. We will use the first,
stronger, one:

Definition 4.1.8 (Free action on a graph). Let G be a group acting on a
graph (V,E) by graph isomorphisms via 9: G — Aut(V, E). The action o
is free if for all g € G'\ {e} we have

Yoev (0(9))(v) # v,and
v{vv’}EE{ ) g)’U }7&{1}1}

Example 4.1.9 (Left translation action on Cayley graphs). Let G be a group and
let S' be a generating set of G. Then the group G acts by graph isomorphisms
on the Cayley graph Cay(G,S) via left translation:

G — Aut(Cay(G, 9))
g — (h —g- h);

notice that this mapis indeed well-defined and a group homomorphism.

Proposition 4.1.10 (Free actions on Cayley graphs). Let G be a group and let
S be a gemerating set of G. Then the left translation action on the Cayley
graph Cay(G,S) is free if and only if S does not contain any elements of
order 2.

Recall that the order of a group element g of a group G is the infimum of
all n € Ny with ¢" = e; here, we use the convention inff) := oco.

Proof. The action on the vertices is nothing but the left translation action
by G on itself, which is free. It therefore suffices to determine under which
conditions the action of G on the edges is free:

If the action of G on the edges of the Cayley graph Cay(G,:S) is not free,
then S contains an element of order 2: Let g € G, and let {v,v'} be an edge
of Cay(G, S) with {v,v'} = g-{v,v'} = {g-v,g - v'}; by definition, we can
write v/ =v-s with s € SUS~!\ {e}. Then one of the following cases occurs:

1. We have g-v = v and g-v" = v'. Because the action of G on the vertices

is free, this is equivalent to g = e.
2. We have ¢g-v=v" and g - v" = v. Then in G we have

v=g-v'=g-(v-8)=(g-v)is=0v -5=(v-5)-8=0v-8
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and so s> = e. As s # e, it follows that S contains an element of order 2.
Conversely, if s € S has order 2, then s fixes the edge {e,s} = {s?,s}
of Cay(G,S). O

4.1.2 Orbits and stabilisers

A group action can be disassembled into orbits, leading to the orbit space of
the action. Conversely, one can try to understand the whole object by looking
at the orbit space and the orbits/stabilisers.

Definition 4.1.11 (Orbit). Let G be a group acting on a set X.
e The orbit of an element € X with respect to this action is the set

Gxz:={g-x]geG}h
e The quotient of X by the given G-action (or orbit space) is the set
G\X ={G -z |zre X}
of orbits; we write “G'\ X” because G acts “from the left.”

In a sense, the orbit space describes the original object “up to symmetry”
or “up to irrelevant transformations.”

If a'group does not only act by bijections on a set, but if the set is equipped
with additional structure that is preserved by the action (e.g., an action
by isometries on a metric space), then usually also the orbit space inherits
additional structure similar to the one on the space acted upon. However,
in general, the orbit space is not as well-behaved as the original space; e.g.,
the quotient space of an action on a metric space by isometries in general is
only a pseudo-metric space — even if the action is free (e.g., this happens for
irrational rotations on the circle).

Example 4.1.12 (Rotation on C). We consider the action of the unit circle S*
(which is a group with respect to multiplication) on the complex numbers C
given by multiplication of complex numbers. The orbit of the origin 0 is
just {0}; the orbit of an element z € C \ {0} is the circle around 0 passing
through z (Figure 4.2). The quotient of C by this action can be identified
with R>( (via the absolute value).

Example 4.1.13 (Universal covering). Let X be a “nice” path-connected topo-
logical space (e.g., a CW-complex). The quotient of the universal covering X
by the action of the fundamental group m;(X) by deck transformations is
homeomorphic to X [115, Chapter V]. It is worthwhile to check this asser-
tion in the cases of Example 4.1.7.
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Because G acts by graph automorphisms on X, this set is an edge of X if
and only if

{wog™" - hay ={g7 - (g-2)sg™" - (h-2)}

is an edge of X. By construction of S, this is equivalent to g=' - h € S,
whence equivalent to {g, h} being an edge of Cay(G,.S). Hence, Cay(G,.S) is
isomorphic to the graph X. ]

Outlook 4.1.21 (Cayley complex). Let G be a group. By Proposition 4.1.20,
a Cayley graph of Gis nothing but a connected graph with a G-action whose
induced action on the vertices is free and transitive. Cayley complexes are a
two-dimensional version of this concept: A Cayley complex of G is a simply
connected two-dimensional CW-complex with a cellular action by G such that
the induced action on the vertices is free and transitive. The condition of being
simply connected is a higher version of connectedness from algebraic topology
(Definition A:1.3) and CW-complexes are a topological higher-dimensional
generalisation of graphs.

If (S| R) is a presentation of G, then the universal covering of the presen-
tation complex of (S | R) is a Cayley complex of G (Outlook 3.2.5). Moreover,
for every generating set S of G there is a Cayley complex of G such that its
1-skeleton corresponds (almost) to Cay (G, S) [45, Chapter 2.2].

4.2 Free groups and actions on trees

In this section, we show that free groups can be characterised geometrically
via free actions on trees; recall that for a free action of a group on a graph
no non-trivial group element is allowed to fix any vertices or edges (Defini-
tion 4.1.8).

Theorem 4.2.1 (Free groups and actions on trees). A group is free if and only
if it admits a free action on a (non-empty) tree.

Proof of Theorem 4.2.1, part I. Let F be a free group, freely generated by a
set S C Fj; then the Cayley graph Cay(F,.S) is a tree by Theorem 3.3.1. We
consider the left translation action of F-on Cay(F,S).

Looking at the description of F in terms of reduced words (Proposi-
tion 3.3.5) or applying the universal property of F' with respect to the free
generating set .S to maps S — 7Z it is easily seen that S cannot contain
elements of order 2; therefore, the left translation action of F' on Cay(F,S)
is free by Proposition 4.1.10. O

Conversely, suppose that a group G acts freely on a tree T'. How can we
prove that G has to be free? Roughly speaking, we will show that out of T'
and the G-action on 1" we can construct — by contracting certain subtrees —
a tree that is a Cayley graph of G for a suitable generating set and such that
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Figure 4.6.: A spanning tree (red) for a shift action of Z

the assumptions of Theorem 3.3.3 are satisfied. This allows us to deduce that
the group G is free.

The subtrees that will be contracted are (equivariant) spanning trees,
which we will discuss in the following section.

4.2.1 Spanning trees for group actions

Spanning trees for group actions are a natural generalisation of spanning
trees of graphs:

Definition 4.2.2 (Spanning tree of an action). Let G be a group acting on a
connected graph X by graph automorphisms. A spanning tree of this action
is a subgraph of X that is a tree and that contains exactly one vertex of every
orbit of the induced G-action on the vertices of X.

Example 4.2.3 (Spanning trees). We consider the action of Z by “horizontal”
shifting on the (infinite) tree depicted in Figure 4.6. Then the red subgraph
is a spanning tree for this action.

Theorem 4.2.4 (Existence of spanning trees). Every action of a group on a
connected graph by graph automorphisms admits a spanning tree.

Proof. Let G be a group acting on a connected graph X. In the following,
we may assume that X is non-empty (otherwise the empty tree is a spanning
tree for the action). We consider the set T of all subtrees of X that contain
at most one vertex of every G-orbit. We show that Tz contains an element 7'
that is maximal with respect to the subtree relation. The set T is non-empty,
e.g., the empty tree is an element of T;. Clearly, the set T¢; is partially ordered
by the subgraph relation, and every totally ordered chain of T; has an upper
bound in T (namely the “union” over all trees in this chain). By Zorn’s
lemma, there is a maximal element T in Tg; because X is non-empty, so
isT.

We now show that T is a spanning tree for the G-action on X: Assume
for a contradiction that 7' is not a spanning tree for the G-action on X.
Then there is a vertex v such that none of the vertices of the orbit G- v is a
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e e

Figure 4.7.: Contracting the spanning tree and all its translates to vertices
(red), in the situation of Example 4.2.3

vertex of T'. We now show that there is such a vertex v such that one of the
neighbours of v is a vertex of T

As X isconnected there is-a path p connecting some vertex u of T with v.
Let v" be the first vertex on p that is not in 7. We distinguish the following
two cases:

1. None of the vertices of the orbit G - v’ is contained in T'; then the

vertex v’ has the desired property.

2. There is a g € G such that g - v’ is a vertex of T. If p" denotes the
subpath of p starting in v" and ending in v, then g-p’ is a path starting
in the vertex ¢ - v’, which is a vertex of 7', and ending in g- v, a vertex
such that none of the vertices in G - g-v = G - v is.in T'. Because the
path p’ s shorter than the path p, iterating this procedure produces
eventually a vertex with the desired property.

Let v be a vertex such that none of the vertices of the orbit G - v isin T,
and such that some neighbour w of v is in T'. Then clearly, adding v and
the edge {w,v} to T produces a tree in T, which contains 7' as a proper
subgraph. This contradicts the maximality of 7. Hence, T is a spanning tree
for the G-action on X. O

4.2.2 < Reconstructing a Cayley tree

In the following, we use the letter “e” both for the neutral group element,
and for edges in a graph; it will always be clear from the context which of
the two is meant.

Proof of Theorem 4.2.1, part II. Let G be a group acting freely on a tree T'
by graph automorphisms. By Theorem 4.2.4 there exists a spanning tree T’
for this action.

The idea is to think about the graph obtained from T by contracting T”
and all its copies g - T’ for g € G each to a single vertex (Figure 4.7 shows
this in the situation of Example 4.2.3); here, g- T’ denotes the subgraph of T'
obtained by tramslating T” by g. This idea of contracting 7" can be made
precise and concludes the proof with an application of Proposition 4.1.20
(Remark 4.2.5). However, we prefer to proceed directly in the original tree T':

As in Proposition 4.1.20, the candidate for a generating set comes from
the edges joining these new vertices: An edge of T is called essential if it does
not belong to 7", but if one of the vertices of the edge in question belongs
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their fundamental groups [159, Chapter 5][66, Chapter 6]. Roughly speaking,
if a;group G admits an action on a tree (without inversions), then G can be
decomposed into groups, where the combinatorics of this decomposition is re-
lated to the orbit structure and the corresponding stabilisers of the G-action
on the tree.

The simplest cases of such-decompositions are amalgamated free products
and HNN-extensions. In other words, free products, amalgamated free prod-
ucts, and HNN-extensions also admit characterisations in terms of actions on
trees with suitable orbit structures and stabilisers.

4.2.3 Application: Subgroups of free groups are free

The characterisation of free groups in terms of free actions on trees allows
us to prove freeness of subgroups in many situations that are algebraically
rather inaccessible:

Corollary 4.2.8 (Nielsen-Schreier theorem). Subgroups of free groups are free.

Proof. Let F' be a free group, and let G € F be a subgroup of F. Be-
cause F'is free, the group F acts freely on a non-empty tree; hence, also the
(sub)group G acts freely on this non-empty tree. Therefore, G is a free group
by Theorem 4.2.1. O]

Example 4.2.9. Free groups do not contain subgroups that are isomorphic
to Z?: Let F be a free group and let H C F be a subgroup. Then H is free
(by the Nielsen-Schreier theorem, Corollary 4.2.8). Because Z? is not free
(Exercise 2.E.11), we obtain that H % Z2. We will see a vast, geometric,
generalisation of this fact in Corollary 7.5:15.

Recall that the indezx of a subgroup H C G of a group G is the number
of cosets of H in G; we denote the index of H in G by [G : H]: For example,
the subgroup 2 - Z of Z has index 2 in Z.

Corollary 4.2.10 (Nielsen-Schreier theorem, quantitative version). Let F be a
free group of rankn € N, and let G C F be a subgroup of index k € N.. Then
G is a free group of rank k - (n — 1) + 1

In particular, finite index subgroups of free groups of finite rank are finitely
generated.

Proof. Let S be a free generating set of F', and let T':= Cay(F, S);s0 T is a
tree and the left translation action of F' on T"is free. Therefore, also the left
translation action of the subgroup G on T'is free (and so G is free). Looking
at the proof of Theorem 4.2.1 shows that the rank of G equals E/2, where E
is the number of essential edges of the action of G on T

We determine E by a counting argument: Let 7’ be a spanning tree of the
action of G on 7T'. From [F : G] = k we deduce that T” has exactly k vertices.
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For a vertex v in T we denote by dr(v) the degree of v in T, i.e., the number
of neighbours of v in T'. Because T is a regular tree all of whose vertices have
degree 2-|S| = 2-n; we obtain (where V(T") denotes the set of vertices of 7")

2-n-k= Z dr(v).

veV(T")

On the other hand, T” is a finite tree with k vertices and therefore 7’ has
exactly k — 1 edges (Exercise 3.E.4). Because the edges of 1" are counted
twice when summing up the degrees of the vertices of 7", we obtain

2-n.k= Y dr(v)=2-(k—1)+E;
veV (T")

in other words, the G-action on T has 2- (k- (n — 1) + 1) essential edges, as
desired. O

Remark 4.2.11 (Topological proof of the Nielsen-Schreier theorem). A topo-
logical version of the proof of the Nielsen-Schreier theorem can be given via
covering theory [115, Chapter VI|: Let F' be a free group of rank n; then F is
the fundamental group of an n-fold bouquet X of circles. If G'is a subgroup
of F; we can look at the corresponding covering X — X of X. As X can be
viewed as a one-dimensional CW-complex, also the covering space X inherits
the structure of a one-dimensional CW-complex. On the other hand, every
such space is homotopy equivalent to a bouquet of circles, and hence has free
fundamental group. Because X — X is the covering corresponding to the
subgroup G of F, it follows that G = 7,(X) is a free group.

Taking into account that the Euler characteristic of finite CW-complexes
is multiplicative with respect to finite coverings, one can also prove the quan-
titative version of the Nielsen-Schreier theorem via covering theory.

Corollary 4.2.12. If F is a free group of rank at least 2, and n € N, then
there is a subgroup of G that is free of finite rank at leastn.

Proof. Using a surjective homomorphism F — Z, one can_construct sub-
groups of finite index in F. We can then apply the quantitative version of
the Nielsen-Schreier theorem to obtain free subgroups of large rank (Exer-
cise 4.E.12). O

Outlook 4.2.13 (Hanna Neumann conjecture). Let F' be a free group, and let
G and H be subgroups of F. Hence, G and H are free. Suppose that the
ranks m and n of G and H respectively are finite and non-zero. Then Hanna
Neumann (Remark 2.3.12) conjectured that the rank r of G H (which as a
subgroup of a free group again is free) satisfies

r—1<(m-1)-(n—1):
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e=p(a"wa™"),

contradicting what we already proved for the first case.

4. The word w starts with a non-trivial power of § and ends with a
non-trivial power of a. Then the inverse of w falls into the third case
and p(w~') = e, which is impossible.

Therefore, ¢ is injective, and so ¢: Freq({a, 8}) — G is an isomorphism
with o({e, 8}) = {a,b}, as was to be shown. O

Outlook 4.3.2 (Ping-pong lemma for. free products). Similarly, using the de-
scription of free productsin terms of reduced words (Outlook 3.3.8), one can
show the following [77; I1.24]: Let G be a group, let G; and G2 be two sub-
groups of G with |G| > 3 and |G2| > 2, and suppose that G is generated
by the union G U Gs. If there is a G-action on a set X such that there are
non-empty subsets X, Xo C X with X5 not contained in X; and such that

Vogeci\fey 9- X2 C X1 and  Vgea,\{e} 9- X1 C Xo,
then G = G+ Gs.

The ping-pong lemma is a standard tool to establish that certain matrix
groups are free (Chapter 4.4). Further examples are given in de la Harpe’s
book [77, Chapter ILB]; in particular, it can be shown that the group of
homeomorphisms R — R contains a free group of rank 2 (Exercise 4.E.16).

4.4 Free subgroups of matrix groups

Via the ping-pong lemma we can establish that certain matrix groups are free.
We will illustrate this first in a simple example in SL(2,Z) (Chapter 4.4.1),
which has applications in graph theory (Chapter 4.4.2); finally, we will briefly
discuss the Tits alternative (Chapter 4.4.3).

4.4.1 Application: The group SL(2,Z) is virtually free

As a first example, we consider the case of the modular group:

Example 4.4.1 (A free subgroup of SL(2,Z)). Let a, b € SL(2,Z) be given by

1 2 1 0
a = <0 1) and b:= (2 1).

We show that the subgroup of SL(2,7Z) generated by {a,b} is a free group of
rank 2 (freely generated by {a,b}) via the ping-pong lemma:
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the matrix
=z-bFecz-F

and obtain min(|z},]s|#}s]) < min(|z11,|z12]), similar to the previous
case.
Therefore, inductively, we obtain that x € F'. O

The fact that free groups can be embedded into SL(2,7) also has other
interesting group-theoretic consequences for free groups; for example, finitely
generated free groups can be approximated in a reasonable way by finite
groups (Exercise 4.E.26).

Outlook 4.4.3 (SL(2,Z) as amalgamated free product). The discussion above
can be extended to prove the following fact [159, Example 1.4.2]: Let

(0N (6 D Wi
SL(2,Z) SL(2,Z)

Then Gy &£ 7/6, G5 = Z/4, and A = Z/2 and the inclusions of A into Gy
and Gy (and into SL(2,7Z)) induce an isomorphism

Z/G *7,/2 Z/4 2 Grxyg Go & SL(Z,Z).

4.42 Application: Regular graphs of large girth

We will now discuss a graph-theoretic application of Example 4.4.1, namely
the construction of regular graphs with few vertices and large girth.

Definition 4.4.4 (Girth). The girth g(X) of a graph X is the length of a
shortest cycle in X. By definition, forests have infinite girth.

Example 4.4.5 (Girth of basic graphs). If n € Nsj, then the complete
graph K, satisfies g(K,) = 3 and g(Cay(Z/n, {[1]})) = n.

It is a classical construction problem from graph theory to find graphs
of large girth that satisfy additional constraints. A prominent example is
the probabilistic proof [20] of the existence of finite graphs of large girth
and large chromatic number (Definition 3.E.1), which shows that colouring
graphs indeed is a global problem. A first, constructive, step in this direction
is Mycielski’s iterated graph construction [127] (Exercise 4.E.23). Another
construction problem of this type is to exhibit regular graphs of large girth
with “few” vertices.

Margulis [113] solved this problem, using Cayley graphs; for simplicity, we
only treat the case of 4-regular graphs.

Theorem 4.4.6 (Regular graphs of large girth). Let N € Nx5. Then there
exists a graph X with the following properties:
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e The two alternatives exclude each other (Exercise 4.E.20).

e Recognition of free groups via the ping-pong lemma.

e Eigenvalue analysis to set up the ping-pong lemma.

In Example 4:4.1 we have seen one way to find a free subgroup of rank 2
in SL(2,Z). However, this example of free linear groups does not generalise
well to larger classes of groups. Therefore, we consider a slightly different
type of examples:

Example 4.4.8 (Another free linear group). Let A € C. We consider the ma-

trices
v 4 Y (1
a:= 0 1) =c-a-c ", c=17 4

in GL(2,C) and the action of GL(2,C) on C? by matrix multiplication. A
straightforward calculation then shows that the subsets

A

6(1_631_'_8)}7
B:=c!' 4

X
|yl

satisfy the condition of the ping-pong lemma (Theorem 4.3.1) provided that
|A] is large enough and £ € R+ issmall enough (Exercise 4.E.21). Hence, in
this case the subgroup (a,b)cr,2,c) is free of rank 2.

Of course, we can argue similarly if a has eigenvalues A\; and Ay with big
ratio ‘/\1|/|)\2‘

In this example, the attracting/repelling nature of eigenspaces is essential;
a convenient way to describe this phenomenon is to pass to the corresponding
action on projective space and to formulate the attraction/repelling proper-
ties for the points in projective space associated with the one-dimensional
eigenspaces of a (and b).

This example suggests that the structure of the spectrum of the matrices
in question plays a central role in finding free subgroups in matrix groups.

As an experiment, let us try to prove the Tits alternative “by hand” for
finitely generated subgroups G of GL(2,C). If G does not contain a solvable
subgroup of finite index, then as suggested above, we will try to find a matrix
in G with a unique largest eigenvalue and a suitable conjugate of this matrix.
Looking at the possible Jordan normal forms shows that a priori it is not
entirely clear that we will find a matrix a in G with eigenvalues of different
norms, and then that we will find a conjugate b of @ such that the eigenspaces
of a and b are not related by inclusion: Therefore, even in the simple-looking
case of GL(2,C) input from the theory of linear algebraic groups and of
normed fields enters.

Sketch of proof of the Tits alternative over the field C. Let d € N and let
G C GL(d,C) be a finitely generated group that does not contain a solv-
able subgroup of finite index. We now indicate how to find a free subgroup
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in G
fields:
1.

4. Group actions

of rank 2, using the theory of linear algebraic groups and of normed

Finding diagonalisable elements in G. Dividing out the solvable radical,
one can show that it is sufficient to consider the case that the Zariski
closure G of G is a semi-simple linear algebraic group.

The structure theory of semi-simple linear algebraic groups implies:

e The group G is perfect,ie., G = [G,G]; in particular, we may

assume that G is a subgroup of SL(d,C).

e The elements of finite order in G are not dense in G.

o The diagonalisable elements of G contain a dense open subset, of G.

Therefore, we will find a diagonalisable matrix @ € G of infinite or-
der; in particular, we have deta = 1 (so, a has at least two different
eigenvalues) and one of the eigenvalues of a is not a root of unity.
Finding a unique large eigenvalue. As far as we know so far, all of the
eigenvalues of a might lie on the unit circle in C. The beautiful idea of
Tits is to change the point of view and to consider other normed fields:
Let S C G be a finite generating set, let B C C? be an eigenbasis of a,
and let k be the field extension of Q generated by the matrix entries
of S and a with respect to B. We can then view G as an algebraic
subgroup of GL(d, k).
By the first step, there is an eigenvalue A € k* of a that is not a root
of unity. Because k is a finitely generated extension of Q, there exists
an extension of k to a locally compact field k¥’ with absolute value | - |’
that satisfies

Al # L.

Passing to a1 if necessary we hence may assume that |[A|" > 1.

Let p be a'| - |-maximal eigenvalue of a. Passing to suitable exterior
powers, we may assume that the eigenspace of p is-one-dimensional
and that G acts absolutely irreducibly on &’¢. By now, we did not only
change the field of definition but possibly also the linear representation
of our group G !

Finding a unique mazimal and a unique minimal eigenvalue. A careful
analysis of conjugates/commutators and Jordan form calculations show
(using the element a from the previous step) that the set of elements
of G that have a unique maximal and a unique minimal eigenvalue
(with respect to |- |") is Zariski dense in G. Therefore, we can find such
an element @’ that in addition is also diagonalisable over the algebraic
closure of k'. In view of absolute irreducibility of the G-action, we can
pass to a finite extension of k' so that a’ is diagonalisable and the
G-action still is absolutely irreducible. Using this irreducibility, one can
find a suitable conjugate b’ so that the ping-pong lemma can be applied
to (large powers of) ¢’ and b’ in a similar way as in Example 4.4.8. [J

A quantitative version of the Tits alternative was recently established by
Breuillard (see Chapter 6.4.3).
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4. E Exercises

General actions

Quick check 4.E.1 (Fixed sets of continuous actions*). We consider a group
action of a group G on a topological space X by homeomorphisms. Let H C G
be a subset of G.

1. Is the fixed set X always open?

2. Is the fixed set X always closed?

Quick check 4.E.2 (Actions on the real line?*).
1. Is there a free isometric action of Z/2 on R ?
2. Is there a free isometric action of Z/2 on R \ {0} ?
3. Is there a free isometric action of Z/3 on R ?
4. Is there a free isometric action of Z2 on R ?

Exercise 4.E.3 (Fixed points of matrix groups*). Let n € N, let a € GL(n,R),
and let G := (a)gr(n,c)-
1. Suppose that G acts freely by matrix multiplication on R™ \ {0}. Show
that G then also acts freely by matrix multiplication on C™ \ {0}.
2. Let n > 2. Give an example of a non-trivial element a € SL(n,R) such
that G acts freely on R™ \ {0}.

Exercise 4.E.4 (Conjugation of permutations**). Determine the fixed sets and
stabiliser groups of the conjugation action of S on itself.

Exercise 4.E.5 (Rubik's cube**). Model playing with Rubik’s cube by a suit-
able group action. Give some examples of interesting group elements in this
group.

Exercise 4.E.6 (Essentially free actions**). Let G be a countable group act-
ing on a probability space (X, u) by measure-preserving measurable iso-
morphisms. Such an action is essentially free if for all ¢ € G\ {e} we
have p(X9) = 0. We consider the shift action of Z on the infinite prod-
uct X := ®,({0,1},1/280+1/26;). Le:, X is the probability space modelling
a bi-infinite sequence of independent coin tosses with a fair two-sided coin.

1. Show that this action is not free.

2. Show that this action is essentially free.

Actions on graphs

Exercise 4.E.7 (Actions of finite groups on trees**). Prove (without using the
characterisation of free groups in terms of free actions on trees) that every
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5.1 Quasi-isometry types of metric spaces

In the following, we consider different levels of similarity between metric
spaces: isometries, bilipschitz equivalences and quasi-isometries. Intuitively,
we want a large scale geometric notion of similarity — i.e., we want metric
spaces to be equivalent if they seem to be the same when looked at from far
away. A guiding example to keep in mind is that we want the real line and
the integers (with the induced metric from the real line) to be equivalent. A
category theoretic framework will be explained in Remark 5.1.12.
For the sake of completeness, we recall the definition of a metric space:

Definition 5.1.1 (Metric'space). A metric space is a pair (X, d) consisting of
a set X anda map d: X x X — R>( satisfying the following conditions:

e Forall z, y € X we have d(z,y) = 0if and only if x = y.

e For all z, y € X we have d(z,y) = d(y, ).

e For all , y, z € X the triangle inequality holds:

d(r, =) < d(x,y) +d(y. ).

Sometimes we will abuse notation and say that X is a metric space if the
metric is clear from the context.

We start with the strongest type of similarity between metric spaces:

Definition 5.1.2 (Isometry). Let f: X — Y be a map between metric
spaces (X, dx) and (Y, dy).
e We say that f is an isometric embedding if

vx,z’GX dY (f(l'), f(l’/)) 4 dX($7xl)'

e The map f is an isometry if it is an isometric embedding and if there
is an isometric embedding g: ¥ — X such that

fog:idy and gof:idx.

e Two metric spaces are isometric if there exists an isometry between
them.

Remark 5.1.3. Clearly, every isometric embedding is injective, and every
isometry is a homeomorphism with respect to the topologies induced by the
metrics. Moreover, an isometric embedding is an isometry if and only if it is
bijective.

The notion of isometry is very rigid — too rigid for our purposes. We want a
notion of “similarity” for metric spaces that only reflects the large scale shape
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of the space, but not the local details. A first step is to relax the isometry
condition by allowing for a uniform multiplicative error:

Definition 5.1.4 (Bilipschitz equivalence). Let f: X — Y be a map between
metric spaces (X,dx) and (Y, dy).
o We say that f is a bilipschitz embedding if there is a constant ¢ € R~
such that

vz,z/GX % : dx((E,ZE/) S dY (f(l’)v f(l'/)) é [ dX(xvxl)'

e The map f is a bilipschitz equivalence if it is a bilipschitz embedding
and if there is a bilipschitz embedding ¢g: ¥ — X such that

fog=idy and go f=idx.

e T'wo metric spaces are called bilipschitz equivalent if there exists a bilip-
schitz equivalence between them.

Remark 5.1.5. Clearly, every bilipschitz embedding is injective, and every
bilipschitz equivalence is a homeomorphism with respect to the topologies
induced by the metrics. Moreover, a bilipschitz embedding is a bilipschitz
equivalence if and only if it is bijective.

Also bilipschitz equivalences preserve local information; so bilipschitz
equivalences still remember too much detail for our purposes. As next — and
final —step, we allow for a uniform additive error:

Definition 5.1.6 (Quasi-isometry). Let f: X — ¥ be a map between metric
spaces (X, dx) and (Y, dy):
e The map f is a quasi-isometric embedding if there are constants c € R+
and b € Ry such that f is a (¢, b)-quasi-isometric embedding;i.e.,

vw@’EX % . dX(waI) —b < dY (f(l'),f(l‘/>) <c- dX(x"T/) +.b.

e A map f': X — Y has finite distance from f if there is'a ¢ € Rsg
with
VweX dY (f(x)a f’(%)) <ec

e The map f is a quasi-isometry if it is a quasi-isometric embedding for
which there is a quasi-inverse quasi-isometric embedding, i.e., if there
is a quasi-isometric embedding g: ¥ — X such that g o f has finite
distance from idx and f o g has finite distance from idy .

e The metric spaces X and Y are quasi-isometric if there exists a quasi-
isometry X — Y; in this case, we write X ~q1 Y.

Example 5.1.7 (Isometries, bilipschitz equivalences and quasi-isometries). Every
isometry is a bilipschitz equivalence, and every bilipschitz equivalence is a
quasi-isometry. In general, the converse does not hold:
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Remark 5.1.12 (A category theoretic framework for quasi-isometry). Let Metisom
be the category whose objects are metric spaces, whose morphisms are isomet-
ric embeddings, and where the composition is given by the ordinary compo-
sition of maps. Then isometries of metric spaces correspond to isomorphisms
in the category Metisonm-

Let Metgiiip be the category whose objects are metric spaces, whose mor-
phisms are bilipschitz embeddings, and where the composition is given by the
ordinary composition of maps. Then bilipschitz equivalences of metric spaces
correspond to isomorphisms in the category Metyijip.

Let QMet’ be the category whose objects are metric spaces, whose mor-
phisms are quasi-isometric embeddings and where the composition is given by
the ordinary composition of maps. For metric spaces X, Y the relation “hav-
ing finite distance from” is an equivalence relation on Morquer (X,Y) and
this equivalence relation is compatible with composition (Proposition 5.1.11).
Hence, we can define the corresponding homotopy category QMet as follows:

e Objects in QMet are metric spaces.
e For metric spaces X and Y, the set of morphisms from X to Y in QMet
is given by

Morquet (X, Y) := Morqmer (X, Y) / finite distance.

o For metric spaces X, Y, Z, the composition of morphisms in QMet is
given by

1\/IOI“Q|\/|et(Z7 Y) X NIOI‘QMet(X, Y) — NTOTQMet(X7 Z)
(lgl, 111) = lg 0 /]

Then quasi-isometries of metric spaces correspond to isomorphisms in the
category QMet.

As quasi-isometries are not bijective in general, some care has to be taken
when defining quasi-isometry groups of metric spaces; however, looking at
the category QMet gives us a natural definition of quasi-isometry groups:

Definition 5.1.13 (Quasi-isometry group). Let X be a metric space. Then the
quasi-isometry group of X is defined by

QIL(X) := Autqmet(X),
i.e., the group of quasi-isometries X — X modulo finite distance.

For example, the category theoretic framework immediately yields that
quasi-isometric metric spaces have isomorphic quasi-isometry groups.

Having the notion of a quasi-isometry group of a metric space also allows
to define what an action of a group by quasi-isometries on a metric space is
— namely, a homomorphism from the group in question to the quasi-isometry
group of the given space.
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Figure 5.3.: The Cayley graph Cay(Z?, {(1,0), (0,1)}) resembles the geome-
try of the Euclidean plane R?

Example 5.2.6 (Cayley graphs of Z). Two different Cayley graphs for the ad-
ditive group Z with respect to finite generating sets are depicted in Figure 5.2.

For infinite generating sets the first part of the previous proposition does
not hold in general; for example, taking Z as a generating set for Z leads
to the space (Z,dz) of finite diameter, while (Z, d;1y) does not have finite
diameter (Example 5.2.4).

Definition 5.2.7 (Quasi-isometry type of finitely generated groups). Let G be
a finitely generated group.

e The group G is bilipschitz equivalent to a metric space X if for some
(and hence every) finite generating set S of G the metric spaces (G, dg)
and X are bilipschitz equivalent.

e The group G is quasi-isometric to a metric space X if for some (and
hence every) finite generating set «S of G the metric spaces (G,dg)
and X are quasi-isometric. We write G ~qr X if G and X are quasi-
isometric.

Analogously, we define when two finitely generated groups are called bilip-
schitz equivalent or quasi-isometric.

Example 5.2.8 (Z" ~q1 R™). If n € N, then the group Z" is quasi-isometric
to Euclidean space R™ because the inclusion Z" — R is a quasi-isometric
embedding with quasi-dense image. In this sense, Cayley graphs of Z™ (with
respect to finite generating sets) resemble the geometry of R™ (Figure 5.3).

At this point it might be more natural to consider bilipschitz equivalence of
groups as a good geometric equivalence of finitely generated groups. However,
we will see soon why considering quasi-isometry types of groups is more
appropriate: For instance, there is no suitable analogue of the Svarc-Milnor
lemma for bilipschitz equivalence (Chapter 5.4).

The question of how quasi-isometry and bilipschitz equivalence are related
for finitely generated groups leads to interesting problems and useful appli-
cations. A first step towards an answer is the following:
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Proposition 5.2.9 (Quasi-isometry vs. bilipschitz equivalence). Bijective quasi-
isometries between finitely generated groups (with respect to the word metric
of certain finite generating sets) are bilipschitz equivalences.

Proof. The proof is based on the fact that the minimal non-trivial distance
between two group elements is 1; one can then trade the additive constants in
a bijective quasi-isometry for a contribution in the multiplicative constants
(Exercise 5.E.5). O

However, not all infinite finitely generated groups that are quasi-isometric
are bilipschitz equivalent. We will study in Chapter 9.4 which quasi-isometric
groups are bilipschitz equivalent; in particular, we will see then under which
conditions free products of quasi-isometric groups lead to quasi-isometric
groups.

5.2.1 First examples

As-a simple example, we start with the quasi-isometry classification of finite
groups:

Remark 5.2.10 (Properness of word metrics). Let G be a group and let S C G
be a generating set. Then S is finite if and only if the word metric dg on G
is proper in the sense that all balls of finite radius in (G,dg) are finite:

If S is infinite, then the ball of radius 1 around the neutral element of G
contains |S| elements, which is infinite. Conversely, if S is finite, then every
ball B of finite radius n around the neutral element contains only finitely
many elements, because the set (S U S~1)" is finite and there is a surjective
map (S U S™H" — B; because the metric dg is invariant under the left
translation action of G, it follows that all ballsin (G, dg) of finite radius are
finite.

Example 5.2.11 (Quasi-isometry classification of finite groups). A finitely gen-
erated group is quasi-isometric to a finite group if and only if it is finite: All
finite groups lead to metric spaces of finite diameter and so all are quasi-
isometric. Conversely, if a group is quasi-isometric to a finite group, then it
has finite diameter with respect to some word metric of a finite generating
set; because balls of finite radius with respect to word metrics of finite gen-
erating sets are finite (Remark 5.2.10), it follows that the group in question
has to be finite.

In contrast, finite groups are bilipschitz equivalent if and only if they have
the same number of elements.

This explains why we drew the class of finite groups as a separate small
spot of the universe of groups (Figure 1.2).
The next step is to look at groups (not) quasi-isometric to Z:
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Cay(Z,{1}) Cay(Doo, {7,y})
-2 -1 0 1 2 yxr -y € r Ty
(0, (1) (1, 1) t st
(0, [0]) (1, [0]) e S
Cay(Z x Z/2,{(1,10]),(0,[1])}) Cay(Deo; {s,1})

Figure 5.4.: The groups Z, Z x 7Z/2, and D, are quasi-isometric

Example 5.2.12 (Some groups quasi-isometric to Z). The groups Z, Z X Z/2,
and D, are bilipschitz equivalent and so in particular quasi-isometric (see
Figure 5.4):

To this end we consider the following two presentations of the infinite dihe-
dral group Do, by generators and relations (Exercise 2.E.19, Exercise 2.E.31,
Exercise 3.E.21):

(z,yla% y*) 2 Do, = (st tsth = s71).

The Cayley graph Cay(Deo,{x,y}) is isomorphic to Cay(Z,{1}); in partic-
ular, D, and Z are bilipschitz equivalent. On the other hand, the Cayley
graph Cay(Dy, s, t) is isomorphic to Cay(Z x Z/2,{(1,[0]), (0, [1])}); in par-
ticular, Dy, and Z X Z/2 are bilipschitz equivalent. Because the word metrics
on D, corresponding to the generating sets {z,y} and {s,¢} are bilipschitz
equivalent, it follows that also Z and Z x Z/2 are bilipschitz equivalent.

Caveat 5.2.13 (Isometry classification of finitely generated Abelian groups).
Even though Z and D, as well as D, and Z x Z/2 admit finite generating
sets with isomorphic Cayley graphs, the groups Z and Z X Z/2 do not admit
finite generating sets with isomorphic Cayley graphs (Exercise 3.E.22). More
generally, finitely generated Abelian groups admit isomorphic Cayley graphs
if and only if they have the same rank and if the torsion part has the same
cardinality [102]. More generally, a similar classification also applies to finitely
generated nilpotent groups [177].

One can also show by elementary arguments that Z and Z" are not quasi-
isometric whenever n € N>g (Exercise 5.E:24). More conceptual arguments
will be given in Chapter 6.

However, much more is true — the group Z is quasi-isometrically rigid in
the following sense:
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Theorem 5.2.14 (Quasi-isometry rigidity of Z). A finitely generated group is
quasi-isometric to Z if and only if it is virtually Z. A group is called virtu-
ally Z if it contains a finite index subgroup isomorphic to 7Z.

In other words, the property of being virtually Z is a geometric property
of groups. We will give several proofs of this result later when we have more
tools available (Chapter 6.3.6, Corollary 7.5.8, Theorem 8.2.14).

More generally, it is one of the primary goals of geometric group theory to
understand as much as possible of the quasi-isometry classification of finitely
generated groups.

5.3 Quasi-geodesics and quasi-geodesic spaces

In metric geometry, it is useful to require that the metric on the space in
question is (quasi-)geodesic; i.e., that its metric can be realised (up to some
uniform error) by paths. For example, this will be an important hypothesis
in the Svarc-Milnor lemma.

5.3.1 (Quasi-)Geodesic spaces

Definition 5.3.1 (Geodesic space). Let (X, d) be a metric space.
o Let L € R>g. A geodesic of length L in X is an isometric embed-
ding v: [0, L] — X, where the interval [0, L] carries the metric induced
from the standard metric on R; the point v(0) is the start point of v,
and (L) is the end point of 7.
e The metric space X is called geodesic, if for all z, ' € X there exists
a geodesic in X with start point # and end point .

Example 5.3.2 (Geodesic spaces). The following statements are illustrated in
Figure 5.5.

e Let n € N. Geodesics in the Euclidean space R" are precisely the Eu-
clidean line segments (parametrised via a vector of unit length). As
any two points in R™ can be joined by a line segment, the Euclidean
space R™ is geodesic.

e The space R?\ {0} endowed with the metric induced from the Euclidean
metric on R? is not geodesic (Exercise 5.E.9).

o The sphere S? with the standard round Riemannian metric is-a geodesic
metric space. The geodesics are parts of great circles on .S?. However,
antipodal points can be joined by infinitely many different geodesics.

e The hyperbolic plane H? is a geodesic metric space (Appendix A.3).
In the Poincaré disk model, geodesics are parts of circles that intersect
the boundary circle orthogonally.
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4

R2 52 H?

Figure 5.5.: Geodesic spaces and example geodesics

Caveat 5.3.3. The notion of geodesic in Riemannian geometry is related to
the one above, but not quite the same; geodesics in Riemannian geometry
are only required to be locally isometric, not necessarily globally.

Finitely generated groups together with a word metric coming from a finite
generating set are not geodesic (if the group in question is non-trivial), as the
underlying metric space is discrete. However, they are geodesic in the sense
of large scale geometry:

Definition 5.3.4 (Quasi-geodesic space). Let. (X,d) be a metric space; let
c € Ryp; and let b € Rzo.
e Then a (¢,b)-quasi-geodesic in X is a (¢, b)-quasi-isometric embedding
~v: I — X, where I = [t,t'] C R is some closed interval; the point ()
is the start point of v; and ~(t') is the end point of .
e The space X is (c¢,b)-quasi-geodesic, if for all z, @’ € X there exists a
(¢, b)-quasi-geodesic in X with start point & and end point z’.

Every geodesic space is also quasi-geodesic (namely, (1, 0)-quasi-geodesic);
however, not every quasi-geodesic space is geodesic:

Example 5.3.5 (Quasi-geodesic spaces)-

o If X = (V, E) is a connected graph, then the associated metric on V
turns V into a (1, 1)-geodesic space: The distance between two vertices
is realised as the length of some graph-theoretic path in the graph X,
and every path in the graph X that realises the distance between
two vertices yields a (1,1)-quasi-geodesic (with respect to a suitable
parametrisation).

e In particular: If G is a group and S is a generating set of G, then (G, dg)
is a (1, 1)-quasi-geodesic space.

e Forevery ¢ € R+ the space R?\ {0} is (1, )-quasi-geodesic with respect
to the metric induced from the Euclidean metric on R? (Exercise 5.E.9).

5.3.2 Geodesification via geometric realisation of graphs

Sometimes it is more convenient to be able to argue via geodesics than via
quasi-geodesics. Therefore, we explain how we can associate a geodesic space
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5.4 The Svarc-Milnor lemma

Why should we be interested in understanding how finitely generated groups
look like up to quasi-isometry? A first answer to this question is given by the
Svarc-Milnor lemma, which is one of the key ingredients linking the geom-
etry of groups to the geometry of spaces arising naturally in geometry and
topology.

The Svarc-Milnor lemma roughly says that given a “nice”. action of a group
on a “nice” metric space, we can conclude that the group in question is finitely
generated and that the group is quasi-isometric to the given metric space.

In practice, this result can be applied both ways: If we want to know more
about the geometry of a group or if we want to know that a given group
is finitely generated; it suffices to exhibit a nice action of this group on a
suitable space. Conversely; if we want to know more about a metric space,
it suffices to find a nice action of a suitable well-known group. Therefore,
the Svarc-Milnor lemma is also called the “fundamental lemma of geometric
group theory.”

We start with a metric formulation of the Svarc-Milnor lemma for quasi-
geodesic spaces; In a second step, we will deduce a more topological version,
the version commonly used in applications.

Proposition 5:4.1 (§varc—Mi|nor lemma). Let G be a group, and let G act
on a (non-empty) metric space (X,d) by isometries. Suppose that there are
constants ¢, b € Ry such that X is (c,b)-quasi-geodesic and suppose that
there is a subset B C X with the following properties:

e The diameter of B is finite.

o The G-translates of B. cover all of X, i.e., UgeGg -B=X.

o The set S:={gc G|g-B NB #0}is finite, where

B' = B} (B) = {a € X | ,eq dlr.y) &2 b},

Then the following holds:
1. The group G is generated by S; in particular, G is finitely generated.
2. For all x € X the associated map

G— X
g——=>g-x

is a quasi-isometry (with respect to the word metric dg on G).

Proof. The set S generates G: The argument follows the transitivity principle
used in the proof of Proposition 4.1.20. Let g € G. We show that g € (S)¢a
by using a suitable quasi-geodesic and following translates of B along this
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e Anaction GXX — X of a group G on a topological space X (e.g., with
the topology coming from a metric on X) is proper if for all compact
sets B C X the set {g€ G| g- BN B #0} is finite.

Example 5.4.3 (Proper actions).

— The translation action of Z on R is proper (with respect to the
standard topology on R).

— More generally, the action by deck transformations of the fun-
damental group of a locally compact path-connected topological
space (that admits a universal covering) on its universal covering
is proper [115, Chapter V].

— All stabiliser groups of a proper action are finite. The converse is
not necessarily true: For example, the action of Z on the circle S!
given by rotation around an irrational angle is free but not proper
(because Z is infinite and S* is compact).

e An action G x X — X of a group G on a topological space X is
cocompact if the quotient space G \ X is compact with respect to the
quotient topology:

Example 5.4.4 (Cocompact actions).

— The translation action of Z on R is cocompact (with respect to the
standard topology on R), because the quotient is homeomorphic
to the circle S', which is compact.

— More generally, the action by deck transformations of the funda-
mental group of a compact path-connected topological space X
(that admits a universal covering) on its universal covering is
cocompact because the quotient is homeomorphic to X (Exam-
ple 4.1.13).

— The (horizontal) translation action of Z on R? is not cocompact
(with respect to the standard topology on R?), because the quo-
tient is homeomorphic to the infinite cylinder S x R, which is not
compact.

— The action of SL(2,Z) by Mébius transformations, i.e., via

SL(2,Z) x H— H
a b o 4V +b
c d)’ c-z+d’
on the upper half plane H :={z € C | Rez > 0} (Appendix A.3)
is mot cocompact (Exercise 5.E.20).

Proof of Corollary 5.4.2. Under the given assumptions, the metric space X is
(1,b)-quasi-geodesic for every b € R~. In order to be able to apply the Svarc-
Milnor lemma (Proposition 5.4.1), we need to find a suitable subset B C X.

Because the projection w: X — G \ X associated with the action is
an open map and because G \ X is compact, one can easily find a closed
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subspace B C X of finite diameter with 7(B) = G\ X (e.g., a suitable union
of finitely many closed balls). In particular, | J geq 9 B =X and

B/ y— ng(B)

has finite diameter. Because X is proper, the subset B’ is compact; thus the
action of G on X being proper implies that the set {g € G | g- BN B #£ ()}
is finite.

Hence, we can apply the Svarc-Milnor lemma (Proposition 5.4.1). O

5.4.1 Application: (Weak) commensurability

The Svarc-Milnor lemma has numerous applications in geometry, topology
and group theory; we will give a few basic examples of this type, indicating
the potential of the Svarc-Milnor lemma:
e Finite index subgroups of finitely generated groups are finitely gener-
ated.
e (Weakly) commensurable groups are quasi-isometric.
e Certain groups arising in geometric topology are finitely generated (for
instance, certain fundamental groups).
e Fundamental groups of nice compact metric spaces are quasi-isometric
to the universal covering space.
As a first application of the Svarc-Milnor lemma, we give another proof of
the fact that finite index subgroups of finitely generated groups are finitely
generated:

Corollary 5.4.5. Finite index subgroups of finitely generated groups are finitely
generated and quasi-isometric to the ambient group (via the inclusion map).

Proof. Let G be a finitely generated group, and let H C G be a subgroup of
finite index. If S is a finite generating set of G, then the left translation action
of H on (G, dg) is an isometric action satisfying the conditions of the Svarc-
Milnor lemma (Proposition 5.4.1): The space (G, ds) is (1,1)-quasi-geodesic.
Moreover, we let B C G be a finite set of representatives of H'\ G (hence, the
diameter of B is finite). Then H - B = @, the set B’ := BS** (B) is finite,
and so the set
T:={h€ H|h-B'NB # 0}

is finite.

Therefore, H is finitely generated (by T') and the inclusion H «— G is a
quasi-isometry (with respect to any word metrics on H and G coming from
finite generating sets). O

Pursuing this line of thought leads to the notion of (weak) commensura-
bility of groups:
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Definition 5.4.6 ((Weak) commensurability).

e Two groups G and H are commensurable if they contain finite index
subgroups G'C G and H' C H with G' = H'.

e More generally, two groups G and H are weakly commensurable if they
contain finite index subgroups G’ C G and H' C H satisfying the
following condition: There are finite normal subgroups N of G’ and M
of H' respectively such that the quotient groups G’ /N and H'/M are
isomorphic.

In fact, both commensurability and weak commensurability are equiva-
lence relations on the class of groups (Exercise 5.E.16).

Corollary 5.4.7 (Weak commensurability and quasi-isometry). Let G be a group.
1. Let G’ be a finite index subgroup of G. Then G’ is finitely generated if
and only if G is finitely generated. If these groups are finitely generated,
then G ~qi G'.
2. Let N be a finite normal subgroup. Then G/N is finitely generated if
and only if G is finitely generated. If these groups are finitely generated,
then G ~q1 G/N.
In _particular, if G is_finitely generated, then every group weakly commensu-
rable to G is finitely generated and quasi-isometric to G.

Proof.  Ad 1. In view of Corollary 5.4.5, it suffices to show that G is finitely
generated if G’ is; but clearly combining a finite generating set of G’ with a
finite set of representatives of the G’-cosets in G yields a finite generating set
of G.

Ad 2. 1f G is finitely generated, then so is the quotient G/IV; conversely, if
G/N is finitely generated, then combining lifts with respect to the canonical
projection G — G/N of a finite generating set of G/N with the finite set N
gives a finite generating set of G.

Let G and G/N be finitely generated, and letS be a finite generating set
of G/N. Then the (pre-)composition of the left translation action of G/N
on (G/N,dg) with the canonical projection G — G/N gives an isometric
action of G on G/N that satisfies the conditions of the Svarc-Milnor lemma
(Proposition 5.4.1). Therefore, we obtain G ~q1 G/N. O

Example 5.4.8 (Commensurability).

e Let n € N>y. Then the free group of rank 2 contains a free group
of rank n as finite index subgroup (Exercise 4.E.12), and hence these
groups are commensurable; in particular, all free groups of finite rank
bigger than 1 are quasi-isometric.

e The subgroup of SL(2,Z) generated by the two matrices

08, st (o)

is free of rank 2 (Example 4.4.1) and has index 12 in SL(2,Z) (Proposi-
tion 4.4.2). Thus, SL(2,Z) is finitely generated and commensurable to
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a free group of rank 2, and therefore quasi-isometric to a free group of
rank 2 (and hence to all free groups of finite rank bigger than 1).

e Later we will find more examples of finitely generated groups that are
not quasi-isometric. Hence, all these examples cannot be weakly com-
mensurable (which might be rather difficult to check by hand).

Caveat 5.4.9. Not all quasi-isometric groups are commensurable [77, p. 105f]:
Let F3 be a free group of rank 3, and let F; be a free group of rank 4. Then
the finitely generated groups (F3 X F3)* F3 and (F3 X F3)* Fy are bilipschitz
equivalent and hence quasi-isometric (Example 9.4.8).

On the other hand, the Euler characteristic x (an invariant from alge-
braic topology) of the corresponding classifying spaces is multiplicative un-
der finite coverings [34]. Hence, commensurable groups G and G’ (that admit
sufficiently finite models of classifying spaces) satisfy

X(G) =0 = x(G') =0.
However, the inheritance properties of the Euler characteristic [34] yield

X((F5 x F3)* F3) = x(F3) - x(F3) + x(F3) —1
—(1-3) (1-3)+(1=3) -1
40
—(1-3) (-3 + (-4 -1
= x(F3) - x(F3) + x(Fa) = 1
= X((F3 x F3) * F4).

So, (F3 x F3)xF3 and (F5 x F3)*Fy are not commensurable; moreover, because
these groups are torsion-free, they also are not weakly commensurable.

Even more drastically, there also exist groups that are weakly commensu-
rable but not commensurable [77, IIL.18(xi)].

5.4.2 Application: Geometric structures on manifolds

As second example, we look at applications of the Svare-Milnor lemma in alge-
braic topology and Riemannian geometry via fundamental groups; a concise
introduction to Riemannian geometry is given by Lee’s book [96].

Corollary 5.4.10 (Fundamental groups and quasi-isometry). Let M be-a closed
(i.e., compact and without boundary) connected Riemannian manifold, and

let M be its Riemannian universal covering manifold. Then the fundamental
group 71 (M) is finitely generated and for every x € M, the map

m (M) — M
g—g-x
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NSNS,

sphere torus higher genus

Figure 5.11.: Oriented closed connected surfaces

given by the action of the fundamental group w1 (M) on M via deck transfor-

mations is a quasi-isometry. Here, M and M are equipped with the metrics
induced from their Riemannian metrics.

Sketch of proof. Standard arguments from Riemannian geometry and topol-
ogy show that in this case M is a proper geodesic metric space and that
the action of m (M) on M is isometric, proper, and cocompact (the quo-
tient being the compact space M). Applying the topological version of the

Svarc-Milnor lemma (Corollary 5.4.2) finishes the proof. O

We give a sample application of this consequence of the Svarc-Milnor
lemma to Riemannian geometry:

Definition 5.4.11 (Flat manifold, hyperbolic manifold).
e A Riemannian manifold is called flat if its Riemannian universal cov-
ering is-isometric to the Euclidean space of the same dimension.
e A Riemannian manifold is called hyperbolic if its Riemannian universal
covering is.isometric to the hyperbolic space of the same dimension.

Being flat is the same as having vanishing sectional curvature and being
hyperbolic is the same as having constant sectional curvature —1[96, Chap-
ter 11].

Example 5.4.12 (Surfaces). Oriented closed connected surfaces are deter-
mined up to homeomorphism/diffeomorphism by their genus (i.e., the number
of “handles”, see Figure 5.11) [115, Chapter IJ.

e The oriented surface of genus 0 is the sphere of dimension 2; it is sim-
ply connected, and so coincides with its universal covering space. In
particular, no Riemannian metric on S2 is flat or hyperbolic.

e The oriented surface of genus 1 is the torus of dimension 2, which has
fundamental group isomorphic to Z?2. The torus admits a flat Rieman-
nian metric: The translation action of Z2 on R? is isometric with respect
to the flat Riemannian metric on R? and properly discontinuous; hence,
the quotient space (i.e., the torus S x S!) inherits a flat Riemannian
metric.

e Oriented surfaces of genus g > 2 have fundamental group isomorphic
to
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ﬁ[aw bj]>

Jj=1

<a1,...7ag,b1,...,bg

and one can show that these surfaces admit hyperbolic Riemannian
metrics {18, Chapter B.1, B.3][167].

Corollary 5.4.13 ((Non-)Existence of flat/hyperbolic structures).

1. If M is a closed conmected Riemannian n-manifold that is flat, then
its fundamental group 71 (M) is quasi-isometric to Euclidean space R™,
and hence to Z".

2. In other words: If the fundamental group of a closed connected smooth
n-manifold is not quasi-isometric to R™ (or Z"), then this manifold
does not admit a flat Riemannian metric.

8. If M is a closed connected Riemannian n-manifold that is hyperbolic,
then its fundamental group 71 (M) is quasi-isometric to the hyperbolic
space H™.

4. In other words: If the fundamental group of a closed connected smooth
n-manifold is not quasi-isometric to H™, then this manifold does not
admit a hyperbolic Riemannian metric.

Proof. This is a direct consequence of Corollary 5.4.10. L

Moreover; by the Bonnet-Myers theorem, closed connected Riemannian
manifolds of positive sectional curvature have finite fundamental group [96,
Theorem 11.7, Theorem 11.8].

So, classifying finitely generated groups up to quasi-isometry and study-
ing the quasi-geometry of finitely generated groups gives insights into the
geometry and topology of smooth/Riemannian manifolds.

5.5 The dynamic criterion for quasi-isometry

The Svare-Milnor lemma, translates an action of a group into a quasi-isometry
of the group in question to the metric space acted upon. Similarly, we can
also use certain actions to compare two groups with each other:

Definition 5.5.1 (Set-theoretic coupling). Let G and H be groups. A set-
theoretic coupling for G and H is a non-empty set X together with a left
action of G'on X and a right action' of H on X that commute with each
other (i.e., (g-2)+h =g-(x-h) holds for allz € X and all g € G, h € H)
such that X contains a subset K with the following properties:

1. The G- and H-translates of K cover X, ie. G- K =X =K - H.

LA right action of a group H on a set X is a map X x H — X such that « - e = 2z and
(z-h)-h' =z (h-h') holds for all z € X and all h, k' € H. In other words, a right
action of H on X is the same as an antihomomorphism H — Sx.
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in particular, we obtain (via the triangle inequality)

dp(f(9), f(g) = dr (e, flg)~" - F(g")
<Dp(Fy - Fg(S)")
<n-DpFy(S)+ DrFy
=ds(9,9") - DrFu(S)+ DrFu,

as desired (the constants DpFp(S) and DpFyy are finite because the
sets F(S) and Fy are finite by assumption).

e Moreover, there is a lower bound of dr(f(g), f(¢')) in terms of ds(g, g):
Let m := dp(f(g), f('g)). Using similar arguments as above, one sees
that

g -aflg) eF(T)"-KNg g K

and hence that this intersection is non-empty. Therefore, we can con-
clude that

ds(g,9') < DsFg(T) -dr(f(9),f(g')) + DsFe,

which gives the desired lower bound. O

Outlook 5.5.4 (Cocycles). The construction of the map f in the proof above
is an instance of a more general principle associating interesting maps with
actions. Namely, suitable actions lead to cocycles (which are algebraic ob-
jects); considering cocycles up to an appropriate equivalence relation (“being
a coboundary”) then gives rise to cohomology groups (Appendix A.2). In this
way, aspects of group actions on a space can be translated into an algebraic
theory. In particular, the characterisation of quasi-isometry of finitely gener-
ated groups through couplings leads to quasi-isometry invariance of certain
(co)homological invariants [67, 161, 157, 98].

Moreover, we do not need to assume that both groups are finitely gener-
ated as being finitely generated is preserved by set-theoretic couplings (Ex-
ercise 5.E.18).

The converse of Proposition 5.5.3 also holds: whenever two finitely gener-
ated groups are quasi-isometric, then there exists a coupling (even a topolog-
ical coupling) between them:

Definition 5.5.5 (Topological coupling). Let G'and H be groups. A topological
coupling for G _and H is a non-empty locally compact space X together with
a proper cocompact left action of G on X by homeomorphisms and a proper
cocompact right action of H on X by homeomorphisms that commute with
each other.

A topological space X is called locally compact? if for every z € X and
every open neighbourhood U C X of x there exists a compact neighbour-

2There are several different notions of local compactness in the literature!
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hood K C X of x with K C U. For example, a metric space is locally
compact if and only if it is proper.
We can now formulate Gromov’s dynamic criterion for quasi-isometry:

Theorem 5.5.6 (Dynamic criterion for quasi-isometry). Let G and H be finitely
generated groups. Then the following are equivalent:

1. There is a topological coupling for G and H .

2. There is a set-theoretic coupling for G and H .

3. The groups G and H are quasi-isometric.

Proof. Ad “1 = 27. Let G and H be finitely generated groups that admit
a topological coupling, i.e., there is a non-empty locally compact space X
together with a proper cocompact action from G on the left and from H on
the right such that these two actions commute with each other. We show that
such a topological coupling forms a set-theoretic coupling:

A standard argument from topology shows that in this situation there is
a compact subset K C X such that G- K = X = K - H. Because the actions
of G and H on X are proper, the sets

{9€Glg-KNK #0} and {heH|K -hnK #0}

are finite; moreover, compactness of the set K as well as the local compactness
of X also give us that for every g € G there is a finite set Fy(g) C H
satisfying g - K C K - Fy(g), and similarly for elements of H. Hence, this
topological coupling is also a set-theoretic coupling for G and H.

Ad 2 =3". This was proved in Proposition 5.5.3.

Ad “3 = 17. Suppose that the finitely generated groups G and H are
quasi-isometric. We now explain how this leads to a topological coupling of G
and H:

Let S C G and T C H be finite generating sets of G and H respectively.
As first step, we show that there is a finite group F' and a constant C' € Ry
such that the set

X = {f:G—>H><F‘fhasC—denseimageionF, and

vg,g’GG é ~ds(g,g’) < deF(f(g)vf(gl)) <C- dS(gagl)}

is non-empty: Let f: G — H be a quasi-isometry. Because f is a quasi-
isometry, there is a ¢ € Rs g such that f has e-dense image in H and

Vg,o'cc % 2ds(9,9") — c <dr(f(9), f(g)) < c-dslg, g )+

In particular, if g, ¢' € G satisfy f(g) = f(¢'), then ds(g,g") < 2. Let F
be a finite group that has more elements than the dg-ball of radius ¢? in G
(around the neutral element). Then out of f we can construct an injective

quasi-isometry f: G — H X F. Let ¢ € Ry be chosen in such a way
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that fis a (¢, ¢)-quasi-isometric embedding with ¢-dense image. Because fis
injective, then f satisfies a max(2-¢, ¢ 4-¢)-bilipschitz estimate (this follows as
in Exercise 5.E.5 from the fact that different elements of a finitely generated
group have distance at least 1 with respect to every word metric). Hence, F
and € := max(2 ¢, + ¢) have the desired property that the corresponding
set X is non-empty.

We consider the following left G-action and right H-action on X:

GxX—X
(g:0) — (&= flg~ "))

XxH—X
(fih) — (@ f(x) - (h,e))

By construction, these two actions commute with each other.

Furthermore, we equip X with the topology of pointwise convergence
(which coincides with the compact-open topology when viewing X as a sub-
space of all “continuous” functions G — H X F'). By the Arzeld-Ascoli
theorem [89, Chapter 7], the space X is locally compact with respect to this
topology; at this point it is crucial that the functions in X satisfy a uniform
(bi)lipschitz condition (instead of a quasi-isometry condition) so that X is
equicontinuous. A straightforward computation (also using the Arzeld-Ascoli
theorem) shows that the actions of G and H on X are indeed proper and
cocompact [156]. O

Outlook 5.5.7 (A dynamic criterion for bilipschitz equivalence). It is also pos-
sible to formulate and prove a dynamic criterion for bilipschitz equivalence,
using couplings of continuous actions on Cantor sets [118, Theorem 3.2][98].

5.5.1 Application: Comparing uniform lattices

A topological version of subgroups of finite index are uniform lattices; the
dynamic criterion shows that finitely generated uniform lattices in the same
ambient locally compact group are quasi-isometric (Corollary 5.5.9).

Definition 5.5.8 (Uniform lattice). Let G be a locally compact topological
group. A uniform (or cocompact) lattice in G is a discrete subgroup T' of G
such that the left translation action (equivalently, the right translation action)
of I on G is cocompact.

Recall that a topological group is a group G that in addition is a topological
space such that the composition G x G — G in the group and the inversion
map G — G given by taking inverses are continuous (on G x G we take
the product topology). A subgroup I' of a topological group G is discrete if
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So, every finitely generated group that is not quasi-isometric to H can-
not be a uniform lattice in Hp; for example, we will see in Chapter 6
that Z? is not quasi-isometric to H, and that free groups of finite rank
are not quasi-isometric to H.

o The subgroup SL(2,Z) of the matrix group SL(2,R) is discrete and
the quotient SL(2,Z) \ SL(2,R) has finite invariant measure, but this
quotient is mot compact (this is similar to the fact that the action
of SL(2,Z) on the upper halfplane is not cocompact, Exercise 5.E.20);
so SL(2,Z) is not a uniform lattice in SL(2,R).

o If M is a closed connected Riemannian manifold, then the isometry
group Isom(M) of the Riemannian universal covering of M is a lo-
cally compact topological group (with respect to the compact-open
topology). Because the fundamental group w1 (M) acts by isometries
(via deck transformations) on M, we can view (M) as a subgroup
of Isom(]T/f ). One can show that this subgroup is discrete and co-

compact, so that 71 (M) is a uniform lattice in Isom(M) [156, The-
orem 2.35].

Outlook 5.5.11 (Measure equivalence). Another important aspect of the dy-
namic criterion for quasi-isometry is that it admits translations to other set-
tings. For example, the corresponding measure-theoretic notion is measure
equivalence of groups, which plays a central role in measurable group the-
ory [63].

5.6 Quasi-isometry invariants

The central classification problem of geometric group theory is to classify
finitely generated groups up to quasi-isometry. As we have seen in the pre-
vious sections, knowing that certain groups are not quasi-isometric leads to
interesting consequences in group theory, topology, and geometry.

5.6.1 Quasi-isometry invariants

While a complete classification of finitely generated groups up to quasi-
isometry is far out of reach, partial results can be obtained. A general princi-
ple to obtain partial classification results is to construct suitable invariants.
We start with the simplest case, namely set-valued quasi-isometry invariants:

Definition 5.6.1 (Quasi-isometry invariants). Let V' be a set. A quasi-isometry
invariant with values in V. is a map I from the class of all finitely generated
groups to V' such that all finitely generated groups G, H with G ~qi H satisfy
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Proposition 5.6.2 (Using quasi-isometry invariants). Let V be a set, and let T
be a quasi-isometry invariant with values in V', and let G and H be finitely
generated groups with I(G) # I(H). Then G and H are not quasi-isometric.

Proof. Assume for a contradiction that G and H are quasi-isometric. Because
I is a quasicisometry invariant, this implies /(G) = I(H), which contradicts
the assumption I(G) # I(H). Hence; G and H cannot be quasi-isometric. [

So, the more quasi-isometry invariants we can find, the more finitely gen-
erated groups we can distinguish up to quasi-isometry.

Caveat 5.6.3. If 7 is a quasi-isometry invariant of finitely generated groups,
and G and H are finitely generated groups with I(G) = I(H), then in general
we cannot deduce that G-and H are quasi-isometric, as the example of the
trivial invariant shows (see below).

Some basic examples of quasi-isometry invariants are the following:

Example 5.6.4 (Quasi-isometry invariants).

o The trivial invariant. Let V be a set containing exactly one element,
and let I be the map associating with every finitely generated group
this one element. Then clearly I is a quasi-isometry invariant — however,
I does not contain any interesting information.

o Finiteness. Let V :={0,1}, and let I be the map that sends all finite
groups to 0 and all finitely generated infinite groups to 1. Then T is
a quasi-isometry invariant, because a finitely generated group is quasi-
isometric to a finite group if and only if it is finite (Example 5.2.11).

o Rank of free groups. Let V := N, and let I be the map from the class
of all finitely generated free groups to V' that associates with a finitely
generated free group its rank. Then [ is not a quasi-isometry invariant
on the class of all finitely generated free groups, because free groups of
rank 2 and rank 3 are quasi-isometric (Example 5.4.8):

In order to obtain interesting classification results we need further quasi-
isometry invariants. In the following chapters, we will, for instance, study
the growth of groups (Chapter 6),
hyperbolicity (Chapter 7),
ends of groups (i.e., geometry at infinity) (Chapter 8),
and amenability (Chapter 9).

Caveat 5.6.5. If a quasi-isometry invariant has only a countable range of pos-
sible values, then it will not be a complete invariant: There exist uncountably
many quasi-isometry classes of finitely generated groups. This fact is a quasi-
geometric version of Theorem 2.2.28 and it can, for example, be proved by
producing uncountably many different growth types of groups [69] or via
small cancellation theory and the geometry of loops in Cayley graphs [23].
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5.6.2 Geometric properties of groups and rigidity

In geometric group theory, it is common to use the following term:

Definition 5.6.6 (Geometric property of groups). Let P be a property of finitely
generated groups (i.e., every finitely generated group either has P or does
not have P; more formally, P is a subclass of the class of finitely generated
groups). We say that P is a geometric property of groups, in case the following
holds for all finitely generated groups G and H: If G has P and H is quasi-
isometric to G, then also H has P (i.e., if “having property P” is a quasi-
isometry invariant).

Example 5.6.7 (Geometric properties).

e Being finite is a geometric property of groups (Example 5.2.11).

e Being Abelian is not a geometric property of groups: For example, the
trivial group and the symmetric group S3 are quasi-isometric (because
they are both finite), but the trivial group is Abelian and Sj is not
Abelian.

Surprisingly, there are many interesting (many of them purely algebraic!)
properties of groups that are geometric. We list only the most basic instances,
more complete lists can be found in the book of Drutu and Kapovich [53]:
e Being virtually® infinite cyclic is a geometric property (Chapter 6.3).
o More generally, for every n € N the property of being virtually Z™ is
geometric (Chapter 6.3):

e Being finitely generated and virtually free is a geometric property [178,
53].

e Being finitely generated and virtually nilpotent is a geometric property
of groups (Chapter 6.3).

e Being finitely presented is a geometric property of groups [31, Propo-
sition 1.8.24] (Exercise 6.E.35).

Proving that these properties are geometric is far from easy; some of the
techniques and invariants needed to prove such statements are explained in
later chapters.

That a certain algebraic property of groups turns out to be geometric is
an instance of a rigidity phenomenon; so, for example, the fact that being
virtually infinite cyclic is a geometric property can also be formulated as the
group Z being quasi-isometrically rigid.

Conversely, in the following chapters, we will also study geometrically de-
fined properties of finitely generated groups such as hyperbolicity (Chapter 7)
and amenability (Chapter 9) and we will investigate how the geometry of
these groups affects their algebraic structure.

3Let P be a property of groups. A group is virtually P if it contains a finite index subgroup
that has property P.
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5.6.3 Functorial quasi-isometry invariants

A refined setup for quasi-isometry invariants is the formalisation of quasi-
isometry invariants as functors between categories. Functors translate objects
and morphisms between categories:

Definition 5.6.8 (Functor). Let C' and D be categories. A (covariant) func-
tor F: C — D counsists of the following components:

e Amap F: Ob(C) — Ob(D) between the classes of objects.

e For all objects X, Y € Ob(C) a map

F: Morc(X,Y) — Morp (F(X),F(Y)).

These maps are required to be compatible in the following sense:
e For all objects X € Ob(C) we have F(idx ) = idg(x)-
e For all X,Y,;Z € Ob(C), all f € Morg(X,Y), and all g € Mor¢(Y, Z)
we have
B(go f) =F(g) o F(f).
Functors, by definition, satisfy a fundamental invariance principle:

Proposition 5.6.9 (Functors preserve isomorphisms). Let C' and D be cate-
gories, let F: C — D be a functor, and let X, Y € Ob(C).
1. If f € Moreg(X,Y) is an isomorphism in the category C, then the
morphism F(f) € Morp(F(X),F(Y)) is an isomorphism in D.
2. If X = Y, then F(X)&p F(Y).
3. IfF(X) 2p F(Y), then X %c Y.

Proof. This is an immediate consequence of the definition of functors and of
isomorphism in categories. ]

Functors are ubiquitous in modern mathematics. For example, the funda-
mental group (Appendix A.1) is a functor from the (homotopy) category of
pointed topological spaces to the category of groups; geometric realisation
can be viewed as a functor from the category of graphs to the category of
metric spaces; group (co)homology is a functor from the category of groups
to the category of graded modules (Appendix A.2).

Definition 5.6.10 (Functorial quasi-isometry invariant). Let C be a category.
A functorial quasi-isometry invariant with values in C' is a functor from (a
subcategory of) QMet to C.

Functorial quasi-isometries refine ordinary quasi-isometry invariants: If
F: QMet — C' is a functorial quasi-isometry invariant, then taking the
isomorphism classes of values yields a set-valued quasi-isometry invariant
(provided that the isomorphism classes of C' form a set). However, the func-
tor F contains more information: We do not only get isomorphic values on
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quasi-isometric-objects, but we also get relations between the values of F' in
the presence of quasi-isometric embeddings (Example 6.2.9, Example 8.3.9).

Basic examples of functorial quasi-isometry invariants are the ends functor
from the subcategory of QMet generated by geodesic metric spaces to the
category of topological spaces and the Gromov boundary functor from the
subcategory of QMet generated by quasi-hyperbolic spaces to the category of
topological spaces (Chapter 8). Also growth types of finitely generated groups
can be viewed as functorial quasi-isometry invariants from the subcategory
of QMet generated by finitely generated groups to the (category assoicated
with the) partially ordered set of growth types (Chapter 6).

Moreover, there is a general principle turning functors from algebraic
topology into quasi-isometry invariants, based on the coarsening construc-
tion by Higson and Roe [83, 148, 132]; a more general and more conceptual
approach was recently developed by Bunke and Engel [36]. For simplicity,
we restrict ourselves to the domain category of uniformly discrete spaces of
bounded geometry.

Definition 5.6.11 (UDBG space). A metric space (X, d) is a UDBG space if
it is uniformly discrete and of bounded geometry, i.e., if

inf{d(z,2") | z;a’ € X, z #a'} >0
and if there exists for all » € Ry a constant K, € N such that
Voex |BX%a)| < K.

The full subcategory of QMet generated by all UDBG spaces is denoted
by UDBG.

For example, if G is a finitely generated group and S C G is a finite
generating set, then (G, dg) is a UDBG space:

The coarsening of a functor is the maximal quasi-isometry invariant con-
tained in the given functor:

Theorem 5.6.12 (Coarsening of functors). Let C be a category that is closed
under direct limits, and let F': Simp'hf — C be a functor. Then there exists a
functor QF : UDBG — C' and a natural transformation cg: Fol = QF oV
with the following universal property: If G: UDBG — C' is a functor and if
cg: F ol = GoV is a natural transformation, then there exists a unique
natural transformation ¢: QF = G with (Figure 5.12)

COCp = Cqg.
We call QF the coarsening of F' and cp the comparison map for F.

Before sketching the proof, we briefly explain the terms in the theorem:
A natural transformation is a family of morphisms in the target category
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5.E Exercises

Quasi-isometry and bilipschitz equivalence

Quick check 5.E.1 (Quasi-isometric embedding constants*). Let ¢,¢’ € Ry
and b,V € R>.
1. Let ¢’ > ¢ and &’ > b. Is then every (c,b)-quasi-isometric embedding
also a (¢, b')-quasi-isometric embedding?
2. Let¢’ < c and b/ < b: Is then every (e¢;b)-quasi-isometric embedding
also a (¢, b')-quasi-isometric embedding?

Quick check 5.E.2 (Quasi-isometry of metric spaces*).
1. Are the metric spaces N and Z (with respect to the standard metric
induced from R) quasi-isometric?
2. Are the metric spaces Z and {n> | n € Z} (with respect to the standard
metric induced from R) quasi-isometric?

Exercise 5.E.3 (Maps close to quasi-isometric embeddings*).
1. Show that every map at finite distance of a quasi-isometric embedding
is a quasi-isometric embedding.
2. Show that every map at finite distance of a quasi-isometry is a quasi-
isometry.

Exercise 5.E.4 (Inheritance properties of quasi-isometric embeddings*). Let X,
Y, Z be metric spaces and let f, f': X — Y be maps that have finite
distance from each other.
1. Show that for all maps g: Z — X the compositions f og and f'og
have finite distance from each other.
2. Show that if g: Y — Z is a quasi-isometric embedding, then also go f
and g o f/ have finite distance from each other.
Conclude the following:
3. Compositions of quasi-isometric [bilipschitz] embeddings are quasi-
isometric [bilipschitz] embeddings.
4. Compositions of quasi-isometries [bilipschitz equivalences| are quasi-
isometries [bilipschitz equivalences].

Exercise 5.E.5 (Bijective quasi-isometries**).

1. Show that bijective quasi-isometries between finitely generated groups
(with respect to the word metric of certain finite generating sets) are
bilipschitz equivalences.

2. Does this also hold in general? L.e., are all bijective quasi-isometries
between general metric spaces necessarily bilipschitz equivalences?
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Exercise 5.E.6 (Quasi-isometry group**). Determine the quasi-isometry group
of {n3 | n € Z} (with respect to the standard metric induced from R).

Exercise 5.E.7 (Counting preimages**). Let X and Y be UDBG spaces (Def-
inition 5.6.11) and let f: X — Y be a quasi-isometry. Show that there
are ¢, C' € Ry with the following properties:

e Themap f: X — Y isa (c, ¢)-quasi-isometric embedding with c-dense

image.
e For all finite sets F' C Y we have
1
FHBYED[Z 5 E and | (E) < €E.

Quasi-geodesic spaces

Quick check 5.E.8 (Quasi-isometry invariance of being (quasi-)geodesic*). Let
X and Y be metric spaces and let f: X — Y be a quasi-isometry.

1. Let X be geodesic. Is then also Y geodesic?

2. Let X be quasi-geodesic: Is then also Y quasi-geodesic?

Exercise 5.E.9 (Swiss cheese*). We consider X := R?\ {0} with the metric
induced from the standard metric on R2.

1. Show that the space X is path-connected but not geodesic.

2. Show that for every & € R+ the space X is (1,e)-quasi-geodesic.
Nlustrate your arguments with suitable pictures!

Exercise 5.E.10 (The maximum metric**). We consider the maximum met-
ric d., on R2.
1. Show that the space (R?,d..) is geodesic but not uniquely geodesic. (A
space is called uniquely geodesic if every pair of points can be joined by
a unique geodesic.)
2. Is the space (R%\ {0}, dws) geodesic?
[Mustrate your arguments with suitable pictures!

Exercise 5.E.11 (Geometric realisation of Cayley graphs**).

1. Show that |Cay(Z, {1})] is isometric to the real line R.

2. Show that |Cay(Z2,{(1,0), (0, 1)})[ is isometric to Rx ZUZ x R C R?
with the metric induced from the ¢!-metric on R*.

3. Is the geometric realisation of the Cayley graph Cay(F,S) of a free
group F of rank 2 with respect to a free generating set S of F' isometric
to a subset of R? (with respect to the Euclidean metric)?

4. What is the relation between the geometric realisation of the Cayley
graph Cay(Z/2017,{[1]}) and the circle St ?

Exercise 5.E.12 (Quasi-geodesic ~~ geodesic**).
1. Show that the geometric realisation of a connected graph is a geodesic
metric space.
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Exercise 5.E.21 (The Heisenberg group as a lattice**). Let Hg be the real
Heisenberg group and let H C Hy be the Heisenberg group:

Hg = z, Yy, z€R >, H:= T, Y, 2€ZL

o O =
o = 8
LN SR
S O =
o =8
Ll SN

We equip Hy with the topology given by convergence of all matrix coefficients.
1. Show that Hpg is a locally compact topological group with respect to
this topology.
2. Show that the subgroup H is a cocompact lattice in Hg.

Quasi-isometry of groups

Quick check 5.E.22 (Homomorphisms and quasi-isometry*). Characterise all
group homomorphisms between finitely generated groups that are quasi-
isometries.

Exercise 5.E.23 (Quasi-dense subgroups*). Let G be a finitely generated group
with finite generating set S'C G andlet H C G' C G be subgroups. Moreover,
let H C G’ be quasi-dense with respect to dg, i.e., there exists a ¢ € Ry
with

Vyear Fnem ds(g,h) < c.

Prove that then H has finite index in G’.

Exercise 5.E.24 (Groups not quasi-isometric to Z **). Let n € Ns,.

1. Show that every quasi-isometric embedding Z — Z is a quasi-isometry.

2. Show that there is no quasi-isometric embedding X — 7Z where the
cross X 1= (Z x {0})U ({0} x Z) is equipped with the !-metric on R2.

3. Conclude that the groups Z and Z" are not quasi-isometric. In particu-
lar, R is not quasi-isometric to R” with the Euclidean metric (because
these spaces are quasi-isometric to Z and Z™ respectively).

4. Show that the group Z is not quasi-isometric to a free group of rank n.

Exercise 5.E.25 ((Free) products and bilipschitz equivalence*). Let G, G’
and H be finitely generated groups and suppose that G and G’ are bilip-
schitz equivalent.

1. Are then also G X H and G’ x H bilipschitz equivalent?

2. Are then also G * H and G’ * H bilipschitz equivalent?

Exercise 5.E.26 ((Free) products and quasi-isometry**). Let G; G’ and H be
finitely generated groups and suppose that G' and G’ are quasi-isometric.

1. Are then also G x H and G’ X H quasi-isometric?

2. Are then also G * H and G" * H quasi-isometric?
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Quick check 5.E.27 (Geometric properties*).

1. Is the property of being generated by 2017 elements a geometric prop-
erty of finitely generated groups?

2. Is the property of being isomorphic to a subgroup of Z2°'7 a geometric
property of finitely generated groups?

3. Is the property of being infinite and torsion-free a geometric property
of finitely generated groups?

4. Is the property of being a 2017-torsion group a geometric property of
finitely generated groups?

5. Is the property of being a free product of two non-trivial groups a
geometric property of finitely generated groups?

Quick check 5.E.28 (Quasi-isometries of groups*).

1. Let G and H be finitely generated groups and suppose that there is a
quasi-isometric embedding' G — H. Does this imply that there is a
quasi-isometric embedding H — G 7

2. For which finitely generated groups G are G and Hom(G,Z/2) quasi-
isometric?

Exercise 5.E.29 (Diameters**). Let F be the set of all generating sets of the
symmetric group S3. Determine the maximal diameter of S3, i.e., determine
the quantity
diam Cay(Ss3, S).
max diam Cay(S3, 5)

Exercise 5.E.30 (Coarse equivalence®***).

1. Lookup the terms coarse embedding and coarse equivalence in the lit-
erature.

2. Is every inclusion of a finitely generated subgroup of a finitely generated
group a coarse embedding?

3. Is every coarse embedding between finitely generated groups a quasi-
isometric embedding?

4. Show that finitely generated groups are coarsely equivalent if and only
if they are quasi-isometric.

Uniformly finite homology™

We will briefly describe the construction of uniformly finite homology via
explicit geometric chains:

Let R be a commutative normed ring with unit (e.g., R or Z), let (X,d)
be a UDBG space, and let n € N. We then write C(X; R) for the R-module
of all bounded functions c: X?*t! — R satisfying the following property:
There is an r € Ry with

Veexntr max{d(z;,zx) |4,k € {0,...,n}} >r =-c(x) = 0.







































174 6. Growth types of groups

e The growth type of G is the (common) quasi-equivalence class of all
growth functions of G with respect to finite generating sets of G.

e The group G- is of exponential growth, if it has the growth type of the
exponential map (z+> e”).

o The group G has polynomial growth, if for one (and hence every) finite
generating set S of G there is an a € Rx( such that g g < (z — z%).

e The group G is of intermediate growth, if it is neither of exponential
nor of polynomial growth.

Recall that growth functions of finitely generated groups grow at most
exponentially (Proposition 6.1.3 and Example 6.1.2), and that polynomials
and exponential functions are not quasi-equivalent (Example 6.2.2); hence
the term “intermediate growth” does make sense and a group cannot have
exponential and polynomial growth at the same time.

We obtain from Proposition 6:2.4 and Example 6.2.2 that having expo-
nential growth/polynemial growth/intermediate growth respectively is a ge-
ometric property of groups. More generally:

Corollary 6.2.6 (Quasi-isometry invariance of the growth type). By Proposi-
tion 6.2.4, the growth type of finitely generated groups is a quasi-isometry in-
variant, i.e., quasi-isometric finitely generated groups have the same growth

type.
In other words: Finitely gemerated groups having different growth types
cannot be quasi-isometric. O

Example 6.2.7 (Growth types). From Example 6.1.2 we obtain:
e If n € N, then Z" has the growth type of (z — 2") (Exercise 6.E.2).
e The Heisenberg group has the growth type of (x +— 2*) (Exercise 6.E.6).
e Non-Abelian free groups of finite rank have the growth type of the
exponential function (z — e”).

The groups Z™ and the Heisenberg group hence have polynomial growth,
while non-Abelian free groups have exponential growth.

Example 6.2.8 (Quasi-isometry classification of Abelian groups). In analogy
with topological invariance of dimension, the following holds: We can recover
the rank of free Abelian groups from their quasi-isometry type, namely: For
all m, n € N we have

™ ~QI 7" <= m = n;

this follows from Example 6.2.2, Example 6.2.7, and Corollary 6.2.6. Hence,
also for all m,n € N:
R™ ~qi R" <= m = n.

More generally: If A is a finitely generated Abelian group, then by the
structure theorem of finitely generated Abelian groups, there is-a unique
number 7 € N and a finite Abelian group 7' (unique up to isomorphism) with

A=27" T,
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one then defines rk; A := r. Hence, combining the above observation with
Corollary 5.4.5, we obtain for all finitely generated Abelian groups A and A’
the equivalence

A ~QI A = rky, A= rky A

On the other hand; finitely generated Abelian groups admit equal growth
functions if and only if they have the same rank and if their torsion subgroups
have the same parity [103].

Example 6.2.9 (Distinguishing quasi-isometry types of basic groups).
e We obtain for the Heisenberg group H that H %qi Z* (Example 6.2.7),
which might be surprising because H fits into a short exact sequence

1-s7 —H—7%>—1

of groups! Even worse, H cannot quasi-isometrically embed into Z3.

e Let F' be a non-Abelian free group of finite rank, and let n € N. Be-
cause F' grows exponentially, but Z™ and H have polynomial growth,
we obtain

F 76Q1 " and F ’76QI H.

Grigorchuk was the first to show that there indeed exist groups that have
intermediate growth [69][77, Chapter VIII]:

Theorem 6.2.10 (Existence of groups of intermediate growth). There exists a
finitely generated group of intermediate growth.

An example of such a group is the first Grigorchuk group (Definition 4.E.2),
which can be described via automorphisms of trees or as an automatic group.
A strategy to prove that this group has intermediate growth is outlined in
Exercise 6.E.13. Furthermore, this group also has several other interesting
properties [77, Chapter VIII]; for example, it is a finitely generated infinite
torsion group (Exercise 4.E.37), and it is commensurable to the direct product
with itself (Exercise 4.E.36).

Proposition 6.2.11 (Growth of subgroups). Let G be a finitely generated group
and let H be a finitely generated subgroup of G. If T is a finite generating set
of H, and S is a finite generating set of G, then

Ba,r < Ba,s-

Proof. Let S’ := S UT; then S’ is a finite generating set of G. Let r € N;
then for all h € BT (e) we have

dgi(hye) < dr(h,e) <r,
and so BZ T (¢) € BS5'(e). In particular,

Bar(r) < Ba,s (),
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and thus By 1 < Pa.s. Moreover, we know that (G,ds) and (G,ds/) are
quasi-isometric, and hence the growth functions f¢.s» and S s are quasi-
equivalent by Proposition 6.2.4. Therefore, we obtain Sy r < Bg,s- O

Example 6.2.12 (Subgroups of exponential growth). Let G be a finitely gener-
ated group;if G contains a non-Abelian free subgroup, then G has exponential
growth. For instance, it follows that the Heisenberg group does not contain
a non-Abelian free subgroup. However, not every finitely generated group of
exponential growth contains a non-Abelian free subgroup (Exercise 6.E.18).

Caveat 6.2.13 (Distorted subgroups). The inclusion of a finitely generated
subgroup of a finitely generated group into this ambient group in general is
not a quasi-isometric embedding. For example the inclusion

7 —> <l‘,y7z ' [x,z],[y,z],[a:,y] = Z>

given by mapping 1 to the generator z of the Heisenberg group (Exer-
cise 2.E.32) is not a quasi-isometric embedding: Let S := {z,y,z}. Then
for all n € N we have

ds (e, 2°) = dge, [z y") < 4

hence, (n —-dg(e,2™)) does not grow linearly, and so the above inclusion
cannot be a quasi-isometric embedding.

6.2.3 Application: Volume growth of manifolds

Whenever we have a reasonable notion of volume on a metric space, we can
define corresponding growth functions; in particular, each choice of base point
in a Riemannian manifold leads to a growth function. Similarly to the Svarc-
Milnor lemma, nice isometric actions of groups give a connection between
the growth type of the group acting and the growth type of the metric space
acted upon. One instance of this type of results is the following [120]:

Proposition 6.2.14 (Svarc-Milnor lemma for growth types). Let M be a closed

connected Riemannian manifold, let M be its Riemannian universal covering,
and let © € M. Then the Riemannian volume growth function

RZO — RZO -
7 +— volyr BM ()

of M is quasi-equivalent to the growth functions (with respect to one (and
hence every) finite generating set) of the fundamental group w (M) (which
is finitely generated by Corollary 5.4.10). Here BM(xz) denotes the closed

ball in M of radius r around x with respect to the metric induced by the
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Namely, H,(M;Z) = 7= H,(N;Z) and H,(f;Z) is multiplication by the
mapping degree deg f: In particular, N is compact [50, Corollary VIIL.3.4].
On the other hand, |deg p| coincides with the number of sheets of the cover-
ing p [50, Proposition VIIL.4.7], which in turn equals the index of im m(p)
in 71 (N) [115; p. 133].-Hence,

[T(N) : G] = [71(N)«im7i(p)] = |[degp] < oo,

as claimed.

In particular, G is quasi-isometric to w1 (N) and 71 (f) provides a surjective
homomorphism from 7 (M) to G; so the growth functions of 7 (V) are quasi-
dominated by those of a1 (M). O

Corollary 6.2.16 (Maps of non-zero degree to hyperbolic manifolds). If N is an
oriented closed connected hyperbolic manifold and if M is an oriented closed
connected Riemannian manifold of the same dimension whose Riemannian
universal covering has polynomial or intermediate volume growth, then there
s no _continuous map M — N of non-zero degree.

Proof. This follows from the previous corollary by taking into account that
the volume of balls in hyperbolic space HU™N = N grows exponentially with
the radius [146, Chapter 3.4] (Proposition A.3.28 for H?). O

In Chapter 7, we will discuss a concept of negative curvature for finitely
generated groups, leading to generalisations of Corollary 6.2.16. Alternatively,
Corollary 6.2.16 can also be obtained via simplicial volume [100, 101].

6.3 Groups of polynomial growth

One of the milestones in geometric group theory is Gromov’s discovery that
groups of polynomial growth can be characterised algebraically as those
groups that are virtually nilpotent. The original proof by Gromov [72] was
subsequently simplified by van den Dries and Wilkie [52, 111]; alternative
proofs have been given by Kleiner [90], Shalom and Tao [162], Ozawa [141],
and Breuillard, Green, and Tao [26]. A complete proof is also given in the
textbook by Drutu and Kapovich [53].

Theorem 6.3.1 (Gromov's polynomial growth theorem). Finitely generated
groups have polynomial growth if and only if they are virtually nilpotent.

In Chapter 6.3.1 and 6.3.2 we briefly discuss nilpotent groups and their
growth properties; in Chapter 6.3.3, we sketch Gromov’s argument why
groups of polynomial growth are virtually nilpotent. In the remaining sec-
tions, we give some applications of the polynomial growth theorem.
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6.3.1 Nilpotent groups

There are two natural ways to inductively take commutator subgroups of a
given group, leading to the notion of nilpotent and solvable groups respec-
tively:

Definition 6.3.2 ((Virtually) nilpotent group).
e Let G be a group. For n € N we inductively define Ci,,)(G) by

C(O)(G) =G and VneN C(n+1)(G) = [G, C(n)(G)]

The sequence (C(y,) (G))nen is the lower central series of G. The group G
is milpotent, if thereis an n € N such that C,,)(G) is the trivial group.
o A group is virtually nilpotent if it contains a nilpotent subgroup of finite
index.
Recall that if G is a group and A, B € G, then [A, B] denotes the subgroup
of G generated by the set {[a,b] | a € A,b € B} of commutators.

Definition 6.3.3 ((Virtually) solvable group).
e Let G be a group. For n € N we inductively define G(™ by

G =G and  Vpen GV = [GM™ g™

The sequence (G")),cn is the derived series of G. The group G is
solvable, if there is an n € N such that G is the trivial group.

e A group is virtually solvable if it contains a solvable subgroup of finite
index.

Solvable groups owe their name to the fact that a polynomial is solvable
by radicals if and only if the corresponding Galois group is solvable [94,
Chapter VL.7].

Clearly, the terms of the derived series of a group are subgroups of the
corresponding stages of the lower central series; hence, every nilpotent group
is solvable.

Example 6.3.4 (Nilpotent/solvable groups).
e All Abelian groups are nilpotent (and solvable) because their commu-
tator subgroup is trivial.
e The Heisenberg group H = (z.,y, z | [z, 2], [y, 2], [, y] = 2) is nilpotent:
We have
C(l)(H) = [HaH] = <Z>H7

and hence Co)(H) = [H, C(1)(H)] = [H,(z)z] = {e}.

e In general, virtually nilpotent groups need not be nilpotent or solvable:
For example; every finite group is virtually nilpotent, but not every
finite group is mnilpotent. For instance, the alternating groups A; are
simple and so not even solvable forn € N>5[94, Theorem 1.5.5].
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The proof of Theorem 6.3.6 proceeds by induction over the nilpotence
degree n and uses a suitable normal form of group elements in terms of
the lower central series [14, 53|; the arguments from the computation of the
growth rate of the Heisenberg group (Exercise 6.E.6) give a first impression
of how this inductive proof works. We will refrain from going into the details
for the general case.

Caveat 6.3.7 (Growth type of solvable groups). Even though solvable groups
are also built up inductively out of Abelian groups, in general they do not
have polynomial growth. This follows, for example, from the polynomial
growth theorem (Theorem 6.3.1) and the fact that there exist solvable groups
that are not virtually nilpotent (Example 6.3.4); moreover; it can also be
shown by elementary calculations that the group Z? x4 Z given by the action

of the matrix
1 1
4= (1)

on Z?* has exponential growth (Exercise 6.E.18).

Wolf [179] and Milnor [120] used algebraic means (similar to the calcula-
tions in Caveat 6.3.7) to prove the following predecessor of the polynomial
growth theorem:

Theorem 6.3.8 (Growth type of solvable groups). A finitely generated solvable
group has polynomial growth if and only if it is virtually nilpotent.

This theorem seems to be needed in all proofs of the polynomial growth
theorem known so far.

6.3.3  Polynomial growth implies virtual nilpotence

We will now sketch Gromov’s argument that finitely generated groups of
polynomial growth are virtually nilpotent, mainly following the exposition
by van den Dries and Wilkie [52]:

The basic idea behind the proof is to proceed by induction over the degree
of polynomial growth. In the following; let G be a finitely generated group of
polynomial growth, say of polynomial growth of degree at most d with d € N.

In the case d = 0 the growth functions of G are bounded functions, and
so G must be finite. In particular, G is virtually trivial, and so virtually
nilpotent.

For the induction step we assume d > 0.and that we know already that all
finitely generated groups of polynomial growth of degree at most d — 1 are
virtually nilpotent. Moreover, we may assume without loss of generality that
G is infinite. The key to the inductive argument is the following theorem by
Gromov [72]:
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Theorem 6.3.9. If G is a finitely generated infinite group of polynomial
growth, then there exists a subgroup G’ of G of finite index that admits a
surjective-homomorphism G'"— 7.

In fact, the proof of this theorem is the lion share of the proof of the
polynomial growth theorem. The alternative proofs of van den Dries and
Wilkie, Kleiner, Tao and Shalom, and Ozawa mainly give different proofs of
Theorem 6.3.9. We will now briefly sketch Gromov’s argument:

Sketch of proof of Theorem 6:3.9. Gromov’s cunning proof roughly works as
follows: Let S C G be a finite generating set. We then consider the sequence

(G7 % . ds)neN

of metric spaces; this sequence models what happens when we move far away
from the group. If G has polynomial growth, then Gromov proves that this
sequence has a subsequence converging in an appropriate sense to a “nice”
metric space Y {72]. Using the solution of Hilbert’s fifth problem [125, 171],
one can show that the isometry group of Y is a Lie group, and so is closely
related to GL(n,C). Moreover, it can be shown that some finite index sub-
group G’ of G acts on Y in such-a way that results on Lie groups (e.g,
the Tits alternative for GL(n,C) (Chapter 4.4.3)) allow to construct a sur-
jective homomorphism from a finite index subgroup of G’ to Z (see also
Exercise 6.E.19).

A detailed proof is given in the paper by van den Dries and Wilkie [52].
Gromov’s considerations of the sequence (G, 1/n - ds),en are a precursor of
asymptotic cones [54, 53]. O

In view of Theorem 6.3.9 we can assume without loss of generality that
our group G admits a surjective homomorphism 7: G — Z. Using such a
homomorphism, we find a subgroup of G of lower growth rate inside of G:

Proposition 6.3.10 (Finding a subgroup of lower growth rate). Let d € N and
let G be a finitely generated group of polynomial growth of degree at most.d
that admits a surjective homomorphism m: G — Z. Let K := ker .

1. Then the subgroup K is finitely generated.

2. The subgroup K is of polynomial growth of degree at most d = 1.

Proof. Ad 1. This is proved in Exercise 6.E.20.

Ad 2. By the first part, we find a finite generating set S € G that contains
a finite generating set 7' C K of K and that contains an element g € S with
m(g) =1 € Z. Let ¢ € Ry with

Vren Be,s(r) <c-rl.

Now let » € N, let N := B r(|r/2]), and let k1, ...;ky € K be the N ele-

ments of the ball B{:’/TQJ (e). Then the elements
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6.3.6 Quasi-isometry rigidity of free Abelian groups

Gromov’s polynomial growth theorem can be used to show that finitely gen-
erated free Abelian groups are quasi-isometrically rigid in the following sense:

Corollary 6.3.15 (Quasi-isometry rigidity of Z). Let G be a finitely generated
group quasi-isometric to Z. Then G is virtually infinite cyclic.

Proof. Because G is quasi-isometric to Z, the group G has linear growth.
In particular, G is virtually nilpotent by the polynomial growth theorem
(Theorem 6.3.1). Let H C G be a nilpotent subgroup of finite index; so H
has linear growth as well. By Bass’s theorem on the growth rate of nilpotent
groups (Theorem 6.3.6) it follows that

n—1

1= (G +1) kg C(;)(H)/C ;1) (H),

Jj=0

where n is the degree of nilpotency of H. Because rky takes values in N; it
follows that

1= I‘kZ C(O)(H)/C(l)(H) and VjeN21 0= I‘kZ 0(7)(H)/C(7+1)(H)

The classification of finitely generated Abelian groups shows that finitely
generated Abelian groups of rank 0 are finite and that finitely generated
Abelian groups of rank 1 are virtually Z. So C(1)(H) is finite, and the quo-
tient C(g)(H)/C(1y(H) is Abelian and virtually Z. Then also H = C o) (H) is
virtually Z. In particular, G is virtually Z. [

We will see more elementary proofs of the quasi-isometry rigidity of Z in
Chapter 7 (Corollary 7.5.8) and Chapter 8 (Exercise 8.E.11).

More generally, a similar argument yields quasi-isometry rigidity of higher-
dimensional Abelian groups [32, Theorem 5.8]:

Corollary 6.3.16 (Quasi-isometry rigidity of Z™). Letn € N. Then every finitely
generated group quasi-isometric to Z™ is virtually 2" .

Sketch of proof. The proof is similar to the proof of quasi-isometry rigidity
of Z above, but it needs in addition a description of the growth rate of
virtually nilpotent groups in terms of their Hirsch rank [31, p. 149f]. O

It turns out that it is also possible to prove quasi-isometry rigidity of Z™
without referring to the polynomial growth theorem [161, 44]. On the other
hand, a full quasi-isometry classification of virtually nilpotent groups is out
of reach.
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6.3.7 Application: Expanding maps of manifolds

We _conclude the discussion of polynomial growth with Gromov’s geomet-
ric application [72, Geometric corollary on p. 55] of the polynomial growth
theorem (Theorem 6.3.1) to infra-nil-endomorphisms:

Corollary 6.3.17. Every expanding self-map of a compact Riemannian man-
ifold is topologically conjugate to an infra-nil-endomorphism.

Before sketching the proof of this strong geometric rigidity result, we
briefly explain the geometric terms:

A map f: X — Y between metric spaces (X,dx) and (Y,dy) is globally
expanding if

Vowex o #a = dy(f(z), f(a')) > dx(z,2").

A map f: X — Y is expanding if every point of X has a neighbourhood U
such that the restriction f|y: U — Y is expanding. As Riemannian mani-
folds can be viewed as metric spaces, we obtain a notion of expanding maps
of Riemannian manifolds.

As a simple example, let us consider the n-dimensional torus Z" \ R™.
A straightforward calculation shows that a linear map f: R®™ — R"™ with
f(Z™) € Z™ induces a self-map Z™ \ R® — Z" \ R™ and that this self-map
is expanding if and only if all complex eigenvalues of f have absolute value
bigger than 1.

A nil-manifold is a compact Riemannian manifold that can be obtained
as a quotient I' \ N, where N is a simply connected nilpotent Lie group
and I' € N is a cocompact lattice. More generally, an infra-nil-manifold is
a compact Riemannian manifold that can be obtained as a quotient I' \'IV,
where N is a simply connected nilpotent Lie group and I' is a subgroup of
the group of all isometries of N generated by left translations of N and all
automorphisms of V. Clearly, all nil-manifolds are also infra-nil-manifolds,
and it can be shown that every infra-nil-manifold is finitely covered by a
nil-manifold.

Let ' \ N be such an infra-nil-manifold. An expanding infra-nil-endo-
morphism is an expanding map I' \ N — I' \ N that is induced by an
expanding automorphism N — N of the Lie group N.

For example, all tori and the quotient H \ Hg of the Heisenberg group Hy
with real coefficients by the Heisenberg group H are nil-manifolds (and so
also infra-nil-manifolds). The expanding maps on tori mentioned above are
examples of expanding infra-nil-endomorphisms.

Two self-maps f: X — X and g: ¥ — Y between topological spaces
are. topologically conjugate if there exists a homeomorphism h: X — Y
with h o f = go h, i.e., which fits into a_ commutative diagram:
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It seems to be an open problem to decide whether having uniform expo-
nential growth is a quasi-isometry invariant or not [78].

It is known that finitely generated solvable groups [137] and finitely gener-
ated linear groups [60] have uniform exponential growth whenever they have
exponential growth. However, there also exist finitely generated groups of
exponential growth that do not have uniform exponential growth [176].

6.4.2  Uniform uniform exponential growth

In the case of linear groups, one can ask for another level of uniformity,
namely uniformity in the base field:

Conjecture 6.4.5 (Breuillard's growth conjecture [25]). For every d € N there
exists e(d) € Ry with the following property: For every field K" and every
finite set S C GL(d, K)

e cither 0(5) i, x5 =1 and (SYar(a, k) is virtually nilpotent

® OF 0(5)crinr).S > 1+ e(d).

Remark 6:4.6 (Uniformity in-dimension?). In the growth conjecture of Breuil-
lard, uniformity of the growth gap in the dimension is impossible: Grigorchuk
and de la Harpe [70] constructed out of the Grigorchuk group of intermediate
growth a sequence (G )nen of groups with the following properties:
e For every n € N, there exists a d,, € N such that G,, is isomorphic to
a subgroup of GL(d,,Z) that is generated by a set S, C G, of four
elements. In this example, lim,, ,~ d,, = 0.
e For every n € N the group G,, has exponential growth and

lim 0G#,Sn — 1.
n— o0
While the growth conjecture is open in general, partial results are known:

Theorem 6.4.7 (Growth gap [25]). For every d € N there exists c(d) € Rxq
with the following property: For every field K and every finite subset S
of GL(d, K) that generates a subgroup of GL(d, K) that is not virtually solv-
able, we have

0(S)cL(a, k)5S >1+ E(d)'

The growth gap theorem is a consequence of the uniform Tits alternative
(Theorem 6.4.8 below).

6.4.3 The uniform Tits alternative

By the Tits alternative (Theorem 4.4.7), finitely generated linear groups are
either virtually solvable or they contain a free subgroup of rank 2. The uni-
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form Tits alternative by Breuillard adds control on “how quickly” one can
find in the latter case a free subgroup of rank 2:

Theorem 6.4.8 (Uniform Tits alternative [25]). For every d € N there ex-
ists N(d) € N with the following property: For every field K and every finite
subset S C GL(d, K) with S~' = S and e € S we have

o cither (S)r(a,x) 15 virtually solvable

o or the set SND contains two elements that generate a free subgroup
of GL(d, K) of rank 2.

Breuillard’s proof of the uniform Tits alternative follows the blueprint of
the original proof of the Tits alternative (Chapter 4.4.3). We will briefly indi-
cate some of the main steps for d = 2 in the characteristic 0 case: Arguments
from model theory show that in order to prove the uniform Tits alternative
for all fields of characteristic 0 itis sufficient to prove the uniform Tits alter-
native for the algebraic closure @ of Q. Let S C SL(2, Q) be a finite subset
with S~ =S and e € S such that the subgroup G = (S)gpy75) 18 not
virtually solvable. For the classical Tits alternative, one proceeds as follows:

e Find a diagonalisable matrix a € G with an eigenvalue of (some) norm
greater than 1.

e Find a matrix b € G such that the eigenspaces of @ and b are not related.

e Take ¢ € N large enough (this will ensure that the eigenvalues of a‘ and
b-a’-b~1 arelarge).

e Apply the ping-pong lemma to a‘ and b-a’ - b
projective line over Q) to conclude that

=1 acting on Q2 (or the

(aé, b-at- b_1>SL(2’@)

is free of rank 2.
In order to promote this to a proof of the uniform Tits alternative for SL(2, Q),
one needs to control the S-word length of a and b, the size of the eigenvalues
of a, and the “distance” between eigenobjects of a and b; then a quantita-
tive version of the ping-pong lemma allows to control ¢. In this context, the
control of matrices, eigenvalues, and eigenobjects of matrices is formulated
in terms of heights, a measurement of complexity of algebraic numbers, i.e.,
of elements of Q; a crucial ingredient for control of eigenvalues and eigenob-
jects in the non-virtually solvable case is Breuillard’s height gap theorem [25],
which builds on results from diophantine geometry.
From the uniform Tits alternative, the growth gap theorem can be derived
by elementary means:

Proof of Theorem 6.4.7. Let d € N and let N(d) € N be as provided by the
uniform Tits alternative (Theorem 6.4.8). We set

e(d) == (3N _1) > 0.

| —
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Exercise 6.E.29 (Uniform exponential growth and quasi-isometries?1°°*). Let
G and H be finitely generated quasi-isometric groups, where G has uniformly
exponential growth: Does then also H have uniformly exponential growth?!
Hints. <This is an open problem!

Dehn functions and isoperimetric inequalities™

In the language of Cayley graphs, generators correspond to edges. In con-
trast, relations have a distinct two-dimensional flair, as seen in presentation
complexes (Outlook 3.2.5). Therefore, it is natural to associate a notion of
area with relations. Algebraically, this can be formalised in the following way:

Definition 6.E.3 (Area of a relation). Let (S| R) be a finite presentation of a
group G and let w € Fyeq(S) be a reduced word that represents the trivial
element in G. The area of w (with respect to (S| R)) is defined as

Area s | gy(w) :=min{n € N ’EIal,...,aneF(S) 3. €RUR-1

W=ay TRy el Ty G in F(S)}.

The Dehn function encodes the maximal area that can be “surrounded”
by a given length:

Definition 6.E.4 (Dehn function). Let (S| R) be a finite presentation of a
group G and let 7: Foq(S) — G be the canonical projection. Then the
Dehn function of G with respect to the presentation (S| R) is given by

Dehn<S|R>: N+—— N
n —> maX{Area(sl e 8k) | ke {0,...,n}, s1..8; € Frea(:S),

m(s1.<.85) = ein G}.

Exercise 6.E.30 (Simple Dehn functions*).
1. Determine the Dehn function of ([).
2. Determine the Dehn function of (z]).
3. Determine the Dehn function of (x,y[).

4. Determine the Dehn function of (z{x)

!

5. Determine the Dehn function of (x,y |y) (approximately).

Definition 6.E.5 (Dehn equivalence). Let f,g: N — R>( be increasing func-
tions.
e The function f is Dehn dominated by g if there exists a ¢ € N with

Vnen f(n) <c-glc-n+c)+ec-n+c.

We then write f <p g.
e The function fis Dehn equivalent to g if f <pg and g <p f. If this is
the case, we write f ~p g.
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7.1 Classical curvature, intuitively

Key invariants in Riemannian geometry are curvature invariants. Classically,
curvatures in Riemannian geometry are defined in terms of local data; how-
ever, some types of curvature constraints also influence the global shape. A
particularly striking example of such a situation is the condition of having
everywhere negative sectional curvature.

What is curvature? Roughly speaking, curvature measures how much a
space “bends” at a given point; i.e., how far away it is from being a “flat”
Euclidean space. There are several ways of measuring such effects (using
curves, triangles, angles, volumes, ...).

In the following, we will give a brief introduction into curvature in Rie-
mannian geometry; however, instead of going into the details of bundles, con-
nections, curvature tensors-and related machinery, we will rely on a graphic
and intuitive description based on curves. Readers interested in concise and
mathematically precise definitions of the various types of curvature are re-
ferred to the literature on Riemannian geometry, for instance to the pleasant
book Riemannian manifolds. An introduction to curvature by Lee [96].

7.1.1 Curvature of plane curves

As a first step, we briefly describe curvature of curves in the Euclidean
plane R2. Let v: [0, L] — R? be a smooth curve, parametrised by arc-length,
and let ¢ € (0, L). Geometrically, the curvature k- (t) of v at t can be described
as follows (see also Figure 7.1): We consider the set of all (parametrised
in mathematically positive orientation) circles in R? that are tangent to 7y
at y(t). It can be shown that this set contains exactly one circle that at the
point v(t) has the same acceleration vector as ~; this circle s the osculating
circle of v at t. Then the curvature of v at t is defined as

1
KZ’Y(t) = %a

where R(t) is the radius of the osculating circle of v at t. L.e., the smaller the
curvature, the bigger is the osculating circle, and so the curve is rather close
to being a straight line at this point; conversely, the bigger the curvature, the
more the curve bends at this point.

More technically, if v is parametrised by arc-length, then for all ¢ € (0, L)
the curvature of v at ¢ can be expressed as

Ky () = H’Y(t)Hz
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Because Y is (e,b)-quasi-hyperbolic, there is a ¢ € R>( such that YV
is (¢”,b",0)-quasi-hyperbolic. In particular, the (¢”,b"”)-quasi-geodesic tri-
angle (f o0,/ © 71, f © v2)is d-slim. Because f is a (c,b)-quasi-isometric
embedding, a straightforward computation shows that

im~yy C Bfgiﬁ_b(im'yl Uim~s)

: X,d . )
imy; C B ;0% (imyo Uim y2)

im~s C Bfgi’z.b(im'yo Uimyy).
Therefore, X is (¢/,V',c- 0+ ¢- b)-quasi-hyperbolic, as was to be shown.
Clearly, the third part is a direct consequence of the first two parts. O

7.2.3  Quasi-geodesics in hyperbolic spaces

Our next goal is to show that hyperbolicity is a quasi-isometry invariant in
the class of geodesic spaces (Corollary 7.2.13). To this end we first compare
hyperbolicity and quasi-hyperbolicity on geodesic spaces (Theorem 7.2.10);
then we apply quasi-isometry invariance of quasi-hyperbolicity.

Theorem 7.2.10 (Hyperbolicity vs. quasi-hyperbolicity). Let X be a geodesic
metric space. Then X is hyperbolic if and only if X is quasi-hyperbolic.

In order to show that hyperbolic spaces indeed are quasi-hyperbolic, we
need to understand how quasi-geodesics (and hence quasi-geodesic triangles)
in hyperbolic spaces can be approximated by geodesics (and hence geodesic
triangles).

Theorem 7.2.11 (Stability of quasi-geodesics in hyperbolic spaces). Let 0, c,
b € Rxg. Then there exists a A € Rsqo with the following property: If X s
a 6-hyperbolic metric space, if! v: [0, L] — X s a (¢,b)-quasi-geodesic and
¥ [0, L] — X is a geodesic with v/ (0).= v(0) and /(L") = v(L), then

im~/ ¢ B *(im~) and  im~y C B (im~'):

Caveat 7.2.12. In general, the stability theorem for quasi-geodesics does
not hold in non-hyperbolic spaces: For example, the logarithmic spiral (Fig-
ure 7.9)

R>g — R?
t — ¢+ (sin(In(1 + t)),cos(In(1 + t)))

is a quasi-isometric embedding with respect to the standard metrics on R
and R? (Exercise 7.E.2), but this quasi-geodesic ray does not have bounded

More precisely: if L € R> and if v: [0, L] — X is a (c,b)-quasi-geodesic, etc:



b
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Proof.-Because the graph T' does not contain any graph-theoretic cycles, one
can show that every geodesic triangle in |T| looks like a tripod, as depicted
in Figure 7.14 (Exercise 7.E.3), which implies 0-hyperbolicity. O

7.3 Hyperbolic groups

Because (quasi-)hyperbolicity is a quasi-isometry invariant notion and be-
cause different finite generating sets of finitely generated groups give rise to
canonically quasi-isometric word metrics/Cayley graphs, we obtain a sensible
notion of hyperbolic groups [74]:

Definition 7.3.1 (Hyperbolic group). A finitely generated group G is hyper-
bolic if for some (and hence every) finite generating set S of G the Cayley
graph Cay(G, S) is quasi-hyperbolic.

In view of Corollary 7:2.16, we can check hyperbolicity of a finitely gener-
ated group also by checking that the geometric realisations of Cayley graphs
are hyperbolic (which might be a more accessible problem).

Clearly, hyperbolicity of finitely generated groups is a geometric property:

Proposition 7.3.2 (Hyperbolicity is quasi-isometry invariant). Let G and H be
finitely generated groups.

1. If H is hyperbolic and if there exist finite generating sets S and T
of G and H respectively such that there is a quasi-isometric embed-
ding (G,ds) — (H,dr), then G is hyperbolic as well.

2. In particular: If G and H are quasi-isometric, then G is hyperbolic if
and only if H is hyperbolic.

Proof. This follows directly from the corresponding properties of quasi-
hyperbolic spaces (Proposition 7.2.9) and the fact that Cayley graphs of
groups are quasi-geodesic. O

Example 7.3.3 (Hyperbolic groups).

e All finite groups are hyperbolic because the associated metric spaces
have finite diameter.

e The group Z is hyperbolic, because it is quasi-isometric to the hyper-
bolic metric space R.

e Finitely generated free groups are hyperbolic, because the Cayley
graphs of free groups with respect to free generating sets are trees and
hence hyperbolic by Proposition 7.2.17.

e In particular, SL(2,Z) is hyperbolic, because SL(2, Z) is quasi-isometric
to a free group of rank 2 (Example 5.4.8).

e Let M be a compact Riemannian manifold of negative sectional cur-
vature (e.g., a hyperbolic manifold in the sense of Definition 5.4.11).
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Then the fundamental group m (M) is hyperbolic, because by the Svarc-
Milnor-lemma (Corollary 5.4.10) 71 (M) is quasi-isometric to the Rie-
mannian universal covering of M, which is hyperbolic (Example 7.2.3).
In particular, the fundamental groups of oriented closed connected sur-
faces of genus at least 2 are hyperbolic (Example 5.4.12).

e The group Z? is not hyperbolic, because it is quasi-isometric to the Eu-
clidean plane R?, which is a geodesic metric space that is not hyperbolic
(Example 7.2.3).

e We will see that the Heisenberg group is not hyperbolic (Exam-
ple 7.5.16) and that BS(1,2) is-not hyperbolic (Exercise 7.E.24).

Caveat 7.3.4 (Non-compact hyperbolic manifolds). If M is a connected com-
plete hyperbolic Riemannian manifold of finite volume, then, in general, the
fundamental group m (M) is not hyperbolic. The geometric group theoretic
notion capturing such fundamental groups (and their relation with the sub-
groups given by the fundamental groups of the cusps) are relatively hyperbolic
groups [138].

Even though SL(2;Z) is hyperbolic in the sense of geometric group theory
and has a very close relation to the isometry group of the hyperbolic plane,
there is no direct connection between these two properties:

Caveat 7.3.5. Let 2 € H?. The isometric action of SL(2,7Z) on the hyperbolic
plane H? by Mébius transformations (Proposition A.3.11, Proposition A.3.14)
induces a map

SL(2,7) — H?
A—A-z

with finite kernel (the kernel consists of F5 and —E»). This map is contracting
with respect to the word metrics on SL(2, Z) and the hyperbolic metric on H?;
however, this map is not a quasi-isometric embedding: We consider the matrix

A= (é }) €S2, 7).

Then the word length of A™ (with respect to some finite generating set
of SL(2,Z)) grows linearly in n € N (as can be seen by looking at the free
subgroup of SL(2, Z) freely generated by 4% and (4%)T), while the hyperbolic
distance from the point A™- z to z grows like O(Inn), as can be easily verified
in the halfplane model (Appendix A.3): For all n € Z we have

Ay 1 n ~lz+n +
=1y 1 2—0'24_1—2 n

and hence (Remark A.3.16)
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7.4 The word problem in hyperbolic groups

As first algebraic consequence, we show that the geometric condition of being
hyperbolic implies solvability of the word problem.

Definition 7.4.1 (Word problem). Let (S|R) be a finite presentation of a
group: The word problem is solvable for the presentation (S| R), if there is
an algorithm terminating on every input from (S U S~1)* that decides for
every word w in (S'US™!)* whether w represents the trivial element of the
group (S| R) or not.

More precisely: The word problem is solvable for the presentation (S| R),
if the sets

{w € (SUS™)* | w represents the neutral element of (S | R)},
{we (SUS™)* | w does not represent the neutral element of (S| R)}

are recursively enumerable subsets of (SU.S~1)*. As usual, in such situations,
we view S~ 1 as the set of formal inverses of S.

The notion of being recursively enumerable or being algorithmically solv-
able can be formalised in several, equivalent, ways, e.g., using Turing ma-
chines, using p-recursive functions, or using lambda calculus [28, 22, 12].

For example, it is not difficult to see that (z,y|) and (z,y|[z,y]) have
solvable word problem. However, not all finite presentations have solvable
word problem [150, Chapter 12]:

Theorem 7.4.2. There exist finitely presented groups such that no finite pre-
sentation has solvable word problem.

How can one prove such a theorem? The basic underlying arguments are
self-referentiality and diagonalisation: One of the most prominent problems
that cannot be solved algorithmically is the halting problem for Turing ma-
chines: Roughly speaking, every Turing machine can be encoded by an in-
teger (self-referentiality). Using a diagonalisation argument, one can show
that there cannot exist a Turing machine that given two integers decides
whether the Turing machine given by the first integer stops when applied to
the second integer as input. It is possible to encode the halting problem into
group theory, thereby producing a finite presentation with unsolvable word
problem.

The existence of finite presentations with unsolvable word problem has
consequences in many other fields in mathematics; for example, reducing
classification problems for manifolds to group theoretic questions shows that
many classification problems in topology are unsolvable (Caveat 2.2.24).
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7.4.1 Application: “Solving” the word problem

Gromov observed that hyperbolic groups have solvable word problem [74],
thereby generalising and unifying previous work in combinatorial group the-
ory and on fundamental groups of negatively curved manifolds:

Theorem 7.4.3 (Hyperbolic groups have solvable word problem). Let G' be a
hyperbolic group, and let S be a finite generating set of G. Then there exists
a finite set R C (SUS™Y)* such that G = (S | R) (in particular, G is finitely
presented) and such that (S|R) has solvable word problem.

Before proving this theorem, let us put this result in perspective: Gro-
mov [75, 133] and Ol’shanskii [135] established the following:

Theorem 7.4.4 (Generic groups are hyperbolic). In a well-defined statistical
sense, almost all finite presentations of groups represent hyperbolic groups.

So, statistically, the word problem for almost all finitely presented groups
is solvable; however, one should keep in mind that there are interesting classes
of groups that are not hyperbolic and so do not necessarily have solvable word
problem.

The proof of Theorem 7.4.3 relies on a basic idea due to Dehn:

Definition 7.4.5 (Dehn presentation). A finite presentation (S| R) is a Dehn

presentation if there is an n € Ny and words w1, . .., Uy, v1, ..., v, such that
e we have R= {ujv; Y, ... uuy '),
e for all j € {1,...,n} the word v; is shorter than u;,

e and for all w € (SUS=1)*\ {e} that represent the neutral element of
the group (S| R) there exists a j € {1,...,n} such that u; is a subword
of w.

Example 7.4.6. Looking at the characterisation of free groups in terms of
reduced words shows that <x,y | xm_1€7yy_15,x_1x€7y_1y€> is a Dehn
presentation of the free group of rank 2. On the other hand, <m, Y ‘ [, y]> is
not a Dehn presentation for Z2.

The key property of Dehn presentations is the third one, as it allows to
replace words by shorter words that represent the same group element:

Proposition 7.4.7 (Dehn's algorithm). If (S| R) is a Dehn presentation, then
the word problem for (S| R) is solvable.

Proof. We write R = {ulvfl, e, upvyt} as in the definition of Dehn pre-
sentations. Given a word w € (S U S~1)* we proceed as follows:
e If w =g, then w represents the trivial element of the group (S| R).
o If w # g, then:
— If none of the words uq,...,u, is a subword of w, then w does
not represent the trivial element of the group (S| R) (by the third
property of Dehn presentations).
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Proof. Let G be a finitely generated group quasi-isometric to Z. By Corol-
lary 7.5.7, the group G contains an element g of infinite order. One then
shows (Exercise 7.1.28):
e The subgroup (g)g generated by g is quasi-dense in G because G and
Z are quasi-isometric.
e Hence, (g)¢ has finite index in G. O

7.5.2 Centralisers

Because (quasi-)isometrically embedded (geodesic) subspaces of hyperbolic
spaces are hyperbolic (Proposition 7.2.9), no hyperbolic space can contain the
flat Euclidean plane R? as-a (quasi-)isometrically embedded subspace. The
geometric group theoretic analogue is that Z2 cannot be quasi-isometrically
embedded into a hyperbolic group.

In the following; we will show that also the, stronger, algebraic analogue
holds: A hyperbolic group cannot contain Z? as a subgroup (Corollary 7.5.15).

How can we prove such a statement? If a group contains Z?2 as a subgroup,
then it contains an element of infinite order whose centraliser contains a
subgroup isomorphic to Z?; in particular, there are elements of infinite order
with “large” centralisers. We will show that this is impossible in hyperbolic
groups.

The key insight for this‘and many other results on hyperbolic groups is
that elements of infinite order give rise to quasi-geodesic lines; one also says
that these elements are undistorted or lozodromic:

Theorem 7.5.9 (Homogeneous quasi-geodesic lines in hyperbolic groups). Let
G be a hyperbolic group and let g € G be an element of infinite order. Then
the map

7Z— G
n+—g"

s a quasi-isometric embedding.

The proof of this theorem will be given in Chapter 7.5.3 below. Using these
(quasi-)geodesic lines, we can prove that the hyperbolic geometry indeed
forces centralisers of elements of infinite order to be small:

Theorem 7.5.10 (Centralisers in hyperbolic groups). Let G be a hyperbolic
group and let g € G be an element of infinite order. Then the subgroup {(g)c
has finite index in the centraliser C(g) of g in G; in particular, Cg(g) is
virtually 7.

For the sake of completeness, we recall the notion of centraliser:
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dg (h, (g>G) < A.
In other words, (g)gis A-dense in C¢(g) with respect to dg, which implies
that (g)¢ has finite index in C¢(g) (Exercise 5.E.23). O

Corollary 7.5.15. Let G be a hyperbolic group. Then G does not contain a
subgroup isomorphic to 7.

Proof. Assume for a contradiction that G contains a subgroup H isomorphic
to Z2. Let h € H \ {e}; then h has infinite order and

72~ H = Cy(h) C Cg(h),

which contradicts that the centraliser Cg(h) of h is virtually (h)s (Theo-
rem 7.5.10). O

Example 7.5.16 (Heisenberg group, SL(n,Z) and hyperbolicity). By Corol-
lary 7.5:15, the Heisenberg group is not hyperbolic: the subgroup of the
Heisenberg group generated by the matrices

O O =

1 0
1 0 and
0 1

O O =
S = O
—_— O =

is isomorphic to Z2. Thus, for all n € N>3, the matrix groups SL(n, Z) also
are not hyperbolic.

The proofs of Theorem 7.5.10 and Theorem 7.5.9 are based on the geome-
try of (quasi-)geodesic lines in hyperbolic metric spaces. A systematic study
of the geometry of (quasi-)geodesic rays in hyperbolic spaces leads to the
Gromov boundary (Chapter 8.3). For example, these techniques then also
show that “generic” elements in hyperbolic groups fail to commute in the
strongest possible way (Theorem 8.3.13).

Moreover, the question whether group elements/isometries act by transla-
tion on (quasi-)geodesic lines is already present in the classical classification
of isometries of the hyperbolic plane:

Remark 7.5.17 (The conic trichotomy). Orientation preserving isometries
of the hyperbolic plane H? are Mobius transformations (Theorem A.3.23).
Therefore, non-trivial orientation preserving isometries of H? can be classi-
fied into the following three types [18, Proposition A.5.144f]:

e Hyperbolic. A non-trivial orientation preserving isometry of H? is hy-
perbolic if it has no fixed point in H? and if it admits‘an azis, i.e., a
geodesic line on which this geodesic acts by translation. Such an axis
is then unique.

e Parabolic. A non-trivial orientation preserving isometry of H? is called
parabolic if it has no fixed point in H? and if it admits no axis.
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Hence, v is | BS*5(e)|-close to C;(g), which shows that the centraliser C(g)
is quasi-convex in G with respect to S. O

As promised, these quasi-convexity considerations allow us to complete
the proof of Theorem 7:5.9:

Proof of Theorem 7.5.9. Inview of Proposition 7.5.22, the centraliser Cg(g)
is a quasi-convex subgroup of G. In particular, C(g) is finitely generated by
Proposition 7.5.20, say by a finite generating set 7'. Then also the intersection

) Ca(t) = C(Calg)).

teT

which is the centre of Cs(g), is a quasi-convex subgroup of G; so C(Ca(g))
is finitely generated and the inclusion C(Cg(g)) — G is a quasi-isometric
embedding (Proposition 7.5.20): In particular, also C(C(g)) is a hyperbolic
group (Proposition 7.3.2).

On the other hand, C(Cg(g)) is Abelian and contains (g)c = Z; because
C(Ce¢(g)) is hyperbolic, it follows that C(C¢(g)) must be virtually Z. Hence
the infinite ¢yclic subgroup (g)e has finite index in C(Cg(g)); in particular,
the inclusion (g)g < C(Cg(g)) is a quasi-isometric embedding.

Putting it all together, we obtain that the inclusion

(g)a = C(Cclg)) = G

is a quasi-isometric embedding, as was to be shown. O

7.5.4 " Application: Products and negative curvature

In view of Corollary 7.5.15, most non-trivial products of finitely generated
groups are not hyperbolic.

Corollary 7.5.23. Let M be a closed connected smooth manifold. If the funda-
mental group 71 (M) contains a subgroup isomorphic to Z?, then M does not
admit o Riemannian metric of negative sectional curvature (in particular, M
does not admit a hyperbolic structure).

Proof. Tf M admits a Riemannian metric of negative sectional curvature, then
its fundamental group m; (M) is hyperbolic (Example 7.3.3); hence, we can
apply Corollary 7.5.15 and rule out Z? as a subgroup. [

Example 7.5.24 (Heisenberg manifold). In particular, the closed connected
smooth manifold given as the quotient of the 3-dimensional Heisenberg group
with R-coefficients by the Heisenberg group (i.e., the Heisenberg manifold)
does not admit a Riemannian metric of negative sectional curvature (the
Heisenberg group contains Z?2, Example 7.5.16).
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Outlook 7.5.25 (Splittings and presentability by products). A geometric coun-
terpart of the non-existence of Z2-subgroups is the following classical theorem
by Gromoll and Wolf [71] (for simplicity, we only state the version where the
fundamental group has trivial centre):

Theorem 7.5.26 (Splitting theorem in non-positive curvature). Let M be a
closed connected Riemannian manifold of non-positive sectional curvature
whose fundamental group 71 (M) has trivial centre.

1. If 11 (M) is isomorphic to a product G1 x Gy of non-trivial groups, then
M is isometric to a product Ny x No of closed connected Riemannian
manifolds satisfying w1 (N1) 2 Gy and 71 (N2) = Gs.

2. If M has negative sectional curvature, then M does not split as a non-
trivial Riemannian product.

In a more topological direction, the knowledge about centralisers in hy-
perbolic groups (together with standard arguments from algebraic topology)
shows that manifolds of negative sectional curvature cannot even be domi-
nated by non-trivial products [92,93]:

Theorem 7.5.27 (Negatively curved manifolds are not presentable by products).
Let M be an oriented closed connected Riemannian manifold of negative sec-
tional curvature. Then there are mo oriented closed connected manifolds Ny
and No of non-zero dimension admitting a continuous map Ny X No — M
of non-zero degree:

7.6 Non-positively curved groups

We conclude this chapter with a very brief discussion non-positively curved
groups, so-called CAT(0)-groups. Hyperbolic metric spaces are geodesic
spaces whose geodesic triangles are slim. This can be reformulated as geodesic
triangles being not much fatter than geodesic triangles in trees (Exer-
cise 7.E.9).

In order to define a notion of non-positive curvature for metric spaces, we
replace the comparison space: We compare geodesic triangles with triangles
in the Euclidean plane (Figure 7.29) instead of trees.

Definition 7.6.1 (CAT(0)-inequality, CAT(0)-space).

e A geodesic triangle (yo: [0, L1] = X, 71: [0, L1] — X, ¥2: [0,Ls] — X)
in a metric space (X, d) satisfies the CAT(0)-inequality if the following
holds: Let (v: [0, L1] — X,~{: [0,L1] — X,v%: [0,Ls] — X) be a
geodesic triangle in the Buclidean plane (R?, d,) with the same side
lengths (such triangles are unique up toa Euclidean isometry). Then

Viketo,1,2) Vsepo.r,] Veepo,ro 4(75(5), 1(t)) < da(i(s), vi(®))-
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7

Yot
M) "

original geodesic triangle Euclidean comparison triangle

Figure 7.29.: The CAT(0)-inequality

o A CAT(0)-space is a geodesic metric space (X, d) such that all geodesic
triangles in X satisfy the CAT(0)-inequality.

Remark 7.6.2 (CAT). The name CAT(0) refers to the pioneers of comparison
geometry: Cartan, Alexandrov, and Toponogov. The number 0 denotes the
upper curvature bound. Using other simply connected two-dimensional model
spaces of constant Gaussian/sectional curvature than the Euclidean plane,
one obtains the general notion of CAT(k)-spaces. For instance, CAT(—1)-
spaces are those geodesic metric spaces whose geodesic triangles are at most
as fat as geodesic trianglesin the hyperbolic plane HZ.

Example 7.6.3 (CAT(0)-Spaces).

e The Euclidean plane (R?, ds) is a CAT(0)-space (by definition). More
generally, for every n € N, the n-dimensional Euclidean space (R", ds)
is a CAT(0)-space (because every geodesic triangle in' R™ lies in a Eu-
clidean subspace of dimension 2).

e The hyperbolic plane H? is a CAT(0)-space: Geodesic triangles in the
hyperbolic plane are slimmer than their Euclidean comparison triangles
(Exercise 7.E.33). More generally, for every n € N>o, the n-dimensional
hyperbolic space H™ is a CAT(0)-space.

e The round sphere S? is not a CAT(0)-space: Allnon-degenerate geodesic
triangles in S are fatter than their Euclidean comparison triangles (Ex-
ercise 7.E.30).

e Geometric realisations of trees are O-hyperbolic and therefore also
CAT(0)-spaces.

Caveat 7.6.4. The property of being a CAT(0)-space is not only a global
property, but also a local property (also small triangles have to satisfy the
CAT(0)-inequality). This has several consequences:
e In general, hyperbolic metric spaces are not CAT(0)-spaces! For exam-
ple, the sphere S? is a hyperbolic metric space, but it is not a CAT(0)-
space.
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e Being a CAT(0)-space is not a quasi-isometry invariant property for
geodesic metric spaces. For example, the sphere S? is quasi-isometric
to the one-point space; which clearly is a CAT(0)-space.

In view of Caveat 7.6.4, we have to be careful when trying to define the
notion of CAT(0)-groups (see also Exercise 7.E.32). Instead of Cayley graphs,
one uses group actions:

Definition 7.6.5 (CAT(0)-group). A group is a CAT(0)-group if it admits a
proper cocompact isometric action on a non-empty CAT(0)-space.

Example 7.6.6 (CAT(0)-groups).

e For every n € N-the group Z" is a CAT(0)-group (as witnessed by the
translation action of Z™ on the Euclidean n-space). In particular, not
every CAT(0)-group is hyperbolic.

o All finite groups are CAT(0)-groups (as witnessed by the trivial action
on the one-point space):

e All finitely generated free groups are CAT(0)-groups (as witnessed by
the translation action on the geometric realisations of Cayley graphs
with respect to free generating sets).

e The fundamental groups of oriented closed connected surfaces are
CAT(0)-groups. In the case of sphere, the fundamental group is trivial
and thus CAT(0). In the case of the torus, the fundamental group is Z?2
and thus CAT(0). In the case of higher genus, we choose a hyperbolic
Riemannian metric and consider the corresponding deck transformation
action on H?.

e All Coxeter groups are CAT(0)-groups [45, Chapter 12].

However, it remains an open problem to determine whether all hyperbolic
groups are CAT(0)-groups or not.

Caveat 7.6.7. Being CAT(0) is not a quasi-isometry invariant among finitely
generated groups: Let M be a closed connected Seifert 3-manifold with hyper-
bolic base-surface S and suppose that M is not finitely covered by a product
of a surface and S'; such manifolds indeed exist [77, [V.B.48]. We consider
G := 7 (M).

e Then G is not a CAT(0)-group [31, Theorem I1.7.27]. The manifold M
has PSL-geometry [7, Table.1 on p. 19][77, IV.B.48] and so G is quasi-
isometric to PSL (by the Svare-Milnor lemma).

e On the other hand, PSL is quasi-isometric to H? x R [77, IV.B.48],
which is a CAT(0)-space, and thus (again by the Svarc-Milnor lemma)
quasi-isometric to the CAT(0)-group 71 (S) x Z.

It turns out that CAT(0)-spaces share many of the properties of simply
connected manifolds of non-positive sectional curvature and that CAT(0)-
groups share many of the properties of fundamental groups of closed con-
nected Riemannian manifolds of non-positive sectional curvature [31, Part IT,
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Chapter ITL.T]. Also, many of the results for hyperbolic groups have suitable
counterparts in the world of CAT(0)-groups:

e All CAT(0)-groups are finitely presented [31, Theorem IILI.1.1].

e The word problem is solvable for every CAT(0)-group [31, Theo-
rem I11.I".1.4].

e There is also a version of the splitting theorem (Theorem 7.5.26) for
CAT(0)-spaces and CAT(0)-groups [31, Theorem II.6.21].

o We have seen that hyperbolic groups cannot contain Z? as a subgroup
(Corollary 7.5.15) because such a subgroup would lead to a flat plane
in a hyperbolic space: Similarly, by the flat torus theorem [31, Chap-
ter I1.7], the maximal dimension of flat subspaces of CAT(0)-spaces
controls the maximal rank of free Abelian groups in CAT(0)-groups.
Moreover, this also leads to the solvable subgroup theorem [31, The-
orem I1.7.8] stating that all virtually solvable subgroups of CAT(0)-
groups are in fact finitely generated virtually Abelian.

Outlook 7.6.8 (Application to 3-manifolds). One of the most stunning recent
applications of geometric group theory and CAT(0)-techniques (in the form
of CAT(0)-cube complexes) is Agol’s proof of Waldhausen’s conjecture that
all compact aspherical 3-manifolds are virtually Haken and of Thurston’s
conjecture that all hyperbolic 3-manifolds are virtually fibred [1]. This result
revolutionised the theory of 3-manifolds and their fundamental groups.

Ounly very few groups are fundamental groups of closed surfaces [115]; in
contrast, every finitely presented group is the fundamental group of some
closed 4-manifold (and also in higher dimensions). Dimension 3 is a fas-
cinating intermediate stage: The class of fundamental groups of compact
3-manifolds is rich enough for interesting examples, but still small and geo-
metric enough to allow for good control [7]. One classical application of the
study of fundamental groups of compact 3-manifolds with torus boundary is
knot theory.

The definition of CAT(0)-spaces and CAT(0)-groups is based on compar-
ison geometry. Alternatively, one can also capture non-positive curvature in
a more combinatorial way. This leads to so-called systolic compleres and
systolic groups [85].
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The goal of this exercise is to establish the following hyperbolicity criterion
by Masur and Schleimer [116]:

1. Let X be a connected graph such that |X| is hyperbolic. Show that X
admits a family of subgraphs with respect to which it satisfies the slim
triangles condition.

2. Suppose that X satisfies the slim triangles condition with respect to L.

Prove that then | X| is a hyperbolic metric space.
Hints. It sufficesto show that all geodesics in the graph between ver-
tices iy € V are uniformly close to the selected graph L, , (why?). In
order to prove this approximation of geodesics, one can first. proceed as
in the proof of the Christmas tree lemma (Lemma 7:2.14) and then as
in the proof of the stability theorem (Theorem 7.2.11).

3. Look up in the literature how the curve graph is defined. Sketch the
proof of Bowditch [24] of hyperbolicity of the curve graph via the eri-
terion from the second part.

Hyperbolic groups

Quick check 7.E.12 (Growth of hyperbolic groups*).
1. Does every infinite finitely generated hyperbolic group have exponential
growth?
2. Is every finitely generated group of exponential growth hyperbolic?

Exercise 7.E:13 (Quasi-hyperbolic groups*). Let G be a finitely generated
group with finite generating set S C G. Show that G is a hyperbolic group if
and only if (G, dg) is (1, 1)-quasi-hyperbolic.

Exercise 7.E.14 (Products and hyperbolic groups*). Characterise (i.e., give
necessary and sufficient conditions) when the product G x H of two finitely
generated groups G and H is hyperbolic.

Exercise 7.E.15 (0-Hyperbolic groups*). Let G be a finitely generated group
that does not contain elements of order 2 and that has a finite generating
set S C G for which |Cay(G, S)| is 0-hyperbolic. Prove that G is free.

Exercise 7.E.16 (Free products and hyperbolicity**). Let G and H be finitely
generated groups.

1. Let G« H be hyperbolic. Are then also G and H hyperbolic?

2. Let G and H be hyperbolic. Is then also G * H hyperbolic?

Exercise 7.E.17 (Geometric structures on manifolds*).
1. Does there exist a closed connected hyperbolic manifold whose funda-
mental group is isomorphic to Out(Fsp17) ?
2. Does there exists a closed connected flat manifold whose fundamental
group is isomorphic to Fagi7 X Fooy7 ?
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8.2 Ends

The ends of a space can be viewed as the set of principal “regions” lead-
ing “to infinity.” Formally, the concept is described via rays and connected
components when bounded pieces are removed. We will first give the defi-
nition in the most straightforward, geodesic, case (Chapter 8.2.1). We will
then explain how this definition can be extended in a meaningful way to the
quasi-geodesic case; in particular, this will also prove quasi-isometry invari-
ance of ends (Chapter 8.2.2). After that we will focus on the case of finitely
generated groups (Chapter 8.2.3).

8.2.1 Ends of geodesic spaces

As first step, we define ends of geodesic spaces as equivalence classes of proper
rays (Figure 8.1).

Definition 8.2.1 (Ends of a geodesic space). Let X be a geodesic metric space.

e A properray in X is a continuous map : [0,00) — X such that for
all bounded sets B C X the preimage v~ 1(B) C [0, 00) is bounded.

e Two proper rays v, 7: [0,00). — X represent the same end of X
if for every bounded subset' B € X there exists a t € [0,00) such
that v([t,00)) and +/([t, 00)) lie in the same path-connected component
of X\ B.

e If7:[0,00) — X is a proper ray, then we write end(y) for the set of
all proper rays that represent the same end as v.

o We call

Ends(X) = {end(y) | v: [0,00) = X is a proper ray in X }

the space of ends of X.

e We define a topology on Ends(X) through convergence of sequences
of ends in X to a point in Ends(X): Let (2,)neny € Ends(X), and
let © € Ends(X). We say that (#,)nen converges to x if there exist
proper rays (v, )nen and v in X representing the ends xg, z1,... and
respectively such that the following condition is satisfied:

For every bounded set B C X there is a sequence (¢, )nen C [0,00) such
that for all large enough n € N the images 7, ([t,;00)) and ([t,, o0))
lie in the same path-connected component of X\ B.

A subset. A C Ends(X) is closed if the following holds: If (z,)qen is a
sequence in A that converges to an end z € Ends(X), then z € A.

It should be noted that we used the term “proper” in the previous defini-
tion in the metric sense; not in the topological sense.
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e Ify:[0,00) — X is a proper (¢, b)-quasi-ray, then we write endg () for
the set of all proper (c, b)-quasi-rays that represent the same quasi-end
as v

e We call

Endsg(X) := {endq(7) | v: [0,00) — X is a proper (¢, b)-quasi-ray }

the space of quasi-ends of X (more precisely, the space of (¢,b)-quasi-
ends of X).

e We define a topology on Endsg(X) through convergence of sequences
of quasi-ends in X to a pointin Endsg(X): Let (z,)nen € Endsg (X)),
and let € Endsg(X). We say that (x,)nen converges to x if there
exist proper (¢;b)-quasi-rays (v, )nen and 7 in X representing the quasi-
ends xg, x1,-.. and x respectively such that the following condition is
satisfied:

For every bounded set B-C X there is a sequence (¢, )nen C [0, 00) such
that for all large enough n € N the images v, ([tn, 00)) and ([tn, c0))
lie in the same (¢, b)-quasi-path-component of X \ B.

Remark 8.2.6 (Quasi-ends and constants). The initial choice of constants in
the definition of quasi-ends does not affect the resulting space of quasi-ends:
Let ¢ € Rso, b € Ryg and let (X, d) be a (¢, b)-quasi-geodesic space. If
¢ € Rs. and b’ € Rsy, then every (¢, b')-quasi-end can be represented by
a proper (¢, b)-quasi-ray and two proper (¢,b)-quasi-rays represent the same
(¢, b)-quasi-end.if and ouly if they represent the same (¢, b’)-quasi-ends. (Ex-
ercise 8.E.4).

Particularly nice examples of proper quasi-rays are quasi-geodesic rays.
For proper geodesic metric spaces, every (quasi-)end can be represented by
geodesic rays and the space of quasi-ends coincides with the space of ends:

Proposition 8.2.7 (Ends of geodesic spaces). Let X be a geodesic metric space
and let r € X.
1. If X is proper, then every end can be represented by a geodesic ray that
starts at x.
2. There is a canonical homeomorphism Ends(X) = Endsg(X).

Proof. Ad 1. The basic idea is as follows: Let 7: [0,00) — X be a proper
ray. For every n € N we pick a geodesic v, from x to v(n). Using the Arzela-
Ascoli theorem, one can then find a subsequence of these geodesics (extended
constantly to all of [0,00)) that converges to a geodesic ray that starts at x,
which will represent the same end as 7 [31, Lemma 1.8.28, Proposition 1.8.29].

Ad 2. This can be shown by connecting the dotsin proper quasi-rays and
quasi-paths by geodesic segments (Exercise 8.E.5). O

In view of Proposition 8.2.7, we will in the following also use the sym-
bol Ends to denote the space of quasi-ends of a quasi-geodesic metric space.
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Proposition 8.2.8 (Quasi-isometry invariance of ends). Let X and Y be quasi-
geodesic metric spaces.
1. If f+ X — Y is a quasi-isometric embedding, then the map

Ends(f): Ends(X) — Ends(Y)
end(y) — end(f o)

is well-defined and continuous.
2. If f, g: X — Y are quasi-isometric embeddings that have finite dis-
tance from each other; then Ends(f) = Ends(g).
Hence; Ends defines a functor from the full subcategory of QMet given by
quasi-geodesic spaces to the category of topological spaces.
In particular: If f: X — Y is a quasi-isometry, then the induced map
Ends(f): Ends(X) — Ends(Y") is‘a homeomorphism.

Proof. This is a straightforward computation (Exercise 8.E.6). In order to
prove well-definedness in the first part, we need the freedom to represent
ends by more general rays — the composition of a quasi-isometric embedding
with a continuous ray in general is mot continuous; so even if we were only
interested in ends of geodesic spaces, we would still need to know that we
can describe ends by some sort of quasi-rays. N

8.2.3 _Ends of groups

In particular; we obtain a notion of ends for finitely generated groups:

Definition 8.2.9 (Ends of a group). Let G be a finitely generated group. The
space Ends(G) of ends of G is defined as Ends(Cay(G, S)), where S € G is
some finite generating set of G. (Up to canonical homeomorphism, this does
not depend on the choice of the finite generating set.)

In view of Proposition 8.2.8, the space of ends of a finitely generated group
is a quasi-isometry invariant. From Example 8.2.3 we obtain:

Example 8.2.10 (Ends of groups).

e If G is a finite group, then Ends(G) = (.

e The group Z has exactly two ends (because Z is quasi-isometric to R).

e Finitely generated free groups of rank at least 2 -have infinitely many
ends; as a topological space the space of ends of a free group of rank at
least 2 is a Cantor set.

e The group Z? has only one end (because Z2 is quasi-isometric to R?).

e If M is a closed connected hyperbolic manifold of dimension at least 2,
then the fundamental group w1 (M) is quasi-isometric to H",-and so
71 (M) has only one end.

Theorem 8.2.11 (Possible numbers of ends of groups). Let G be a finitely
generated group. Then G has 0, 1, 2 or infinitely many ends.
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of X \\B:X(e) than ~;((r,00)). Because g, - 7, represents the same end as 7;,
the ray g, - 7; has to pass through BX(e) (in order to eventually reach the
same component of X \ BX (e)). In view of n > 3.7 we hence find a t; € Rso.,
with g, - v;(t;) € B (e). In particular, we obtain

d( (1), 72(t2)) = d(Gn =11 (1), gn = 22(t2)) ST+ =27

However, this contradicts the estimate obtained in the first part of the proof.
Hence, there is no finitely generated group that has finitely many ends but
more than two ends. O

Example 8.2.12. There is no finitely generated group that is quasi-isometric
to the cross R x {0} U {0} x R (with the £!-metric), because such a group
would have exactly four ends (which is impossible by Theorem 8.2.11).

Moreover, using the Arzeld-Ascoli theorem, one can show that the space
of ends of a finitely generated group is compact [31, Theorem 1.8.32]. If a
group has infinitely many ends, then the space of ends is uncountable, and
every end is an accumulation point of ends [31, Theorem 1.8.32].

As we have seen above, every finitely generated group has 0, 1, 2 or in-
finitely many ends. Conversely, we can use the number of ends of a group to
learn something about the algebraic structure:

Definition 8.2.13 (Splitting over a finite group). A finitely generated group G

splits over a finite group if G is isomorphic to a group of the following type:

e an amalgamated free product G x4 G2, where A is a finite group, Gy
and Gy are finitely generated groups, and

[GlA]EQ, [GQA]227 [GlA}+[G2A]Z5,

e or an HNN-extension Hx*y, where ¢ is an isomorphism between finite
subgroups of H that have index at least 2 in H-

Theorem 8.2.14 (Recognising groups via ends).
1. A finitely generated group has no ends if and only if it is finite.
2. A finitely generated group has exactly two ends if and only if it is vir-
tually Z.
3. Stallings’s decomposition theorem. A finitely generated group has in-
finitely many ends if and only if it splits over a finite group.

Sketch of proof. Let G be a finitely generated group.

Ad 1. If G is finite, then Ends(G) = @ (Example 8.2.10). Conversely, if
G is infinite, then G contains at least one infinite proper quasi-ray (Exer-
cise 3.E.11), which implies that Ends(G) is non-empty.

Ad 2. If G is virtually Z, then Ends(G) = Ends(Z) (by quasi-isometry
invariance), which consists of exactly two elements (Example 8.2.10). Con-
versely, if G has exactly two ends, then one can show that G contains an
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element of infinite order, which generates a quasi-dense (whence finite index)
subgroup of G (Exercise 8.E.11).

Ad 3. If G splits over a finite group (and hence is a non-trivial amalga-
mated free product or a non-trivial HNN-extension of the above type), then
arguments similar to the case of free groups show that G has infinitely many
ends.

Conversely, if G has infinitely many ends, one can concoct a tree on which
G acts with finite stabilisers (the ends of G being the shadow of the branching
of this tree). Then Bass-Serre theory shows that G is of the claimed shape [66,
Chapter 13.6][53]. O

The second part, in particular, gives yet another argument proving that Z
is-quasi-isometrically rigid.

The most interesting part is the third statement: If for some reason we
know that a group has infinitely many ends, then we know that we can de-
compose the group into “smaller” pieces. Furthermore, one can also derive
quasi-isometry rigidity of virtually free groups from decomposition results of
this type [63]. -From a more pessimistic point of view, Stallings’s decom-
position theorem tells-us that most interesting groups will have exactly one
end.

8.3 Gromov boundary

The space of ends is a rather crude invariant — many interesting groups have
only one end. Therefore, we are interested in constructing finer boundary
invariants. One example of such a construction is the Gromov boundary.

8.3.1 Gromov boundary of quasi-geodesic spaces

We will refine the construction of ends by looking at the points and directions
of the rays directly instead of at looking only at the location with respect to
path-components at infinity.

Definition 8.3.1 (Gromov boundary). Let X be a quasi-geodesic metric space:
e The (Gromouv) boundary of X is defined as

90X := {7:[0,00) — X | yis a quasi-geodesic ray} /~,

where two quasi-geodesic rays 7, 7': {0,00) —> X are equivalent if
there exists a ¢ € R> such that

im~y C BX%(im ") and im~" C BX? (im~)

(i.e., im~y and im~/ have finite Hausdor{f distance).
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8.3.2 Gromov boundary of hyperbolic spaces

While the definitions above technically make sense for every (quasi-geodesic)
metric space, in general, such a boundary is far too big (as there are too many
quasi-geodesics) and rather difficult to keep under control (Exercise 8.E.22).
However, for proper hyperbolic metric spaces, the Gromov boundary can be
expressed in terms of geodesic rays instead of quasi-geodesic rays:

Theorem 8.3.4 (A geodesic description of the boundary). Let X be a proper
hyperbolic metric space.
1. Let v: [0,00) —» X be a quasi-geodesic ray in X. Then there is a
geodesic ray ' 1 [0,00) — X and a ¢ € R>q satisfying

imy C BX4(im ') and im+’ © BX?(im~).

2. Let v,v':]0,00) — X be geodesic rays in X with finite Hausdorff
distance. Then sup, ¢ o) d(7(t),7' (1)) < co.

3. Let x € X and let y: [0,00) — X be a geodesic ray. Then there is a
geodesic ray '+ [0,00) — X satisfying

7(0) == and sup  d((t),¥ (1)) < oe.
te[0,00)

4. In particular; for oll z € X the canonical maps

geodesic rays in X / finite distance — 0X

geodesic rays in X starting in x/ﬁm’te distance —» 0X
are bijective.

Proof. The second part follows by applying Lemma 7.5.5 several times. The
first and third part can be shown as follows: In hyperbolic spaces, quasi-
geodesics stay close to geodesics (Theorem 7.2.11). Applying the Arzels-
Ascoli theorem to finite pieces of the quasi-geodesic rays in question proves
the claims (Exercise 8.E.15). The last part just subsumes the other parts: [

Example 8.3.5 (Gromov boundary of spaces).

e If X is a metric space of finite diameter, then clearly 0.X = (.

e The Gromov boundary of the real line R consists of exactly two points
corresponding to going to +oco and going to —oo; hence, the Gromov
boundary of R coincides with the space of ends of R.

e The Gromov boundary of a regular tree of degree at least 3 is a Cantor
set [87].

e One can show that for all n € N>g, the Gromov boundary of H" is
homeomorphic to the (n — 1)-dimensional sphere S™~! [18, Proposi-
tion A.5.10] (Exercise 8.E.18).
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As a first example application, we use quasi-isometry invariance of the
Gromov boundary (Proposition 8.3.3) to prove quasi-isometry invariance of
hyperbolic dimension:

Corollary 8.3.6 (Quasi-isometry .invariance of hyperbolic dimension). Let n,
m € Nxo. Then H" ~qi H™ if and only if n = m.

Proof. 1f H" ~qiH™, then in view of Example 8.3.5 and the quasi-isometry
invariance of the Gromov boundary we obtain homeomorphisms

Sn—l ~ JH" =2 HH™ = Sm,—l.

By a classical result in-algebraic topology, two spheres are homeomorphic if
and only if they have the same dimension [50, Corollary IV.2.3]; hence, we
get n —1=m — 1, and son =m. L]

Outlook 8.3.7 (The conic trichotomy via fixed points). The topology on the
Gromov boundary of proper hyperbolic metric spaces X admits a canonical
extension to

X =XUoX

that is compatible with the metric topology on X and the topology on 90X
from above [31, Definition III.H.3.5ff]; moreover; X in this topology is com-
pact.

For example, there is a homeomorphism H2 — D? mapping 0H2 to
the boundary S of the unit disk D?  and every isometry f of H? yields
a homeomorphism f: D2 — D?. By the Brouwer fixed point theorem [50,
Corollary IV.2.6], the latter map always has a fixed point. It is then possible to
reformulate the conic trichotomy (Remark 7.5.17) for non-trivial orientation
preserving isometries of H? as follows [18]:

e Such an isometry f is hyperbolic if and only if f has exactly two fixed
points and these fixed points lie on the boundary (namely the “end-
points” of the axis).

e Such an isometry f is parabolic if and only if f has exactly one fixed
point and this fixed point lies on the boundary.

e Such an isometry f is elliptic if and only if f has exactly one fixed point
and this fixed point does not lie on the boundary.

8.3.3  Gromov boundary of groups

The quasi-isometry invariance of the Gromov boundary allows to define the
Gromov boundary for hyperbolic groups:

Definition 8.3.8 (Gromov boundary of a group). Let G be a finitely generated
group. The Gromov boundary of G is defined as G := dCay(G, S), where
S C G is some finite generating set of G; up to canonical homeomorphism,
this definition is independent of the choice of the finite generating set S.
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Proposition 8.3.3 shows that the Gromov boundary of finitely generated
groups is a_quasi-isometry invariant and that the Gromov boundary of a
group coincides with the Gromov boundary of the geometric realisations of
its Cayley graphs. In the case of hyperbolic groups, we can hence describe
the Gromov boundary in terms of geodesic rays on the geometric realisations
(Theorem 8.3.4). Moreover, Example 8.3.5 yields:

Example 8.3.9 (Gromov. boundary of groups).

e If G isa finite group, then G = .

e The Gromov boundary 0Z of Z consists of exactly two points because
Zis quasi-isometric to R. We will see a converse of this fact in Propo-
sition 8.3.12.

e If M is a closed connected hyperbolic manifold of dimension 7, then

Omy (M) =2 gH™ = S,

Conversely, it can be shown that if G is a torsion-free hyperbolic group
whose boundary is-a sphere of dimension n — 1 > 5, then G is the
fundamental group of a closed connected aspherical manifold of dimen-
sion n [13].

e Let F be a finitely generated free group of rank at least 2. Then 9F is
a Cantor set; in particular, F' and SL(2,Z) are not quasi-isometric to
the hyperbolic plane H?.

We did know this already from the study of ends. However, using Gro-
mov boundaries, we can do even better:

There is no quasi-isometric embedding H? — F: Assume for a contra-
diction that there is a quasi-isometric embedding f: H? — F. Then
the induced map O0f: OH? — OF is continuous and injective. How-
ever, because OH? =2 S! is connected and the Cantor set OF is totally
disconnected, it follows that df is constant. This contradicts injectivity
of Jf; hence, there is no such map f.

e More generally, the Gromov boundary of a free product G * H of two
hyperbolic groups has the structure of a Cantor-like set, built from the
Gromov boundaries of G and H respectively [168].

The geometry of Gromov boundaries of hyperbolic groups and spaces is
quite rich [87]. In the following, we will focus merely on two aspects: how
to find free groups in hyperbolic groups (Chapter 8.3.4) and how to prove
rigidity results by boundary methods (Chapter 8.4).

8.3.4  Application: Free subgroups of hyperbolic groups

Using the language of the Gromov boundary of hyperbolic groups, we derive
standard results on the ubiquity of free subgroups in hyperbolic groups.






8.3. Gromov boundary 273

We can then connect e and z,, through a (1,1)-quasi-geodesic. Because the
balls in Cay(G, S) are finite, a counting/inductive selection argument shows
that there exists a (1, 1)-quasi-geodesic ray v: [0,00) —> G that passes
through infinitely many elements of the set {z,, | n € N} (this is a discrete
version of the Arzeld-Ascoli theorem). By construction,

V] € {9°°, 97}

which contradicts G = {g™,g°°}. Hence, (g)g is quasi-dense in G, as
desired. |

More generally, the boundary points of group elements determine the al-
gebraic relations between the given group elements to a large extent:

Theorem 8.3.13 (Mini Tits alternative for hyperbolic groups). Let G be a hy-
perbolic group-and let g;h € G be elements of infinite order. Then:
1. If g and h are not independent, then the subgroup (g, h)q is virtually Z
and {g®°,g-°} = {h>°,h™>°} in 0G.
2. If g and h are independent, then there are m,n € N such that (g™, h"™) ¢
18 free of rank 2.

Before we start, with the actual proof, we will first look at these statements
from an intuitive, geometric, point of view. If g and h are independent, then
the geodesic lines given by the powers of g and h respectively, grow further
and further apart. Therefore, far out on these lines, one can set up a ping-
pong situation and therefore find powers of g and h that generate a free
subgroup of rank 2.

Conversely, if g and h are not independent, then g and h (or inverses of
these elements) act by translation on the same geodesic ray (up to finite
distance). However, in negative curvature, there is (up to finite error) only a
one-dimensional family of isometries that induces translations on any given
geodesic line. Therefore, it is plausible that (g, h)¢ is virtually Z.

Proof. Ad 1. Let {g®°,g=>°} 0 {h>°, h=>°} # 0; without loss of generality, we
may assume ¢>° = h*. Then Lemma 8.3.14 below shows that there exists
an n € Z\ {0} such that h™. g = g- h". Thus, (g9, h)g is contained in the
centraliser C(h™). Because h™ has infinite order, the centraliser C(h™) is
virtually Z (Theorem 7.5.10). In particular, also the infinite group (g, h)¢ is
virtually Z.

Moreover, because (g, h)g is virtually Z-and because the powers of g and
h give rise to quasi-geodesic lines in GG, which have to fit inside of (g;h)q, we
also have {¢™,g=°} = {h®, h~>°} (Exercise 8.E.26).

Ad 2. Let g and h be independent and let'S C G be a finite generating set
of G. Then, by Lemma 8.3.15 below, there exists R € N+ such that the sets

A={z e G|ds(x, (9)a) < ds(x{g™", .. g" D}
B:={z G| ds(as(h)c) <ds(x, {h 5, h"})}
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1 1 1 0
g:i= (0 1), h = (1 1>€SL(2,Z),

which both are of infinite order. Arguments similar to those in the proof
of Proposition 4.4.2 show that {g,h} is a generating set of SL(2,Z). In
particular, the subgroup (g, h)g is not free (alternatively, one can easily
find concrete non-trivial relations between g and k). On the other hand,
{9, 97N {h%°, h~>°} = ) and (g°, h?) is free (Example 4.4.1). This ex-
ample also shows that in general passage to higher powers is needed in the
second part of Theorem 8.3.13.

We can now deduce that most hyperbolic groups contain a free group of
rank 2:

Corollary 8.3.17 (Ubiquity of free groups in hyperbolic groups). Let G be a
hyperbolic group. Then either G is virtually cyclic or G contains a free group
of rank 2 (and hence has exponential growth).

Proof. Clearly, the two alternatives exclude each other. We now consider
the case that G is mot virtually cyclic and we prove that then G has to
contain a free group of rank 2. Because G is not virtually cyclic, G is infinite;
in particular, G contains an element g of infinite order (Theorem 7.5.1).
In view of Theorem 8.3.13, it suffices to find an element h € G of infinite
order that is independent of g. Because G is not virtually cyclic, there exist
elements k € G of arbitrarily large distance to (g). Therefore, Lemma, 7.5.14
implies that there is a-k € G such that the conjugate h := k-g - k=! satisfies
for all e e {—1,1}:

supdg(h”™,g"") = supdg(k+ g k1, g ") = oo
neZ neZ

With g also h has infinite order and so using Theorem 8.3.4 we can reformu-
late the previous expression as

{h, == £ {9, 97}

By the first part of Theorem 8.3.13, this already implies that g and h are
independent; therefore, the second partof Theorem 8.3.13 can be applied. [

QOutlook 8.3.18 (Acylindrically hyperbolic groups). A wide-ranging generali-
sation of hyperbolic groups are acylindrically hyperbolic groups [139]: The
notion of acylindrically hyperbolic groups is based on the observation that
many features of hyperbolic groups do not require a hyperbolic Cayley graph,
but only a suitable action on a hyperbolic metric space. Hyperbolic groups
can be characterised as the finitely generated groups that admit proper, co-
compact actions on proper hyperbolic metric spaces (Exercise 8.E.30). One
now replaces proper actions by acylindrical actions:
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e An isometric action of a group G on a metric space (X, d) is acylindrical
if: For every ¢ € R~, there exist r,n € N such that for all z,y € X
with d(x,y) > r we have

[{g € G| d(z,g-2) <e and d(y,g-y) <e}| <n.

e A group G is acylindrically hyperbolic if there exists a (not necessarily
finite) generating set S C G such that |Cay(G, S)| is hyperbolic, the left
translation action of G on |Cay(G, S)| is acylindrical, and 9|Cay(G, S)|
contains more than two points.

Because |Cay(G;S)| is not a proper metric space if S is infinite, one needs
a version of the Gromov boundary that is robust enough for this situation,
e.g., the description via the Gromov product (Exercise 8.E.21).

For example, finitely generated hyperbolic groups are acylindrically hy-
perbolic if and only if they are not virtually cyclic (Exercise 8.E.32, Exer-
cise 8.F.33). Moreover, the class of acylindrically hyperbolic groups subsumes
the following, geometrically relevant, classes of groups [139]:

e Most mapping class groups of surfaces are acylindrically hyperbolic.

e Outer automorphism groups of free groups of rank at least 2 are acylin-

drically hyperbolic.

o ...

For example, analogously to non-elementary hyperbolic groups, acylindri-
cally hyperbolic groups contain free groups of rank 2 (this is a far-reaching
generalisation of Corollary 8.3.17).

8.4 Application: Mostow rigidity

We briefly illustrate the power of boundary methods at the example of
Mostow rigidity. Roughly speaking, Mostow rigidity says that certain man-
ifolds that are equivalent in a rather weak, topological, sense (homotopy
equivalent) must be equivalent in a rather strong, geometric, sense (isomet-
ric).

For the sake of simplicity, we discuss only the simplest version of Mostow
rigidity, namely Mostow rigidity for closed hyperbolic manifolds:

Theorem 8.4.1 (Mostow rigidity — geometric version). Let n € Nx3, and let
M and N be closed connected hyperbolic manifolds of dimension n. If M and
N are homotopy equivalent, then M and N are isometric.

Theorem 8.4.2 (Mostow rigidity — algebraic version). Let n € N>3, and let T
and A be cocompact lattices in Isom(H™). If T' and A are isomorphic groups,
then they are conjugate in Isom(H™), i.e., there exists a g € Isom(H") with

g-T-gl=A.
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The corresponding statement for flat manifolds does not hold: Scaling
the flat metric on a torus gives a flat metric on the same torus, but even
though the underlying manifolds are homotopy equivalent (even homeomor-
phic), they are not isometric (e.g., scaling changes the volume).

Caveat 8.4.3. Mostow rigidity does not hold in dimension 2; in fact, in the
case of surfaces of higher genus, the moduli space of hyperbolic structures is
a rich and interesting object [18, Chapter B.4].

Sketch proof of Mostow rigidity. Why are the geometric version and the al-
gebraic version of Mostow rigidity equivalent? The universal covering of hy-
perbolic n-manifolds is hyperbolic n-space H™. In particular, hyperbolic man-
ifolds have a contractible universal covering and so are classifying spaces for
the fundamental group. Standard arguments in algebraic topology concerning
the homotopy theory of classifying spaces then show that hyperbolic mani-
folds are homotopy equivalent if and only if they have isomorphic fundamental
groups [48, Chapter 8.8]. On the other hand, covering theory shows that a
connected hyperbolic n-manifold M with fundamental group T' € Isom(H")
is isometric to the quotient I' \ H” and that isometries between hyperbolic
n-manifolds lift to isometries of H". Now the equivalence between the geo-
metric and the algebraic version follows from a straightforward calculation.
We will now sketch a proof of the geometric version of Mostow rigidity:
Let f: M — N be a homotopy equivalence between closed connected hyper-
bolic n-manifolds. Using covering theory and the fact that the Riemannian
universal coverings of M and N are isometric to H"™, we obtain a lift

fH — H"
of f; in particular, f is compatible with the actions of 7 (M) and 71 (V)
on H" by deck transformations. Similar arguments as in the proof of the
Svarc-Milnor lemma show that f is a quasi-isometry.
Hence, we obtain a homeomorphism

Of : 6H" — OH"

on the boundary of H™ that is compatible with the actions of 7y (M)
and 71 (V) on OH" induced by the deck transformation actions.

The main step of the proof is to show that this map 8f on JH" is confor-
mal (i.e., locally angle-preserving) with respect to the canonical homeomor-
phism JH" = S™~L: here, the condition that n > 3 enters. One way to show
that df is conformal is Gromov’s proof via simplicial volume and regular
ideal simplices [126, 18, 146].

By a classical result from hyperbolic geometry, every conformal map
on OH" can be obtained as the boundary map of an isometry of H™ [18,
Proposition A.5.13]; moreover, in our situation, it is also true that such an
isometry f € Isom(IH") can be chosen in such a way that it is compatible
with the deck transformation actions of 71 (M) and m1(N) on H™.
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2. Show that two proper (c, b)-quasi-rays represent the same (¢, b)-quasi-
end if and only if they represent the same (¢, ’)-quasi-end.

Exercise 8.E.5 (Quasi-ends**). Let X be a geodesic metric space. Fill in the
details of the proof of Proposition 8.2.7.

1. Let X be proper and z € X. Fill in the details for the Arzela-Ascoli
argument that shows that every end in Ends(X) is represented by a
geodesic ray that starts at z. Do the same for Endsg(X).

2. Construct a canonical homeomorphism Ends(X) = Endsg(X) by
“connecting the dots” of proper quasi-rays and quasi-paths through
geodesics.

Exercise 8.E.6 (Ql-invariance of ends**). Let X and Y be quasi-geodesic met-
ric spaces.
1. Let f: X — Y be a quasi-isometric embedding. Show that the map

Endsg(f): Endsg(X) — Endsg(Y)
endg(y) — endg(f ovy)

is well-defined and continuous.
2. Let f, g: X — Y be quasi-isometric embeddings that have finite dis-
tance from each other. Show that then Endsg(f) = Endsg(g).

Exercise 8.E.7 (Ends via mp ***).

1. Look up the definition of the path-components functor m in algebraic
topology.

2. Formulate the definition of Ends for proper metric spaces in terms of 7.
Hints. For'a streamlined formulation, it might be convenient to think
about the inverse system (X \ K)gecg(x), where X ds a topelogical
space and /K (X)) is the set of all compact subsets of X.

3. Conclude: Proper homotopy equivalences X —> Y between proper
geodesic metric spaces induce homeomorphisms Ends(X) — Ends(Y').

Ends of groups

Quick check 8.E.8 (Ends of groups*).
1. Does the Heisenberg group have infinitely many ends?
2. Does every group of exponential growth have infinitely many ends?

Exercise 8.E.9 (Free group vs. hyperbolic plane*). Use ends to prove that the
free group of rank 2 is not quasi-isometric to H?2.

Exercise 8.E.10 (Groups that act trivially on their ends*). Let G be a finitely
generated group with finitely many ends. By functoriality, the space Ends(G)
inherits a G-action from the left translation of G on itself.
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2. Let 7,7 : Rs9 — X be geodesic rays. Show that v and 7' represent
the same point in the Gromov boundary 0X if and only if
. " B
L (y(n) -y (m), = oo.
3. Let (#,,)nen be a sequence in X with lim,, ;00 (Zr, - Tm )e = 00. Show
that there exists a (quasi-)geodesic ray v: R>o —» X with
'n,'}rlbgoo (iEn ’ ’y(m))m s N

4. How can the topology on the Gromov boundary dX be described in
terms of the Gromov product?

Exercise 8.E.22 (Boundary of the Euclidean plane™*). Give a reasonable de-
scription of OR? (where we endow R? with the Euclidean metric). Beware!
The Euclidean plane has lots of quasi-geodesic rays ...

Hints. 'This seems'to be an‘open problem!

Exercise 8.E.23 (Asymptotic cones***).
1. Look up the definition of asymptotic cones in the literature.
2. Why/how can one view asymptotic cones as “geometry at infinity”?
3. How can hyperbolic groups be characterised via asymptotic cones?
4. How can asymptotic cones be used for rigidity results?

Gromov boundary of groups

Quick check 8.E.24 (Translation action on the Gromov boundary*). Let G be
a finitely generated group. Then the left translation action of G on itself
induces a continuous G-action on the Gromov boundary 9G.

1. Is the left translation action of Fy on 0F5 free?

2. Let x € OF5. Is then F5 - « the whole boundary 0F; ?

Exercise 8.E.25 (Groups with small Gromov boundary?!*). 'Show that there is
no hyperbolic group G with |0G| = 1.

Exercise 8.E.26 (Gromov boundary and virtually Z subgroups*). Let G be a
hyperbolic group, let g, h € G be elements of infinite order with the property
that (g, h)q is virtually Z. Show that {g>°, g=*°} = {h®°, h~>°} holds in 9G.

Exercise 8.E.27 (Centre of hyperbolic groups**). Let G be afinitely generated
hyperbolic group that is not virtually Z. Show that the centre of G is finite.
Hints. “There are several approaches. One.s to look at a free subgroup of
rank 2 in G and at centralisers of free gemerators.

Exercise 8.E.28 (Geometric structures on manifolds**).
1. Does there exist a closed connected hyperbolic manifold whose funda-
mental group is isomorphic to Fygy7 ?
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may assume N.C G and Q = G/N. Then
>*°(G,R) —R
fr—=mq(g-Nw— mn(n— flg-n)))

is‘a well-defined left-invariant mean on G.
Ad 4. For eachi € I let m; be a left-invariant mean on G;. We then set

i (2(GR) — R

f— m(f

GL)

In view of the Banach-Alaoglu theorem, there is a subnet of (m;);e; that
converges to a functional m on ¢°°(G,R). One then easily checks that this
limit m is a left-invariant mean on G. O

Corollary 9.1.7 (Amenability of locally amenable groups). Let G be a group.
Then G is amenable if and only if all finitely generated subgroups of G are
amenable.

Proof. If G is amenable, then all subgroups of G are amenable.

Conversely, let all finitely generated subgroups of G be amenable. Because
the finitely generated subgroups of G form an ascending directed system of
subgroups of G that cover all of G, the last part of Proposition 9.1.6 shows
that G is amenable: O

Moreover, the inheritance properties give us some indication for the loca-
tion of the class of amenable groups in the universe of groups (Figure 1.2):

Corollary 9.1.8 (Amenability of solvable groups). If a group is solvable, then
it 15 also amenable.

Proof. By Proposition 9.1.3, every Abelian group is amenable. By induction
along the derived series, we obtain with help of Proposition 9.1.6 that every
solvable group is amenable. O

Conversely, obviously not every amenable group is solvable; for example,
the finite group S5 is amenable (Example 9.1.2), but it is well-known that Ss
is mot solvable.

Outlook 9.1.9 (Elementary amenable groups). The class of so-called elemen-
tary amenable groups is the smallest class of groups that contains all Abelian
and all finite groups and that is closed under taking subgroups, quotients, ex-
tensions and directed ascending unions. By Example 9.1.2, Proposition 9.1.3,
and Proposition 9.1.6, every elementary amenable group is amenable. How-
ever, not every amenable group is elementary amenable; this can for example
be seen via the Grigorchuk groups [69].

Corollary 9.1.10. Groups that contain a free subgroup of rank 2 are not
amenable.



294 9. Amenable groups

Proof.- This follows from the fact that free groups of rank 2 are non-amenable
(Proposition9.1.5) and that amenability is inherited by subgroups (Proposi-
tion 9.1.6). O

Corollary 9.1.11 (Amenability vs. Hyperbolicity). Let G be a hyperbolic group.
Then either G is virtually cyclic or G is not amenable.

Proof. If G is not virtually cyclic, then G contains a free subgroup of rank 2
(Corollary 8.3.17). So, Corollary 9.1.10 implies that G is not amenable. [

Remark 9.1.12 (The von Neumann problem). The notion of amenability was
originally introduced by John von Neumann [130]. In view of Corollary 9.1.10,
he asked whether every non-amenable group contained a free subgroup of
rank 2.

A first candidate in this direction seemed to be Thompson’s group F
(Example 2.2.21); while it is known that F' does not contain a free subgroup
of rank 2 [33], even now (2017) it remains an open problem to decide whether
this group is amenable or not.

Von Neumann’s question was answered negatively by Olshanskii [134]
who constructed a non-amenable torsion group; in particular, such a group
cannot contain a free subgroup of rank 2. In contrast, the von Neumann
problem has a positive answer for many well-behaved classes of groups such
as linear groups (Exercise 9.E.7).

Outlook 9.1.13 (Geometric von Neumann problems). We conclude with a brief
overview of geometric versions of the von Neumann problem. While the situ-
ation is rather involved in the case of groups (Remark 9.1.12); it does simplify
in more geometric contexts and leads to positive answers:

Theorem 9.1.14 (The von Neumann problem for Cayley graphs [160]). Let
k € Nso. Then a finitely generated group is non-amenable if and only if it
admits a Cayley graph with respect to a finite generating set that has a reqular
spanning tree of degree k.

Theorem 9.1.15 (The von Neumann  problem for actions [175]). A UDBG
space X is non-amenable (in the sense of Definition 9.2.9) if and only if X
admits a free action by a free group of rank 2 by bilipschitz maps at bounded
distance from the identity.

Theorem 9.1.16 (The von Neumann problem in measurable group theory [65]).
Let G be a countable discrete non-amenable group. Then there exists a mea-
surable ergodic essentially free action of Fy on ([0,1]%, \®C) such that almost
every G-orbit of the Bernoulli shift action of G on {0,1]¢ decomposes into
Fs-orbits.
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F OXF
Figure 9.1.: The r-boundary of a set, schematically

Example 9.2.2. From the calculations in Example 6.1.2 we obtain:
e Let n € N and let S :={ey,...,e,} be the standard generating set
of Z™. Then ({—k,... ,k}")ren is a Folner sequence for (Z",ds).
e Let S be a free generating set of I,. Then the balls (B (e)),en do
not form a Felner sequence of (Fy, dg). In fact, we will see that F» does
not admit any Fglner sequence (Theorem 9.2.6 or Exercise 9.E.15).

More generally, if concentric balls in a UDBG space do not contain a
Fglner subsequence, then they have to grow fast enough (in order to allow
for enough space for a “thick” boundary):

Proposition 9.2.3 (Subexponential growth yields Fglner sequences). Let X be a
UDBG space and let &g € X. For n € N we consider the ball F,, := B} (o).
If the growth function

B: N —s N

of X (based at the point xq) has subexponential growth (i.e.; f < (x+ 2%)
but B o (x +— 2%)), then (F,)nen contains a Folner subsequence for X.

Proof. Because 8 has subexponential growth, we have

Bntr)

VreN VNeN VecRio TnéNsy B <1+e.

Looking at “r = j, N =n;_1 + 1, = 1/5” we can inductively find a strictly
increasing sequence (1;)jen with

B(n; +4) 1
VjeN —m‘ < 1+3

We now prove that the subsequence (F,;);en is a Fglner sequence for X: Let

€ N. By definition of the r-boundary, we have 0 F,, C By, (o) \ Bs (z0)
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is a left-invariant mean on Gj here, lim, ¢, denotes the limit along w, which
is defined for all bounded sequences in R and picks one of the accumula-
tion points of the argument sequence [39, Chapter J]. The almost invari-
ance of the Fglner sets translates into invariance in the limit. Hence, G is
amenable. Alternatively, such a mean can also be obtained using weak*-limits
in¢*(G,R)" [39, Theorem 4.9.2].

Conversely, let G be amenable. Recall that £} (G, R) is weak*-dense in the
double dual (4(G,R)" = £>2(G,R)" [151, Exercise 1.3.5, Section 1.4.5]. Then
every invariant mean on ¢*°(G,R) is an element of £>°(G,R)’ and thus can
be approximated by £!-functions. These ¢/'-functions in turn can be approxi-
mated by ¢'-functions with finite support. The invariance of the mean then
translates into almost invariance of these finite supports, which yields Fglner
sets in the sense of Proposition 9.2.5 [144, Proposition (0.8), Lemma (4.7)][17,
Appendix G]. O

Because we know an explicit Fglner sequence for Z we could attempt to
use the “recipe” inthe proof of Theorem 9.2.6 to produce an explicit invariant
mean on £>°(Z, R). However, non-principal ultrafilters on N cannot be made
explicit, and also the resulting invariant means on £°°(Z,R) cannot be made
explicit.

Corollary 9.2.7. Every finitely generated group of subexponential growth is
amenable.

Proof. Finitely generated groups of subexponential growth admit a Fglner
sequence (Corollary 9.2.4) and hence are amenable (Theorem 9.2.6). O

The converse of this corollary does not hold in general:

Caveat 9.2.8 (An amenable group of exponential growth). The semi-direct
product Z2 x 4 Z with
1 1
A= (1 2)

has exponential growth and is solvable (Caveat 6.3.7), whence also amenable
(Corollary 9.1.8).

In view of the characterisation of amenable groups in terms of Fglner
sequences (Theorem 9.2.6), we are hence led to the following definition of
amenability for spaces:

Definition 9.2.9 (Amenable spaces). A UDBG space is amenable if it admits
a Fglner sequence.

9.2.2 Paradoxical decompositions

Another geometric characterisation of amenability is based on decomposi-
tion paradoxa. These decomposition properties are the main ingredient in
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Figure 9.2.: A paradoxical decomposition of a free group of rank 2

the Banach-Tarski paradox (Chapter 9.2.3). In short, a paradoxical decom-
position of a group is a decomposition into finitely many disjoint subsets such
that these subsets can be rearranged by translations into two copies of the
group:

Definition 9:2.10 (Paradoxical group). A group G is paradozical if it ad-
mits a paradoxical decomposition. A paradoxical decomposition of G is a
pair ((Ag)gek, (Br)her) where K, L c G are finite and (Ay)gers (Br)her
are families of subsets of G with the property that

G = (QLGJKAg)u(hLGJLBh), G=1Jg 4, G=|Jh- B

geK heL

are disjoint unions.

Proposition 9.2.11 (Non-Abelian free groups are paradoxical). Free groups of
rank at least 2 are paradozical.

Proof. We use the description of free groups in terms of reduced words. In
order to keep notation simple, we consider the case of rank 2 (higher ranks
basically work in the same way). Let F' be a free group of rank 2, freely
generated by {a,b}. We then define the following subsets of F (Figure 9.2):
1. Let AT be the set of all reduced words starting with a positive power
of a.
2. Let A~ be the set of all reduced words starting with a negative power
of a.
3. Let B be the set containing the neutral element; all powers of b as
well as all reduced words starting with a positive power of b.
4. Let B~ be the set of all reduced words starting with a negative power
of b, excluding the powers of b.
Then

F=AT"UA UBTUB, F=AUa'! At F=B uUb't -B*
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Proof.By Proposition 9.2.15, the group SO(3) contains a free subgroup G of
rank 2. All matrices of SO(3) act on S? by a rotation around a line and so
every non-trivial element g of SO(3) has exactly two fixed points x4 1,242
on S?. Therefore,

D:={g-z,; |g€G\{e},j€{1,2}}CS’2

is a countable set and the SO(3)-action on S? restricts to a free G-action
on 82\ D. Because the group G is paradoxical (Proposition 9.2.11) the com-
plement S?\ D is G-paradoxical (Proposition 9.2.14). Because G is a subgroup
of SO(3), this implies that S?\ D c S2 is also SO(3)-paradoxical. O

The Hausdorff paradox can be improved as follows [152, Chapter 0.1]:

Theorem 9.2.17 (Banach-Tarski paradox for the sphere). The sphere S? is
paradozical with respect to the canonical SO(3)-action on S? in the follow-
ing sense: There exist n,m € N and pairwise disjoint subsets Ai,..., A,
Bi,...,Bn C 5% as well as group elements gi,...,Gnyh1, .- by € SO(3)

satisfying
n m
Ugj'Aj:SQ: Uhj'Bj'
j=1 j=1

Clearly, the pieces of any such paradoxical decomposition of S? are not
Lebesgue measurable, and hence are rather strange sets. The Hausdorff para-
dox and the Banach-Tarski paradox rely on (some basic version of ) the axiom
of choice (for the set S?) [82, p. 134].

Further generalisations include the Banach-Tarski paradoxes for balls in R3
and for bounded subsets in R? [152, Chapter 0.1].

9.2.4 (Co)Homological characterisations of amenability

Amenability admits several characterisations in terms of suitable (co)homol-
ogy theories. We will briefly discuss characterisations in terms of uniformly
finite homology and bounded cohomology, respectively.

Outlook 9.2.18 (Amenability and uniformly finite homology). We begin with
the characterisation via uniformly finite homology [19, 175]. Uniformly finite
homology is introduced in Chapter 5.E. In short, for every normed ring R with
unit (e.g., Z or R) uniformly finite homology provides a sequence of quasi-
isometry invariant functors H(-; R) from the category of UDBG spaces to
the category of R-modules. There are three popular ways to describe uni-
formly finite homology:

e via explicit geometric chains (Exercise 5.E.31, 5.E.32, Definition 5.E.1),

e via coarsening of locally finite homology (Exercise 5.E.35),

e via group homology (Exercise 5.E.36,in the case of finitely generated

groups).



9.2. Further characterisations of amenability 303

Using the description by explicit geometric chains for uniformly homology,
we can in particular define the fundamental class of UDBG spaces:

Definition 9.2.19 (Fundamental class). Let R be a normed ring with unit
and let X be a UDBG space. Then Y, 1-zis a cycle in C¥(X; R). The
corresponding class

zeX

[X]g = [Z 1 x] e H¥(X; R)

rEX
is the fundamental class of X in H{(-,R).

Theorem 9.2.20 (Amenability and the fundamental class [19, 175]). Let X be
a UDBG space. Then the following are equivalent:

1. The space X is not amenable.

2. We have [X]z = 0 in HY(X;7Z).

3. We have [X]g = 0 in H¥(X;R).

The proof of the implications “1 = 2” and “l = 3” admits a nice
interpretation in terms of Ponzi schemes [19] (Exercise 9.E.29). Conversely,
one can prove the implications “2 = 1” and “3 = 1” via Fglner sequences
and suitable averaging maps (Exercise 9.E.27).

Outlook 9.2.21 (Amenability and bounded cohomology). There is a comple-
mentary characterisation of amenability in terms of bounded cohomology and
¢'-homology: these theories are functional analytic versions of ordinary group
(co)homology, obtained by taking the dual and the /!-completion respectively
of the simplicial chain complex of the group [84, 123, 99] (Appendix A.2).
Bounded cohomology and ¢'-homology have a wide range of applications in
geometric and measurable group theory [124] as well as in geometric topol-
ogy [73, 100].

Theorem 9.2.22 (Amenability and bounded cohomology /¢! -homology [86, 131,
99]). Let G be a group. Then the following are equivalent:

1. The group G is amenable.

2. For all Banach G-modules V. and_all k € Nsg we have Hf (G; V') = 0.

3.  For all Banach G-modules V' and all k € N5 we have Hﬁl (G; V) 20.

The easiest part of this theorem is to prove that bounded cohomology with
trivial R-coefficients of amenable groups is trivial — by using an invariant
mean to define a transfer map to bounded cohomology of the trivial group
(Exercise 9.E.30).

Outlook 9.2.23 (Amenability and L?<invariants). Also L?-(co)homology and
L2-invariants exhibit an interesting behaviour in the presence of amenabil-
ity [104).
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In particular, amenability is a geometric property of finitely generated
groups:

Corollary 9.3.2. Let G and H be finitely generated groups with G~qi H. Then
G is.amenable if and only if H is amenable.

Proof. This follows directly from the characterisation of amenable groups
via Fglner sequences (Theorem 9.2.6) and the quasi-isometry invariance of
amenability for UDBG spaces (Theorem 9.3.1). O

Alternatively, quasi-isometry invariance of amenability of finitely gener-
ated groups or UDBG spaces can also be derived from the quasi-isometry in-
variance of uniformly finite homology and the characterisation of amenability
via uniformly finite homology (Theorem 9.2.20).

9.4 Quasi-isometry vs. bilipschitz equivalence

We will now investigate the difference between quasi-isometry and bilipschitz
equivalence for finitely generated groups. It can be shown that there exist
finitely generated infinite groups that are quasi-isometric but not bilipschitz
equivalent [55, 56]. However, for non-amenable groups we have a rigidity
phenomenon: Every quasi-isometry between finitely generated non-amenable
groups is at finite distance of a bilipschitz equivalence.

In the following, we will give an elementary proof of this bilipschitz equiv-
alence rigidity result for non-amenable UDBG spaces [77, 39]; a refined ap-
proach is sketched briefly in Outlook 9.4.10.

Theorem 9.4.1 (Bilipschitz equivalence rigidity for UDBG spaces). Let X and
Y be UDBG spaces, let' Y be non-amenable, and let f: X — Y be a quasi-
isometry. Then f is at finite distance of a bilipschitz equivalence X — Y.

The idea of the proof is as follows:

e Bijective quasi-isometries between UDBG spaces are bilipschitz equiv-
alences; thus, it suffices to deform f into a bijective quasi-isometry.

e Because Y (and hence also X)) are non-amenable, Hall’s marriage the-
orem guarantees that there is enough space to deform f and a quasi-
isometry inverse Y — X of f into injective quasi-isometries.

e These injective maps can be glued via the Schroder-Bernstein theorem
to form a bijective quasi-isometry.

We will now explain the ingredients and the steps of this proof in more
detail:

Proposition 9.4.2 (Bijective quasi-isometries vs. bilipschitz equivalences). Let
X andY be UDBG spaces, and let f: X — Y be a bijective quasi-isometry.
Then f is a bilipschitz equivalence.
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Proof. Because G is non-amenable and G ~qr G’, bilipschitz equivalence
rigidity (Theorem 9.4.1) implies that there is even a bilipschitz equiva-
lence f: G — G'. A straightforward calculation shows that the induced
map

fridg: G+ H — G"x H

is also a bilipschitz equivalence (the corresponding statement for quasi-
isometries does mot hold in general, because one loses control over the addi-
tive error term when taking free products (Exercise 9.E.20)). In particular,
we obtain G« H ~q1 G’ « H. O

Example 9.4.8. The groups (F3 x F3) * F3 and (F3 X F3) = Fy are bilip-
schitz equivalent (and hence quasi-isometric) because F3 is non-amenable
and F3 ~qr F4. This example can be used to separate commensurability and
quasi-isometry (Caveat 5.4.9).

Caveat 9.4.9. If G, G/, H are finitely generated groups with G~q; G’, then in
general G* H ~q1 G’ * H does not hold. For example, 1 ~q1 Z/2, but the free
product 1% Z/2 = 7/2 is finite and hence not quasi-isometric to the infinite
group Z/2 x /2.

Another example of this type is that Z/3 x Z/2 is not quasi-isometric
to Z/2+7Z/2, but Z/3 ~q1Z/2. However, these two examples are basically the
only cases where quasi-isometry is not inherited through free products [143].

Outlook 9.4.10 (Bilipschitz equivalence rigidity via uniformly finite homol-
ogy). The bilipschitz rigidity theorem (Theorem 9.4.1) can be refined as fol-
lows [175]:

Theorem 9.4.11 (Bilipschitz equivalence rigidity for UDBG spaces, via uniformly
finite homology). Let X and Y be UDBG spaces and let f: X — Y be a
quasi-isometry. Then the following are equivalent:

1. The map f is at finite distance of a bilipschitz equivalence:

2. The map f is compatible with the fundamental classes:

H§ (£, 2)[X)z = [Y]z-

From this one can easily recover the result of Theorem 9.4.1: Let X and
Y be non-amenable UDBG spaces. Then every quasi-isometry X — Y is at
finite distance of a bilipschitz equivalence; this can be seen as follows:

As X and Y are non-amenable, we have [X]z = 0 = [Y]z (Theorem 9.2.20).
In particular, every quasi-isometry f: X — Y maps [X]|z to [Y]z. By The-
orem 9.4.11, f is hence at finite distance of a bilipschitz equivalence.

The refined formulation of Theorem 9.4.11 allows in concrete examples
to separate quasi-isometry from bilipschitz equivalence of finitely generated
(amenable) groups [55, 56].
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Exercise 9.E.14 (Exhausting Fglner sequences**). Let X be an amenable
UDBG space and let (Fy,)nen be a Folner sequence of X.
1. If | X| = oo, show that lim, . |F,| = occ.
2. Let 2y € X. Show that ({z¢} U F,)nen also is a Fglner sequence.
3. Show that X has a Folner sequence (ﬁ,,,)neN with the following prop-
erties: ~ _
e For alln € N we have F; C F, 41,
e and UnENﬁn = X.
Hints¢ Construct the new Fglner sequence inductively by combining
({20} U F)pen with darger and larger balls. Be careful to choose radii
and indices in the right order!

Exercise 9.E.15 (Fglner sequences in trees?**). Let r € N>3, let 7' = (V, E)
be a regular tree of degree r, and consider the metric d on V induced by T.
Show that the UDBG space (V,d) is not amenable by analysing the size of
boundaries of finite subsets.

Exercise 9.E.16 (Kazhdan’s property (T) and amenability**). Let G be a group
(for simplicity, we only consider discrete groups). A unitary representation
of G on a Hilbert space H isan action of G on H by unitary operators.
e Let @ C Gand € € Rug. A (Q,e)-invariant vector of a unitary repre-
sentation of G on H is a vector x € H with

Yoeq llg-z — | <e- ||

e A unitary representation of G has almost invariant vectors if for every
finite set Q C. G and every € € R+ there is a (@, €)-invariant vector.
e A subset Q C G is-a Kazhdan set if there exists an ¢ € R~ with:
Every unitary representation of G with a (Q,€)-invariant vector has a
non-zero invariant vector.
e The group G has property (T) if G contains a finite Kazhdan set.
The goal of this exercise is to compare property (T) with amenability:
1. Show that the left translation action of a finitely generated amenable
group G on (?(G,C) has almost invariant vectors.
2. Show that every finitely generated amenable group with property (T)
is finite.
Show that all finite groups have property (T) (and are amenable).
4. Look up in the literature how the interplay of amenability and prop-
erty (T) is used in the normal subgroup theorem by Margulis.

&

Bilipschitz equivalence rigidity

Quick check 9.E.17 (Bilipschitz equivalence of groups*).
1. Are the groups Fbp17 and Z X Fsg17 bilipschitz equivalent?
2. Are the groups Fsg17 and Fg17 x Z/2017 bilipschitz equivalent?
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Exercise 9.E.18 (Non-amenable groups are paradoxical**). Let G be a finitely
generated non-amenable group (via Fglner sequences).
1. Show that there exists a surjection f: G — G that is at finite distance
from the identity with |f~!(g)| =2 for all g € G} in particular, there is
a finite set K C G with the following property: For all g € G we have

g-fl9) " €K

Hints. <Use thefact that the projection G % Z/2 — G is a quasi-
isometry and.apply Theorem 9.4.1.
2. Conclude that G is paradoxical.

Hints. Iet f and'K be asin the previous step. Use the axiom of choice
to pick two complementing sections fi1 fo: G —> G of f and consider
the sets (ffl(ls:))kg( as well as (f;l(k))ke;(.

How can one now generalise this result to all (not necessarily finitely gener-

ated) groups?

Exercise 9.E.19 (Quasi-lsometry vs: bilipschitz equivalence for Z™ **). Let G
be a finitely generated group that is quasi-isometric to Z™ for some n € N.
1. Show that there exists an m € N such that there is an injective quasi-
isometric embedding G — Z" x Z/m.
2. Show that there is-an injective quasi-isometric embedding G — Z™.
3. Show that thereis an injective quasi-isometric embedding Z" — G by
passing to a suitable finite index subgroup of Z".
4. Why do the previous steps not immediately imply via a Schroder-
Bernstein argument that G and Z™ are bilipschitz equivalent?
Hints. Thereds a serious issue! [37]
5. Prove that G and Z" are bilipschitz equivalent, using quasi-isometry
rigidity of Z™.

Exercise 9.E.20 (Free products of quasi-isometries*). Let: G, G’, H be finitely
generated groups and let f: G — G’ be a map.
1. Show in a concrete example that f*idg: G+ H — G'* H is not neces-
sarily a quasi-isometric embedding if f is a quasi-isometric embedding:
2. Show in a concrete example that f xidy: G * H — G’ ¥ H does
not necessarily have quasi-dense image if f: G — H has quasi-dense
image.

Amenable actions™

Following the general principle of extending geometric notions from groups
to group actions, one can define and investigate amenability for group ac-
tions [68]:

Definition 9.E.1 (Amenable action). Let G be a group and let X be a set. An
action of G on X is amenable, if there exists a G-invariant mean on (>°(X, R).
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Caveat 9.E.2. There are also other notions of amenable actions [180, 5], in
the context of ergodic theory. These are different from the one above!

Quick check 9.E.21 (Amenable action basics*).
1. For which groups G is the left translation action on G amenable?
2. Which groups admit free amenable actions?
3. Are all actions of amenable groups amenable?
4. For which groups is the trivial action on the one-point space amenable?

Definition 9.E.3 (Faithful action). An action of a group G on a set X is
faithful if the associated homomorphism G'— Sx is injective.

Quick check 9.E.22 (Faithful action basics*).
1. TIs every free action faithful?
2. Is every faithful action free?
3. How can one define faithful actions in general categories?

Quick check 9.E.23 (Faithful amenable actions*). Show that every group ad-
mits a faithful amenable action.

Exercise 9.E.24 (Amenable actions via Fglner sets** [149]).
1. Give a definition for Fglner sequences for group actions (of countable
groups on countable sets).
2. State and prove a characterisation of amenable actions (of countable
groups on countable sets) in terms of Fglner sequences.

Exercise 9.E.25 (Amenable actions without finite orbits** [68, Lemma 2.16]).
Let G be a countable group that is not finitely generated. Show that there
exists an amenable action of G that has no finite orbits.

Hints. Use the characterisation of amenable actions in terms of Fglner sets
(Exercise 9.E.24) and let.G act, on. the disjoint union of all‘coset spaces of G
by finitely generated subgroups.

Exercise 9.E.26 (Amenable actions of non-amenable groups***). Prove that
the free group F'({a,b}) of rank 2 admits a faithful, transitive amenable
action, following Glasner and Monod [68]: Let X := Z x {0,1} and

b (2,1) := (2 +mn,1)

for all n € Z, (z,i) € Z x {0,1}. For an injection J:Z — Z x {0,1} the
action by powers of @ on X is defined by

G- (21) = (2,1) if (z,4) &€ im J

R (J(m4n), i) if (2,4) = J(m) with m € Z

for all n € Z, (2,i) € Z x {0,1}. We only consider injections J that satisfy

J(0) :=(0,0) and J(n) :=(n,1) for all n € Z-g as well as J(N) C Z x {0}.
1. Show that every such action is amenable.





















A.1 The fundamental group

The fundamental group is a-concept from algebraic topology: The funda-
mental group provides a translation from topological spaces into groups that
ignores homotopies. In more technical terms, the fundamental group is a
homotopy invariant functor

71 : path-connected pointed topological spaces — groups

basepoint preserving continuous maps — group homomorphisms.

A.1.1 Construction and examples

Geometrically, the fundamental group measures how many “holes” a space
has that can be detected by loops in the space in question. The group struc-
ture on such loops is given by concatenation of loops. This idea can be turned
into a precise definition — with two small modifications:

e In order to be able to concatenate loops, we need to fix a basepoint in
the space. A pointed space is a pair (X, () consisting of a topological
space X and a point zg € X, the basepoint.

e In order to obtain an associative composition by concatenation and
inverses; we have to identify loops that can be continuously deformed
into each other through pointed homotopies.

Basepoint preserving maps f,g: (Y,y0) — (Z, 20) are homotopic (in
the pointed sense), if f can be continuously deformed into g while fixing
the basepoint, i.e., if there is a continuous map h:Y x [0,1] — Z
satisfying

h(-,0)=f and h(-,1)=g

and
Vici0,1] M(yo,t) = 0.

In this case, we write f =~, g. Such basepoint preserving maps are
homotopy equivalences if they admit an inverse up to pointed homo-
topy. Pointed spaces are homotopy equivalent if there exists a homotopy
equivalence between them. A space is contractible if it is homotopy
equivalent to a single point.

Definition A.1.1 (Fundamental group). The fundamental group
,/Tl(Xa ’ll'()) = map*((Sl, 1)7 (Xa IE()))/ =

of a pointed space (X, zg) is defined as the set of all loops in X based
at zg, modulo basepoint preserving homotopies; the composition of two
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The prototypical calculation of a fundamental group is 71(S1) = Z; the
fundamental group measures how often a loop wraps around the “hole” in S'.
In contrast, all loops in the sphere S? can be deformed into the constant loop,
whence m1(S?) is the trivial group. Some basic examples of fundamental
groups are listed in Figure A.2.-Moreover, the following dictionary between
topological and group theoretical constructions is helpful in the calculation
of fundamental groups:

e Products. The fundamental group functor is compatible with products:

The projection maps induce an isomorphism

71 (X XY, (z0,90)) = m1(X, @0) x 71 (Y, y0).

(This also holds for products over arbitrary index sets.)

e Glueings. The fundamental group functor is compatible with (many)
pushouts: By the Seifert and van Kampen theorem, there is a canon-
ical isomorphism between 71'1((X, a0) U(a,a0) (Y, ao)) and the pushout
of w1 (X, z¢) and m1 (Yyyo) over w1 (A, ag), provided that XNY = A4 and
both X and Y are path-connected open subsets of X Uy Y.

o Self-glueings. The fundamental group of mapping tori along 7j-injective
maps leads to ascending HNN-extensions. More general 7-injective
self-glueings result in more general HNN-extensions on the level of fun-
damental groups.

e Fibrations. Fundamental groups of fibration sequences of path-connect-
ed topological spaces correspond roughly to extensions of groups.
Details on the fundamental group and proofs of these claims can be found in

most books on algebraic topology [115, 81, 48].

The fundamental group can also be used to introduce a higher version
of path-connectedness: A topological space is path-connected, if every pair
of points can be joined by a continuous path. A topological space is simply
connected if it is path-connected and if every pair of points can be joined by
a continuous path in an essentially unique way:

Definition A.1.3 (Simply connected). A topological space is simply connected
if it is path-connected and if its fundamental group is trivial.

More generally, the paradigm of algebraic topology is to find good homo-
topy invariants of topological spaces with the goal of classifying (large classes
of) topological spaces up to homotopy equivalence; the fundamental group
is just one example of this type. Further examples include, for instance, sin-
gular homology and cohomology, the Euler characteristic, higher homotopy
groups, . . .

A.1.2 Covering theory

In geometric group theory, the most important aspect of the fundamental
group is that it is a source of convenient group actions and that it serves as
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e The space X admits a free, properly discontinuous group action of the
fundamental group 1 (X, ) such that there is a homeomorphism from
the quotient 1 (X, o) \)? to X that sends the class of Zg to zg.

e All other path-connected pointed coverings of (X,xo) correspond to
intermediate quotients of ()? ,Zo) by subgroups of 7 (X, ).

In particular, the fundamental group 7m;(X,z() coincides with the deck
transformation group (i.e.; the automorphism group) of the universal cover-
ing X —X. A thorough treatment of covering theory is given in Massey’s
book [115].

For example, the universal covering of the circle S* can be identified with
the real line R together with the translation action of 71(S!,1) 2 Z (Exam-
ple4.1.7 and Figure 4.1). Taking quotients of the universal covering space by
subgroups of the fundamental group yields intermediate coverings associated
with these subgroups. These intermediate coverings together with the lift-
ing properties of covering maps turn out to be a useful tool to study groups
and spaces; simple examples of this type are given in the sketch proof of
Corollary 6.2.15 and Remark 4.2.11.

If X is a metric space, then X carries an induced metric (namely, the
induced path-metric) and the action of the fundamental group is isometric
with respect to this metric. Therefore; fundamental groups can be viewed as
(subgroups of ) isometry groups. This is a helpful point of view in Riemannian
geometry and geometric group theory, in particular, in the context of the
Svarc-Milnor lemma (Chapter 5.4).

Furthermore, for every group there is a path-connected topological space
that has the given group as fundamental group (one construction is sketched
in Outlook 3.2.5); moreover; this can be arranged in such a way that the
universal covering of this space is contractible (equivalently, all higher ho-
motopy groups are trivial). Spaces with this property are called classifying
spaces or Eilenberg-MacLane spaces. Classifying spaces provide a means to
model group theory in terms of topological spaces, and are a central concept
in the study of group (co)homology [34] (Appendix A.2, Outlook 3.2.5).
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Remark A.2.4 (Functoriality of group (co)homology). Group (co)homology is
functorial with respect to compatible transformations of groups and coeffi-
cient modules [34, Chapter 11.6, Chapter II1.8].

The definition above is only one of many descriptions of group (co)ho-
mology. The most common, generally applicable, descriptions are the follow-
ing:

o Simplicial picture. This is the description that we used as a defini-
tion. It is easy to write down, but it is usually not helpful for concrete
computations because the chain modules tend to be huge.

e Algebraic picture. Alternatively, group (co)homology can be described
as the derived functors associated with tensor products and homo-
morphism modules over group rings [34, Chapter III]. Hence, group
(co)homology can flexibly be computed via resolutions over the group
ring.

e Geometric picture. From a more topological/geometric perspective,
group cohomology can be described in terms of classifying spaces of
groups (Appendix A.1). More precisely, if G is a group and BG is a
classifying space of G' (Appendix A.1), then group (co)homology of G is
nothing but ordinary (simplicial; singular, cellular) (co)homology of BG
with twisted coefficients [34, Chapter II.4, Chapter III.1]. Therefore,
“good” models of classifying spaces provide a means to compute group
(co)homology geometrically.

A.2.2 Applications

This diversity of descriptions is the reason for the versatility of group
(co)homology in applications. Classical applications of group (co)homology
include, for example:

e If G is a group, then H, (G; Z) is nothing but the abelianisation of G [34,
Chapter I1.3].

e The second group cohomology allows to classify group extensions with
Abelian kernel [34, Chapter IV].

e In algebraic number theory, group cohomology is used to study field
extensions and their Galois groups; for example, the Hilbert 90 Theorem
admits a description and proof in terms of the first cohomology of the
Galois group [128, Chapter VI.2].

e Group (co)homology and its interplay with classifying spaces allows
to introduce several notions of dimension and finiteness conditions for
groups [34, Chapter VIII].

e The study of groups with so-called periodic cohomology is intimately
related to the question of which finite groups admit free continuous
actions on spheres [34, Chapter VIJ.






A.3 The hyperbolic plane

The hyperbolic plane is one of the origins of modern geometry and a source
of instructive examples. The geometry of the hyperbolic plane is “dual” to
the intuitively more accessible spherical geometry and can be used to show
the independence of the parallel postulate from the other axioms of Euclid.

We will recall the construction of the hyperbolic plane via the halfplane
model and we will then sketch how one can develop its basic metric proper-
ties from scratch, using the language of elementary Riemannian geometry. In
contrast with many of the examples from Riemannian geometry mentioned
in this book, this appendix will not require any previous experience in Rie-
mannian geometry.

A.3.1 Construction of the hyperbolic plane

We construct the hyperbolic plane as a Riemannian manifold. To this end,
we consider the halfplane model. In short the construction reads as follows:
The hyperbolic plane H? is the open upper halfplane in R?, equipped with
the Riemannian metric
dx® + dy?
y:o

We will now give more details: A Riemannian manifold is a smooth mani-
fold together with a smooth family of scalar products on the tangent spaces.
Using the local notion of lengths of vectors in tangent spaces, one can in-
troduce the length of smooth curves (by integration) and a notion of angles
between smooth curves that start at the same point. Minimising the length of
smooth curves between two points gives a metric on the underlying manifold.

Definition A.3.1 (Upper halfplane). We write
H:= {(z,y) € R? ’y>0} c R?

for the upper halfplane. Depending on the context, we will also view H as a
subset of C, using the following identifications:

H—{z€C|Imz> 0}
(@,y) —x+i-y
(Rez,Imz) ¢— =

Because H C R? is open, the set H inherits the structure of a smooth
manifold from R?. Because the tangent bundle of R? is trivial also the tangent
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e As first step, one shows that Ren = 0. Assume for a contradiction
that there is a t-€ (0, L) with Ren(t) # 0. By Theorem A.3.15, we can
connect 7(t) with 7 and with i -y through smooth geodesics. One applies
the projection from Proposition A.3.5 and then uses the calculations
from Theorem A.3.7, Proposition A.3.5, and Proposition A.3.8 to arrive
at a contradiction.

e By the first step, n lives on the imaginary line. As geodesic, the map 7
is injective; hence; Im7 is injective (and monotonous). Together with
the knowledge on vertical distances we hence obtain

Viep,r) n(t) =i-e€.

Angles

In order to complete the description of the isometry group of the hyperbolic
plane it is convenient to work with angles. As in the case of the length of
curves and of isometries, there are two notions of angles: a Riemannian one
and a metric one.

Definition A.3.20 (Hyperbolic angle). Let vy : [0, L1] — H, v2: [0, Lo] — H
be smooth curves in H? with v, (0) = 92(0) and 4, (0) # 0 # 42(0). Then the
hyperbolic angle between vy, and ~s is defined by

<g(71,92) == <u (71(0)/'72(0))
1(0),45 (0
= arccos ~— (11(0);92( )?H’WI(O) € [0, 7].
191 (0 22,74 0) = 172 O 2252 0)

The halfplane model is conformal in the following sense: If 71 and ~s are
smooth curves in H with v, (0) = 42(0) and 41 (0) # 0 # 42(0), then

< (71, 72) = <91,72)

because (-, -)p . is obtained from the Euclidean scalar product by scaling
(and hence defines the same angles). Hyperbolic angles drawn in the halfplane
model therefore can be read off as the corresponding Euclidean angles.

Proposition A.3.21 (Hyperbolic angle, metric version). Let v1: [0,L1] — H,
Y2 [0, L] — H be geodesics in (H,dp) with 41 (0) = 72(0). Then

dH(m(t)m(t))?).

<Ly, 72) = }1_13% arccos(l A A

Proof. By the characterisation of geodesics in (H;dy) (Theorem A.3.15, Re-
mark A.3.19) we know that 7, and s are smooth and have non-zero derivative
at 0; hence, <y (11,72) is defined. Using transitivity of the Mobius transfor-
mation action and the fact that the right hand side in the theorem is in-
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A.4 An invitation to programming

An instructive way to experience and comprehend a mathematical field is to
try to feed that subject into a computer — e.g., for illustrative or computa-
tional purposes. The following is-a random selection of programming tasks
encouraging the reader to get-more involved with this aspect of geometric
group theory. Happy hacking!

Programming task A.4.1 (Verified group theory).

1.
2.

Choose a proof assistant (such as Coq [42]).

Model the basic terminology of group theory in this proof assistant (or
find and understand a library doing this).

Prove basic facts of group theory in the proof assistant, e.g., uniqueness
of the neutral element (or find and understand a library doing this).

Programming task A.4.2 (Abelianisation).

1.

Choose a programming language (such as Haskell [80]) or a computer
algebra system (such as SageMath [153]).

Model finite presentations of groups in this language.

Model the standard isomorphism types of finitely generated Abelian
groups in this language.

Implement abelianisation (Exercise 2.E.18) in this setup.

Hints. /This willalso require the computation of Smith normal forms.

Programming task A.4.3 (Girth in free groups).

1.
2.
3.

Choose a programming language or a computer algebra system.
Model (finitely generated) free groups in this language.

Implement a function that generates the (potentially infinite) list of
free generating sets of a given finitely generated free group.

Hints. The automorphism groups of free groups are generated by the
so-called Nielsen transformations:

Model graphs in this language.

Implement a function that, given a finitely generated free group F
and a finite generating set S of this free group, computes the girth
of Cay(F,9).

Hints... The girth is infinite if and only if the generating set is free.
Simultaneously search for the generating set.in the listof free generating
sets and (try to) list short loops:

Programming task A.4.4 (Regular graphs.of large girth).

1.
2.
3.

Choose a programming language or a computer algebra system.
Model graphs in this language.
Construct regular graphs of large girth as in the proof of Theorem 4.4.6.
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Programming task A.4.8 (Verified quasi-geometry).

1.
2.

Choose a proof assistant.

Model the basic terminology of quasi-geometry in this proof assistant
(such as metric spaces, isometric embeddings, bilipschitz embeddings;
quasi-isometric embeddings, ...).

Prove basic facts of quasi-geometry in the proof assistant, e.g., inheri-
tance properties of quasi-isometric embeddings or independence of the
bilipschitz equivalence type of the choice of finite generating sets of
finitely generated groups.

Model hyperbolic groups in this setup and prove basic facts of hyper-
bolic groups in this setup.

Programming task A.4.9 (Growth functions).

1.
2.
3.

4.

Choose a programming language or a computer algebra system.
Model finite presentations of groups in this language.

Use a suitable concept in this programming language to model what it
means that the word problem for a given finite presentation is solvable.
Write a function that, given a finite presentation (S| R) with solvable
word problem and a radius n € N, computes the value (s | gy,g(n) of
the corresponding growth function.

Programming task A.4.10 (Dehn'’s algorithm).

1.
2
3.
4.

Choose a programming language or a computer algebra system.
Model finite presentations of groups in this language.

Model Dehn presentations in this setup.

Implement Dehn’s algorithm (Proposition 7.4.7) in this setup.

Programming task A.4.11 (The word problem in residually finite groups).

1.
2.
3.

Choose a programming language or a computer algebra system.
Model finite presentations of groups in this language.

Implement a function that, given a finite presentation (S | Ry, generates
the (potentially infinite) list of all words/elements of <R>?S |R)-

Model finite symmetric groups in this language.

Model group homomorphisms between finitely generated groups in this
language. How can such a group homomorphism be evaluated on group
elements?

Implement a function that, given a finite presentation (S| R) and n € N,
generates the list of all group homomorphisms (S| R) —S,,.

Hints. » Generators and relations satisfy a universal property!
Implement a function that, given a finite presentation (S | R) of a resid-
ually finite group (Definition 4.E.1) and a word w € (S U S71)*, deter-
mines whether the group element of (S| R) represented by w is trivial
or not.

Hints. “Simultaneously search. for w in <R>?S 'R) and for non-triviality
of w through a homomorphism to a finite symmeétric group.
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